aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/FSets/FSetFacts.v
diff options
context:
space:
mode:
authorGravatar notin <notin@85f007b7-540e-0410-9357-904b9bb8a0f7>2006-03-15 16:19:53 +0000
committerGravatar notin <notin@85f007b7-540e-0410-9357-904b9bb8a0f7>2006-03-15 16:19:53 +0000
commitbb3aa221cec09dc997b0f7dac7bc4e1a1b51c744 (patch)
treec650e4f52de0d687b412b4f251d85484e90372b0 /theories/FSets/FSetFacts.v
parent1b299d804e74bee348b1de51f7946af67956fbb5 (diff)
RĂ©paration de FSet (back to 8628)
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@8631 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories/FSets/FSetFacts.v')
-rw-r--r--theories/FSets/FSetFacts.v122
1 files changed, 61 insertions, 61 deletions
diff --git a/theories/FSets/FSetFacts.v b/theories/FSets/FSetFacts.v
index b7756592f..5cf2808c5 100644
--- a/theories/FSets/FSetFacts.v
+++ b/theories/FSets/FSetFacts.v
@@ -6,13 +6,13 @@
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
-(* $Id$ *)
+(* $Id: FSetFacts.v,v 1.6 2006/03/13 04:59:24 letouzey Exp $ *)
(** * Finite sets library *)
(** This functor derives additional facts from [FSetInterface.S]. These
facts are mainly the specifications of [FSetInterface.S] written using
- different styles equivalence and boolean equalities.
+ different styles: equivalence and boolean equalities.
Moreover, we prove that [E.Eq] and [Equal] are setoid equalities.
*)
@@ -20,8 +20,8 @@ Require Export FSetInterface.
Set Implicit Arguments.
Unset Strict Implicit.
-Module Facts (M S).
-Module ME = OrderedTypeFacts M.E.
+Module Facts (M: S).
+Module ME := OrderedTypeFacts M.E.
Import ME.
Import M.
Import Logic. (* to unmask [eq] *)
@@ -30,108 +30,108 @@ Import Peano. (* to unmask [lt] *)
(** * Specifications written using equivalences *)
Section IffSpec.
-Variable s s' s'' t.
-Variable x y z elt.
+Variable s s' s'' : t.
+Variable x y z : elt.
-Lemma In_eq_iff E.eq x y -> (In x s <-> In y s).
+Lemma In_eq_iff : E.eq x y -> (In x s <-> In y s).
Proof.
split; apply In_1; auto.
Qed.
-Lemma mem_iff In x s <-> mem x s = true.
+Lemma mem_iff : In x s <-> mem x s = true.
Proof.
split; [apply mem_1|apply mem_2].
Qed.
-Lemma not_mem_iff ~In x s <-> mem x s = false.
+Lemma not_mem_iff : ~In x s <-> mem x s = false.
Proof.
rewrite mem_iff; destruct (mem x s); intuition.
Qed.
-Lemma equal_iff s[=]s' <-> equal s s' = true.
+Lemma equal_iff : s[=]s' <-> equal s s' = true.
Proof.
split; [apply equal_1|apply equal_2].
Qed.
-Lemma subset_iff s[<=]s' <-> subset s s' = true.
+Lemma subset_iff : s[<=]s' <-> subset s s' = true.
Proof.
split; [apply subset_1|apply subset_2].
Qed.
-Lemma empty_iff In x empty <-> False.
+Lemma empty_iff : In x empty <-> False.
Proof.
intuition; apply (empty_1 H).
Qed.
-Lemma is_empty_iff Empty s <-> is_empty s = true.
+Lemma is_empty_iff : Empty s <-> is_empty s = true.
Proof.
split; [apply is_empty_1|apply is_empty_2].
Qed.
-Lemma singleton_iff In y (singleton x) <-> E.eq x y.
+Lemma singleton_iff : In y (singleton x) <-> E.eq x y.
Proof.
split; [apply singleton_1|apply singleton_2].
Qed.
-Lemma add_iff In y (add x s) <-> E.eq x y \/ In y s.
+Lemma add_iff : In y (add x s) <-> E.eq x y \/ In y s.
Proof.
split; [ | destruct 1; [apply add_1|apply add_2]]; auto.
destruct (eq_dec x y) as [E|E]; auto.
intro H; right; exact (add_3 E H).
Qed.
-Lemma add_neq_iff ~ E.eq x y -> (In y (add x s) <-> In y s).
