diff options
author | Jason Gross <jgross@mit.edu> | 2017-02-21 20:43:46 -0500 |
---|---|---|
committer | Jason Gross <jgross@mit.edu> | 2017-05-28 09:38:36 -0400 |
commit | 4e12d9eb8945120c5cfdb36964fba54dde767b51 (patch) | |
tree | c7fc5c13f6c8a981974e9257f0f4cbd27e102266 /theories/Init | |
parent | 6d3c5956ee7c56c816750f3879a5ddafcdf81f0f (diff) |
Replace [ex'] with [ex]
The ' was originally denoting that we were taking in the projections and
applying the constructor in the conclusion, rather than taking in the
bundled versions and projecting them out (because the projections don't
exist for [ex] and [ex2]). But we don't have versions like this for
[sig] and [sigT] and [sigT2] and [sig2], so we might as well not add the
' to the [ex] and [ex2] versions.
Diffstat (limited to 'theories/Init')
-rw-r--r-- | theories/Init/Logic.v | 20 |
1 files changed, 10 insertions, 10 deletions
diff --git a/theories/Init/Logic.v b/theories/Init/Logic.v index b5d99aac6..35591cbe3 100644 --- a/theories/Init/Logic.v +++ b/theories/Init/Logic.v @@ -653,7 +653,7 @@ Declare Right Step iff_trans. (** Equality for [ex] *) Section ex. Local Unset Implicit Arguments. - Definition eq_ex_uncurried' {A : Type} (P : A -> Prop) {u1 v1 : A} {u2 : P u1} {v2 : P v1} + Definition eq_ex_uncurried {A : Type} (P : A -> Prop) {u1 v1 : A} {u2 : P u1} {v2 : P v1} (pq : exists p : u1 = v1, rew p in u2 = v2) : ex_intro P u1 u2 = ex_intro P v1 v2. Proof. @@ -662,16 +662,16 @@ Section ex. destruct p; reflexivity. Defined. - Definition eq_ex' {A : Type} {P : A -> Prop} (u1 v1 : A) (u2 : P u1) (v2 : P v1) + Definition eq_ex {A : Type} {P : A -> Prop} (u1 v1 : A) (u2 : P u1) (v2 : P v1) (p : u1 = v1) (q : rew p in u2 = v2) : ex_intro P u1 u2 = ex_intro P v1 v2 - := eq_ex_uncurried' P (ex_intro _ p q). + := eq_ex_uncurried P (ex_intro _ p q). - Definition eq_ex'_hprop {A} {P : A -> Prop} (P_hprop : forall (x : A) (p q : P x), p = q) + Definition eq_ex_hprop {A} {P : A -> Prop} (P_hprop : forall (x : A) (p q : P x), p = q) (u1 v1 : A) (u2 : P u1) (v2 : P v1) (p : u1 = v1) : ex_intro P u1 u2 = ex_intro P v1 v2 - := eq_ex' u1 v1 u2 v2 p (P_hprop _ _ _). + := eq_ex u1 v1 u2 v2 p (P_hprop _ _ _). Lemma rew_ex {A x} {P : A -> Type} (Q : forall a, P a -> Prop) (u : ex (Q x)) {y} (H : x = y) : rew [fun a => ex (Q a)] H in u @@ -693,7 +693,7 @@ End ex. Section ex2. Local Unset Implicit Arguments. - Definition eq_ex2_uncurried' {A : Type} (P Q : A -> Prop) {u1 v1 : A} + Definition eq_ex2_uncurried {A : Type} (P Q : A -> Prop) {u1 v1 : A} {u2 : P u1} {v2 : P v1} {u3 : Q u1} {v3 : Q v1} (pq : exists2 p : u1 = v1, rew p in u2 = v2 & rew p in u3 = v3) @@ -704,21 +704,21 @@ Section ex2. reflexivity. Defined. - Definition eq_ex2' {A : Type} {P Q : A -> Prop} + Definition eq_ex2 {A : Type} {P Q : A -> Prop} (u1 v1 : A) (u2 : P u1) (v2 : P v1) (u3 : Q u1) (v3 : Q v1) (p : u1 = v1) (q : rew p in u2 = v2) (r : rew p in u3 = v3) : ex_intro2 P Q u1 u2 u3 = ex_intro2 P Q v1 v2 v3 - := eq_ex2_uncurried' P Q (ex_intro2 _ _ p q r). + := eq_ex2_uncurried P Q (ex_intro2 _ _ p q r). - Definition eq_ex2'_hprop {A} {P Q : A -> Prop} + Definition eq_ex2_hprop {A} {P Q : A -> Prop} (P_hprop : forall (x : A) (p q : P x), p = q) (Q_hprop : forall (x : A) (p q : Q x), p = q) (u1 v1 : A) (u2 : P u1) (v2 : P v1) (u3 : Q u1) (v3 : Q v1) (p : u1 = v1) : ex_intro2 P Q u1 u2 u3 = ex_intro2 P Q v1 v2 v3 - := eq_ex2' u1 v1 u2 v2 u3 v3 p (P_hprop _ _ _) (Q_hprop _ _ _). + := eq_ex2 u1 v1 u2 v2 u3 v3 p (P_hprop _ _ _) (Q_hprop _ _ _). Lemma rew_ex2 {A x} {P : A -> Type} (Q : forall a, P a -> Prop) |