aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Init
diff options
context:
space:
mode:
authorGravatar Jason Gross <jgross@mit.edu>2017-02-21 20:43:46 -0500
committerGravatar Jason Gross <jgross@mit.edu>2017-05-28 09:38:36 -0400
commit4e12d9eb8945120c5cfdb36964fba54dde767b51 (patch)
treec7fc5c13f6c8a981974e9257f0f4cbd27e102266 /theories/Init
parent6d3c5956ee7c56c816750f3879a5ddafcdf81f0f (diff)
Replace [ex'] with [ex]
The ' was originally denoting that we were taking in the projections and applying the constructor in the conclusion, rather than taking in the bundled versions and projecting them out (because the projections don't exist for [ex] and [ex2]). But we don't have versions like this for [sig] and [sigT] and [sigT2] and [sig2], so we might as well not add the ' to the [ex] and [ex2] versions.
Diffstat (limited to 'theories/Init')
-rw-r--r--theories/Init/Logic.v20
1 files changed, 10 insertions, 10 deletions
diff --git a/theories/Init/Logic.v b/theories/Init/Logic.v
index b5d99aac6..35591cbe3 100644
--- a/theories/Init/Logic.v
+++ b/theories/Init/Logic.v
@@ -653,7 +653,7 @@ Declare Right Step iff_trans.
(** Equality for [ex] *)
Section ex.
Local Unset Implicit Arguments.
- Definition eq_ex_uncurried' {A : Type} (P : A -> Prop) {u1 v1 : A} {u2 : P u1} {v2 : P v1}
+ Definition eq_ex_uncurried {A : Type} (P : A -> Prop) {u1 v1 : A} {u2 : P u1} {v2 : P v1}
(pq : exists p : u1 = v1, rew p in u2 = v2)
: ex_intro P u1 u2 = ex_intro P v1 v2.
Proof.
@@ -662,16 +662,16 @@ Section ex.
destruct p; reflexivity.
Defined.
- Definition eq_ex' {A : Type} {P : A -> Prop} (u1 v1 : A) (u2 : P u1) (v2 : P v1)
+ Definition eq_ex {A : Type} {P : A -> Prop} (u1 v1 : A) (u2 : P u1) (v2 : P v1)
(p : u1 = v1) (q : rew p in u2 = v2)
: ex_intro P u1 u2 = ex_intro P v1 v2
- := eq_ex_uncurried' P (ex_intro _ p q).
+ := eq_ex_uncurried P (ex_intro _ p q).
- Definition eq_ex'_hprop {A} {P : A -> Prop} (P_hprop : forall (x : A) (p q : P x), p = q)
+ Definition eq_ex_hprop {A} {P : A -> Prop} (P_hprop : forall (x : A) (p q : P x), p = q)
(u1 v1 : A) (u2 : P u1) (v2 : P v1)
(p : u1 = v1)
: ex_intro P u1 u2 = ex_intro P v1 v2
- := eq_ex' u1 v1 u2 v2 p (P_hprop _ _ _).
+ := eq_ex u1 v1 u2 v2 p (P_hprop _ _ _).
Lemma rew_ex {A x} {P : A -> Type} (Q : forall a, P a -> Prop) (u : ex (Q x)) {y} (H : x = y)
: rew [fun a => ex (Q a)] H in u
@@ -693,7 +693,7 @@ End ex.
Section ex2.
Local Unset Implicit Arguments.
- Definition eq_ex2_uncurried' {A : Type} (P Q : A -> Prop) {u1 v1 : A}
+ Definition eq_ex2_uncurried {A : Type} (P Q : A -> Prop) {u1 v1 : A}
{u2 : P u1} {v2 : P v1}
{u3 : Q u1} {v3 : Q v1}
(pq : exists2 p : u1 = v1, rew p in u2 = v2 & rew p in u3 = v3)
@@ -704,21 +704,21 @@ Section ex2.
reflexivity.
Defined.
- Definition eq_ex2' {A : Type} {P Q : A -> Prop}
+ Definition eq_ex2 {A : Type} {P Q : A -> Prop}
(u1 v1 : A)
(u2 : P u1) (v2 : P v1)
(u3 : Q u1) (v3 : Q v1)
(p : u1 = v1) (q : rew p in u2 = v2) (r : rew p in u3 = v3)
: ex_intro2 P Q u1 u2 u3 = ex_intro2 P Q v1 v2 v3
- := eq_ex2_uncurried' P Q (ex_intro2 _ _ p q r).
+ := eq_ex2_uncurried P Q (ex_intro2 _ _ p q r).
- Definition eq_ex2'_hprop {A} {P Q : A -> Prop}
+ Definition eq_ex2_hprop {A} {P Q : A -> Prop}
(P_hprop : forall (x : A) (p q : P x), p = q)
(Q_hprop : forall (x : A) (p q : Q x), p = q)
(u1 v1 : A) (u2 : P u1) (v2 : P v1) (u3 : Q u1) (v3 : Q v1)
(p : u1 = v1)
: ex_intro2 P Q u1 u2 u3 = ex_intro2 P Q v1 v2 v3
- := eq_ex2' u1 v1 u2 v2 u3 v3 p (P_hprop _ _ _) (Q_hprop _ _ _).
+ := eq_ex2 u1 v1 u2 v2 u3 v3 p (P_hprop _ _ _) (Q_hprop _ _ _).
Lemma rew_ex2 {A x} {P : A -> Type}
(Q : forall a, P a -> Prop)