+Lemma add_neq_iff : ~ E.eq x y -> (In y (add x s) <-> In y s).
Proof.
split; [apply add_3|apply add_2]; auto.
Qed.
-Lemma remove_iff In y (remove x s) <-> In y s /\ ~E.eq x y.
+Lemma remove_iff : In y (remove x s) <-> In y s /\ ~E.eq x y.
Proof.
split; [split; [apply remove_3 with x |] | destruct 1; apply remove_2]; auto.
intro.
apply (remove_1 H0 H).
Qed.
-Lemma remove_neq_iff ~ E.eq x y -> (In y (remove x s) <-> In y s).
+Lemma remove_neq_iff : ~ E.eq x y -> (In y (remove x s) <-> In y s).
Proof.
split; [apply remove_3|apply remove_2]; auto.
Qed.
-Lemma union_iff In x (union s s') <-> In x s \/ In x s'.
+Lemma union_iff : In x (union s s') <-> In x s \/ In x s'.
Proof.
split; [apply union_1 | destruct 1; [apply union_2|apply union_3]]; auto.
Qed.
-Lemma inter_iff In x (inter s s') <-> In x s /\ In x s'.
+Lemma inter_iff : In x (inter s s') <-> In x s /\ In x s'.
Proof.
split; [split; [apply inter_1 with s' | apply inter_2 with s] | destruct 1; apply inter_3]; auto.
Qed.
-Lemma diff_iff In x (diff s s') <-> In x s /\ ~ In x s'.
+Lemma diff_iff : In x (diff s s') <-> In x s /\ ~ In x s'.
Proof.
split; [split; [apply diff_1 with s' | apply diff_2 with s] | destruct 1; apply diff_3]; auto.
Qed.
-Variable f elt->bool.
+Variable f : elt->bool.
-Lemma filter_iff compat_bool E.eq f -> (In x (filter f s) <-> In x s /\ f x = true).
+Lemma filter_iff : compat_bool E.eq f -> (In x (filter f s) <-> In x s /\ f x = true).
Proof.
split; [split; [apply filter_1 with f | apply filter_2 with s] | destruct 1; apply filter_3]; auto.
Qed.
-Lemma for_all_iff compat_bool E.eq f ->
+Lemma for_all_iff : compat_bool E.eq f ->
(For_all (fun x => f x = true) s <-> for_all f s = true).
Proof.
split; [apply for_all_1 | apply for_all_2]; auto.
Qed.
-Lemma exists_iff compat_bool E.eq f ->
+Lemma exists_iff : compat_bool E.eq f ->
(Exists (fun x => f x = true) s <-> exists_ f s = true).
Proof.
split; [apply exists_1 | apply exists_2]; auto.
Qed.
-Lemma elements_iff In x s <-> ME.In x (elements s).
+Lemma elements_iff : In x s <-> ME.In x (elements s).
Proof.
split; [apply elements_1 | apply elements_2].
Qed.
@@ -140,7 +140,7 @@ End IffSpec.
(** Useful tactic for simplifying expressions like [In y (add x (union s s'))] *)
-Ltac set_iff =
+Ltac set_iff :=
repeat (progress (
rewrite add_iff || rewrite remove_iff || rewrite singleton_iff
|| rewrite union_iff || rewrite inter_iff || rewrite diff_iff
@@ -149,65 +149,65 @@ Ltac set_iff =
(** * Specifications written using boolean predicates *)
Section BoolSpec.
-Variable s s' s'' t.
-Variable x y z elt.
+Variable s s' s'' : t.
+Variable x y z : elt.
-Lemma mem_b E.eq x y -> mem x s = mem y s.
+Lemma mem_b : E.eq x y -> mem x s = mem y s.
Proof.
intros.
generalize (mem_iff s x) (mem_iff s y)(In_eq_iff s H).
destruct (mem x s); destruct (mem y s); intuition.
Qed.
-Lemma add_b mem y (add x s) = eqb x y || mem y s.
+Lemma add_b : mem y (add x s) = eqb x y || mem y s.
Proof.
generalize (mem_iff (add x s) y)(mem_iff s y)(add_iff s x y); unfold eqb.
destruct (eq_dec x y); destruct (mem y s); destruct (mem y (add x s)); intuition.
Qed.
-Lemma add_neq_b ~ E.eq x y -> mem y (add x s) = mem y s.
+Lemma add_neq_b : ~ E.eq x y -> mem y (add x s) = mem y s.
