aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Init/Specif.v
diff options
context:
space:
mode:
authorGravatar Jason Gross <jgross@mit.edu>2016-12-05 11:13:15 -0500
committerGravatar Jason Gross <jgross@mit.edu>2017-05-28 09:38:36 -0400
commit94958a408aac22f35165fb3eb571f1c3310f060b (patch)
tree5a6f41192e5653cb334c3dc087649c29fbc59b61 /theories/Init/Specif.v
parent7cecf9a675145a4171bf8c8b6bb153caee93d503 (diff)
Use [rew] notations rather than [eq_rect]
Diffstat (limited to 'theories/Init/Specif.v')
-rw-r--r--theories/Init/Specif.v29
1 files changed, 15 insertions, 14 deletions
diff --git a/theories/Init/Specif.v b/theories/Init/Specif.v
index b6f92358b..cdc918275 100644
--- a/theories/Init/Specif.v
+++ b/theories/Init/Specif.v
@@ -219,6 +219,7 @@ Proof.
Qed.
(** Equality of sigma types *)
+Import EqNotations.
(** Equality for [sigT] *)
Section sigT.
@@ -230,14 +231,14 @@ Section sigT.
(** Projecting an equality of a pair to equality of the second components *)
Definition projT2_eq {A} {P : A -> Type} {u v : sigT P} (p : u = v)
- : eq_rect _ _ (projT2 u) _ (projT1_eq p) = projT2 v.
+ : rew projT1_eq p in projT2 u = projT2 v.
Proof.
destruct p; reflexivity.
Defined.
(** Equality of [sigT] is itself a [sigT] *)
Definition eq_sigT_uncurried {A : Type} {P : A -> Type} (u v : sigT P)
- (pq : sigT (fun p : projT1 u = projT1 v => eq_rect _ _ (projT2 u) _ p = projT2 v))
+ (pq : sigT (fun p : projT1 u = projT1 v => rew p in projT2 u = projT2 v))
: u = v.
Proof.
destruct u as [u1 u2], v as [v1 v2]; simpl in *.
@@ -248,7 +249,7 @@ Section sigT.
(** Curried version of proving equality of sigma types *)
Definition eq_sigT {A : Type} {P : A -> Type} (u v : sigT P)
- (p : projT1 u = projT1 v) (q : eq_rect _ _ (projT2 u) _ p = projT2 v)
+ (p : projT1 u = projT1 v) (q : rew p in projT2 u = projT2 v)
: u = v
:= eq_sigT_uncurried u v (existT _ p q).
@@ -265,7 +266,7 @@ Section sigT.
in dependent positions, we'd need it. *)
Definition eq_sigT_uncurried_iff {A P}
(u v : @sigT A P)
- : u = v <-> (sigT (fun p : projT1 u = projT1 v => eq_rect _ _ (projT2 u) _ p = projT2 v)).
+ : u = v <-> (sigT (fun p : projT1 u = projT1 v => rew p in projT2 u = projT2 v)).
Proof.
split; [ intro; subst; exists eq_refl; reflexivity | apply eq_sigT_uncurried ].
Defined.
@@ -292,11 +293,11 @@ Section sigT.
(** Classification of transporting across an equality of [sigT]s *)
Lemma eq_rect_sigT {A x} {P : A -> Type} (Q : forall a, P a -> Prop) (u : sigT (Q x)) {y} (H : x = y)
- : eq_rect x (fun a => sigT (Q a)) u y H
+ : rew [fun a => sigT (Q a)] H in u
= existT
(Q y)
- (eq_rect x P (projT1 u) y H)
- match H in (_ = y) return Q y (eq_rect x P (projT1 u) y H) with
+ (rew H in projT1 u)
+ match H in (_ = y) return Q y (rew H in projT1 u) with
| eq_refl => projT2 u
end.
Proof.
@@ -312,13 +313,13 @@ Section sig.
:= f_equal (@proj1_sig _ _) p.
Definition proj2_sig_eq {A} {P : A -> Prop} {u v : sig P} (p : u = v)
- : eq_rect _ _ (proj2_sig u) _ (proj1_sig_eq p) = proj2_sig v.
+ : rew proj1_sig_eq p in proj2_sig u = proj2_sig v.
Proof.
destruct p; reflexivity.
Defined.
Definition eq_sig_uncurried {A : Type} {P : A -> Prop} (u v : sig P)
- (pq : {p : proj1_sig u = proj1_sig v | eq_rect _ _ (proj2_sig u) _ p = proj2_sig v})
+ (pq : {p : proj1_sig u = proj1_sig v | rew p in proj2_sig u = proj2_sig v})
: u = v.
Proof.
destruct u as [u1 u2], v as [v1 v2]; simpl in *.
@@ -328,7 +329,7 @@ Section sig.
Defined.
Definition eq_sig {A : Type} {P : A -> Prop} (u v : sig P)
- (p : proj1_sig u = proj1_sig v) (q : eq_rect _ _ (proj2_sig u) _ p = proj2_sig v)
+ (p : proj1_sig u = proj1_sig v) (q : rew p in proj2_sig u = proj2_sig v)
: u = v
:= eq_sig_uncurried u v (exist _ p q).
@@ -347,7 +348,7 @@ Section sig.
Definition eq_sig_uncurried_iff {A} {P : A -> Prop}
(u v : @sig A P)
- : u = v <-> (sig (fun p : proj1_sig u = proj1_sig v => eq_rect _ _ (proj2_sig u) _ p = proj2_sig v)).
+ : u = v <-> (sig (fun p : proj1_sig u = proj1_sig v => rew p in proj2_sig u = proj2_sig v)).
Proof.
split; [ intro; subst; exists eq_refl; reflexivity | apply eq_sig_uncurried ].
Defined.
@@ -358,11 +359,11 @@ Section sig.
:= conj (fun p => f_equal (@proj1_sig _ _) p) (eq_sig_hprop P_hprop u v).
Lemma eq_rect_sig {A x} {P : A -> Type} (Q : forall a, P a -> Prop) (u : sig (Q x)) {y} (H : x = y)
- : eq_rect x (fun a => sig (Q a)) u y H
+ : rew [fun a => sig (Q a)] H in u
= exist
(Q y)
- (eq_rect x P (proj1_sig u) y H)
- match H in (_ = y) return Q y (eq_rect x P (proj1_sig u) y H) with
+ (rew H in proj1_sig u)
+ match H in (_ = y) return Q y (rew H in proj1_sig u) with
| eq_refl => proj2_sig u
end.
Proof.