aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/FSets/FSetEqProperties.v
diff options
context:
space:
mode:
authorGravatar letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7>2008-02-02 15:51:00 +0000
committerGravatar letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7>2008-02-02 15:51:00 +0000
commit456e7bb78ab46ccd5ea0c34726356c7c014308d8 (patch)
tree59164f7e906f24e85c4a3d345cd94d4f5ffddb80 /theories/FSets/FSetEqProperties.v
parentc61b48f8b123e572b33c6d080a2b09aa5ecde979 (diff)
factorization part II (Properties + EqProperties), inclusion of FSetDecide (from A. Bohannon)
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@10500 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories/FSets/FSetEqProperties.v')
-rw-r--r--theories/FSets/FSetEqProperties.v926
1 files changed, 10 insertions, 916 deletions
diff --git a/theories/FSets/FSetEqProperties.v b/theories/FSets/FSetEqProperties.v
index 25187da6d..89fae94e6 100644
--- a/theories/FSets/FSetEqProperties.v
+++ b/theories/FSets/FSetEqProperties.v
@@ -12,926 +12,20 @@
(** This module proves many properties of finite sets that
are consequences of the axiomatization in [FsetInterface]
- Contrary to the functor in [FsetProperties] it uses
+ Contrary to the functor in [FsetWeakProperties] it uses
sets operations instead of predicates over sets, i.e.
[mem x s=true] instead of [In x s],
[equal s s'=true] instead of [Equal s s'], etc. *)
+Require Import FSetProperties Zerob Sumbool Omega DecidableTypeEx.
-Require Import FSetProperties.
-Require Import Zerob.
-Require Import Sumbool.
-Require Import Omega.
+(** Since the properties that used to be there do not depend on
+ the element ordering, we now simply import them from
+ FSetWeakEqProperties *)
-Module EqProperties (M:S).
-Import M.
-Import Logic. (* to unmask [eq] *)
-Import Peano. (* to unmask [lt] *)
-
-Module ME := OrderedTypeFacts E.
-Module MP := Properties M.
-Import MP.
-Import MP.FM.
-
-Definition Add := MP.Add.
-
-Section BasicProperties.
-
-(** Some old specifications written with boolean equalities. *)
-
-Variable s s' s'': t.
-Variable x y z : elt.
-
-Lemma mem_eq:
- E.eq x y -> mem x s=mem y s.
-Proof.
-intro H; rewrite H; auto.
-Qed.
-
-Lemma equal_mem_1:
- (forall a, mem a s=mem a s') -> equal s s'=true.
-Proof.
-intros; apply equal_1; unfold Equal; intros.
-do 2 rewrite mem_iff; rewrite H; tauto.
-Qed.
-
-Lemma equal_mem_2:
- equal s s'=true -> forall a, mem a s=mem a s'.
-Proof.
-intros; rewrite (equal_2 H); auto.
-Qed.
-
-Lemma subset_mem_1:
- (forall a, mem a s=true->mem a s'=true) -> subset s s'=true.
-Proof.
-intros; apply subset_1; unfold Subset; intros a.
-do 2 rewrite mem_iff; auto.
-Qed.
-
-Lemma subset_mem_2:
- subset s s'=true -> forall a, mem a s=true -> mem a s'=true.
-Proof.
-intros H a; do 2 rewrite <- mem_iff; apply subset_2; auto.
-Qed.
-
-Lemma empty_mem: mem x empty=false.
-Proof.
-rewrite <- not_mem_iff; auto with set.
-Qed.
-
-Lemma is_empty_equal_empty: is_empty s = equal s empty.
-Proof.
-apply bool_1; split; intros.
-rewrite <- (empty_is_empty_1 (s:=empty)); auto with set.
-rewrite <- is_empty_iff; auto with set.
-Qed.
-
-Lemma choose_mem_1: choose s=Some x -> mem x s=true.
-Proof.
-auto with set.
-Qed.
-
-Lemma choose_mem_2: choose s=None -> is_empty s=true.
-Proof.
-auto with set.
-Qed.
-
-Lemma add_mem_1: mem x (add x s)=true.
-Proof.
-auto with set.
-Qed.
-
-Lemma add_mem_2: ~E.eq x y -> mem y (add x s)=mem y s.
-Proof.
-apply add_neq_b.
-Qed.
-
-Lemma remove_mem_1: mem x (remove x s)=false.
-Proof.
-rewrite <- not_mem_iff; auto with set.
-Qed.
-
-Lemma remove_mem_2: ~E.eq x y -> mem y (remove x s)=mem y s.
-Proof.
-apply remove_neq_b.
-Qed.
-
-Lemma singleton_equal_add:
- equal (singleton x) (add x empty)=true.
-Proof.
-rewrite (singleton_equal_add x); auto with set.
-Qed.
-
-Lemma union_mem:
- mem x (union s s')=mem x s || mem x s'.
-Proof.
-apply union_b.
-Qed.
-
-Lemma inter_mem:
- mem x (inter s s')=mem x s && mem x s'.
-Proof.
-apply inter_b.
-Qed.
-
-Lemma diff_mem:
- mem x (diff s s')=mem x s && negb (mem x s').
-Proof.
-apply diff_b.
-Qed.
-
-(** properties of [mem] *)
-
-Lemma mem_3 : ~In x s -> mem x s=false.
-Proof.
-intros; rewrite <- not_mem_iff; auto.
-Qed.