Proof.
intros; generalize (mem_iff (add x s) y)(mem_iff s y)(add_neq_iff s H).
destruct (mem y s); destruct (mem y (add x s)); intuition.
Qed.
-Lemma remove_b mem y (remove x s) = mem y s && negb (eqb x y).
+Lemma remove_b : mem y (remove x s) = mem y s && negb (eqb x y).
Proof.
generalize (mem_iff (remove x s) y)(mem_iff s y)(remove_iff s x y); unfold eqb.
destruct (eq_dec x y); destruct (mem y s); destruct (mem y (remove x s)); simpl; intuition.
Qed.
-Lemma remove_neq_b ~ E.eq x y -> mem y (remove x s) = mem y s.
+Lemma remove_neq_b : ~ E.eq x y -> mem y (remove x s) = mem y s.
Proof.
intros; generalize (mem_iff (remove x s) y)(mem_iff s y)(remove_neq_iff s H).
destruct (mem y s); destruct (mem y (remove x s)); intuition.
Qed.
-Lemma singleton_b mem y (singleton x) = eqb x y.
+Lemma singleton_b : mem y (singleton x) = eqb x y.
Proof.
generalize (mem_iff (singleton x) y)(singleton_iff x y); unfold eqb.
destruct (eq_dec x y); destruct (mem y (singleton x)); intuition.
Qed.
-Lemma union_b mem x (union s s') = mem x s || mem x s'.
+Lemma union_b : mem x (union s s') = mem x s || mem x s'.
Proof.
generalize (mem_iff (union s s') x)(mem_iff s x)(mem_iff s' x)(union_iff s s' x).
destruct (mem x s); destruct (mem x s'); destruct (mem x (union s s')); intuition.
Qed.
-Lemma inter_b mem x (inter s s') = mem x s && mem x s'.
+Lemma inter_b : mem x (inter s s') = mem x s && mem x s'.
Proof.
generalize (mem_iff (inter s s') x)(mem_iff s x)(mem_iff s' x)(inter_iff s s' x).
destruct (mem x s); destruct (mem x s'); destruct (mem x (inter s s')); intuition.
Qed.
-Lemma diff_b mem x (diff s s') = mem x s && negb (mem x s').
+Lemma diff_b : mem x (diff s s') = mem x s && negb (mem x s').
Proof.
generalize (mem_iff (diff s s') x)(mem_iff s x)(mem_iff s' x)(diff_iff s s' x).
destruct (mem x s); destruct (mem x s'); destruct (mem x (diff s s')); simpl; intuition.
Qed.
-Lemma elements_b mem x s = existsb (eqb x) (elements s).
+Lemma elements_b : mem x s = existsb (eqb x) (elements s).
Proof.
generalize (mem_iff s x)(elements_iff s x)(existsb_exists (eqb x) (elements s)).
rewrite InA_alt.
@@ -226,16 +226,16 @@ exists a; intuition.
unfold eqb in *; destruct (eq_dec x a); auto; discriminate.
Qed.
-Variable f elt->bool.
+Variable f : elt->bool.
-Lemma filter_b compat_bool E.eq f -> mem x (filter f s) = mem x s && f x.
+Lemma filter_b : compat_bool E.eq f -> mem x (filter f s) = mem x s && f x.
Proof.
intros.
generalize (mem_iff (filter f s) x)(mem_iff s x)(filter_iff s x H).
destruct (mem x s); destruct (mem x (filter f s)); destruct (f x); simpl; intuition.
Qed.
-Lemma for_all_b compat_bool E.eq f ->
+Lemma for_all_b : compat_bool E.eq f ->
for_all f s = forallb f (elements s).
Proof.
intros.
@@ -255,7 +255,7 @@ destruct H1 as (_,H1).
apply H1; auto.
Qed.
-Lemma exists_b compat_bool E.eq f ->
+Lemma exists_b : compat_bool E.eq f ->
exists_ f s = existsb f (elements s).
Proof.
intros.
@@ -281,27 +281,27 @@ End BoolSpec.
(** * [E.eq] and [Equal] are setoid equalities *)
-Definition E_ST Setoid_Theory elt E.eq.
+Definition E_ST : Setoid_Theory elt E.eq.
Proof.
constructor; [apply E.eq_refl|apply E.eq_sym|apply E.eq_trans].
Qed.
Add Setoid elt E.eq E_ST as EltSetoid.
-Definition Equal_ST Setoid_Theory t Equal.
+Definition Equal_ST : Setoid_Theory t Equal.
Proof.
constructor; [apply eq_refl | apply eq_sym | apply eq_trans].
Qed.
Add Setoid t Equal Equal_ST as EqualSetoid.
-Add Morphism In In_m.
+Add Morphism In : In_m.
Proof.
unfold Equal; intros x y H s s' H0.
rewrite (In_eq_iff s H); auto.
Qed.
-Add Morphism is_empty is_empty_m.
+Add Morphism is_empty : is_empty_m.
Proof.
unfold Equal; intros s s' H.
generalize (is_empty_iff s)(is_empty_iff s').
@@ -318,12 +318,12 @@ destruct H1 as (_,H1).
exact (H1 (refl_equal true) _ Ha).
Qed.
-Add Morphism Empty Empty_m.
+Add Morphism Empty : Empty_m.
Proof.
intros; do 2 rewrite is_empty_iff; rewrite H; intuition.
Qed.
-Add Morphism mem mem_m.
+Add Morphism mem : mem_m.
Proof.
unfold Equal; intros x y H s s' H0.
generalize (H0 x); clear H0; rewrite (In_eq_iff s' H).
@@ -331,48 +331,48 @@ generalize (mem_iff s x)(mem_iff s' y).
destruct (mem x s); destruct (mem y s'); intuition.
Qed.
-Add Morphism singleton singleton_m.
+Add Morphism singleton : singleton_m.
Proof.
unfold Equal; intros x y H a.
do 2 rewrite singleton_iff; split; order.
Qed.
-Add Morphism add add_m.
+Add Morphism add : add_m.
Proof.
unfold Equal; intros x y H s s' H0 a.
do 2 rewrite add_iff; rewrite H; rewrite H0; intuition.
Qed.
-Add Morphism remove remove_m.
+Add Morphism remove : remove_m.
Proof.
unfold Equal; intros x y H s s' H0 a.
do 2 rewrite remove_iff; rewrite H; rewrite H0; intuition.
Qed.
-Add Morphism union union_m.
+Add Morphism union : union_m.
Proof.
unfold Equal; intros s s' H s'' s''' H0 a.
do 2 rewrite union_iff; rewrite H; rewrite H0; intuition.
Qed.
-Add Morphism inter inter_m.
+Add Morphism inter : inter_m.
Proof.
unfold Equal; intros s s' H s'' s''' H0 a.
do 2 rewrite inter_iff; rewrite H; rewrite H0; intuition.
Qed.
-Add Morphism diff diff_m.
+Add Morphism diff : diff_m.
Proof.
unfold Equal; intros s s' H s'' s''' H0 a.
do 2 rewrite diff_iff; rewrite H; rewrite H0; intuition.
Qed.
-Add Morphism Subset Subset_m.
+Add Morphism Subset : Subset_m.
Proof.
unfold Equal, Subset; firstorder.
Qed.
-Add Morphism subset subset_m.
+Add Morphism subset : subset_m.
Proof.
intros s s' H s'' s''' H0.
generalize (subset_iff s s'') (subset_iff s' s''').
@@ -381,7 +381,7 @@ rewrite H in H1; rewrite H0 in H1; intuition.
rewrite H in H1; rewrite H0 in H1; intuition.
Qed.
-Add Morphism equal equal_m.
+Add Morphism equal : equal_m.
Proof.
intros s s' H s'' s''' H0.
generalize (equal_iff s s'') (equal_iff s' s''').
@@ -391,9 +391,9 @@ rewrite H in H1; rewrite H0 in H1; intuition.
Qed.
(* [fold], [filter], [for_all], [exists_] and [partition] cannot be proved morphism
- without additional hypothesis on [f]. For instance *)
+ without additional hypothesis on [f]. For instance: *)
-Lemma filter_equal forall f, compat_bool E.eq f ->
+Lemma filter_equal : forall f, compat_bool E.eq f ->
forall s s', s[=]s' -> filter f s [=] filter f s'.
Proof.
unfold Equal; intros; repeat rewrite filter_iff; auto; rewrite H0; tauto.
@@ -402,7 +402,7 @@ Qed.
(* For [elements], [min_elt], [max_elt] and [choose], we would need setoid
structures on [list elt] and [option elt]. *)
-(* Later
+(* Later:
Add Morphism cardinal ; cardinal_m.
*)