-
-Lemma mem_4 : mem x s=false -> ~In x s.
-Proof.
-intros; rewrite not_mem_iff; auto.
-Qed.
-
-(** Properties of [equal] *)
-
-Lemma equal_refl: equal s s=true.
-Proof.
-auto with set.
-Qed.
-
-Lemma equal_sym: equal s s'=equal s' s.
-Proof.
-intros; apply bool_1; do 2 rewrite <- equal_iff; intuition.
-Qed.
-
-Lemma equal_trans:
- equal s s'=true -> equal s' s''=true -> equal s s''=true.
-Proof.
-intros; rewrite (equal_2 H); auto.
-Qed.
-
-Lemma equal_equal:
- equal s s'=true -> equal s s''=equal s' s''.
-Proof.
-intros; rewrite (equal_2 H); auto.
-Qed.
-
-Lemma equal_cardinal:
- equal s s'=true -> cardinal s=cardinal s'.
-Proof.
-auto with set.
-Qed.
-
-(* Properties of [subset] *)
-
-Lemma subset_refl: subset s s=true.
-Proof.
-auto with set.
-Qed.
-
-Lemma subset_antisym:
- subset s s'=true -> subset s' s=true -> equal s s'=true.
-Proof.
-auto with set.
-Qed.
-
-Lemma subset_trans:
- subset s s'=true -> subset s' s''=true -> subset s s''=true.
-Proof.
-do 3 rewrite <- subset_iff; intros.
-apply subset_trans with s'; auto.
-Qed.
-
-Lemma subset_equal:
- equal s s'=true -> subset s s'=true.
-Proof.
-auto with set.
-Qed.
-
-(** Properties of [choose] *)
-
-Lemma choose_mem_3:
- is_empty s=false -> {x:elt|choose s=Some x /\ mem x s=true}.
-Proof.
-intros.
-generalize (@choose_1 s) (@choose_2 s).
-destruct (choose s);intros.
-exists e;auto with set.
-generalize (H1 (refl_equal None)); clear H1.
-intros; rewrite (is_empty_1 H1) in H; discriminate.
-Qed.
-
-Lemma choose_mem_4: choose empty=None.
-Proof.
-generalize (@choose_1 empty).
-case (@choose empty);intros;auto.
-elim (@empty_1 e); auto.
-Qed.
-
-(** Properties of [add] *)
-
-Lemma add_mem_3:
- mem y s=true -> mem y (add x s)=true.
-Proof.
-auto with set.
-Qed.
-
-Lemma add_equal:
- mem x s=true -> equal (add x s) s=true.
-Proof.
-auto with set.
-Qed.
-
-(** Properties of [remove] *)
-
-Lemma remove_mem_3:
- mem y (remove x s)=true -> mem y s=true.
-Proof.
-rewrite remove_b; intros H;destruct (andb_prop _ _ H); auto.
-Qed.
-
-Lemma remove_equal:
- mem x s=false -> equal (remove x s) s=true.
-Proof.
-intros; apply equal_1; apply remove_equal.
-rewrite not_mem_iff; auto.
-Qed.
-
-Lemma add_remove:
- mem x s=true -> equal (add x (remove x s)) s=true.
-Proof.
-intros; apply equal_1; apply add_remove; auto with set.
-Qed.
-
-Lemma remove_add:
- mem x s=false -> equal (remove x (add x s)) s=true.
-Proof.
-intros; apply equal_1; apply remove_add; auto.
-rewrite not_mem_iff; auto.
-Qed.
-
-(** Properties of [is_empty] *)
-
-Lemma is_empty_cardinal: is_empty s = zerob (cardinal s).
-Proof.
-intros; apply bool_1; split; intros.
-rewrite cardinal_1; simpl; auto with set.
-assert (cardinal s = 0) by (apply zerob_true_elim; auto).
-auto with set.
-Qed.
-
-(** Properties of [singleton] *)
-
-Lemma singleton_mem_1: mem x (singleton x)=true.
-Proof.
-auto with set.
-Qed.
-
-Lemma singleton_mem_2: ~E.eq x y -> mem y (singleton x)=false.
-Proof.
-intros; rewrite singleton_b.
-unfold eqb; destruct (eq_dec x y); intuition.
-Qed.
-
-Lemma singleton_mem_3: mem y (singleton x)=true -> E.eq x y.
-Proof.
-intros; apply singleton_1; auto with set.
-Qed.
-
-(** Properties of [union] *)
-
-Lemma union_sym:
- equal (union s s') (union s' s)=true.
-Proof.
-auto with set.
-Qed.
-
-Lemma union_subset_equal:
- subset s s'=true -> equal (union s s') s'=true.
-Proof.
-auto with set.
-Qed.
-
-Lemma union_equal_1:
- equal s s'=true-> equal (union s s'') (union s' s'')=true.
-Proof.
-auto with set.
-Qed.
-
-Lemma union_equal_2:
- equal s' s''=true-> equal (union s s') (union s s'')=true.
-Proof.
-auto with set.
-Qed.
-
-Lemma union_assoc:
- equal (union (union s s') s'') (union s (union s' s''))=true.
-Proof.
-auto with set.
-Qed.
-
-Lemma add_union_singleton:
- equal (add x s) (union (singleton x) s)=true.
-Proof.
-auto with set.
-Qed.
-
-Lemma union_add:
- equal (union (add x s) s') (add x (union s s'))=true.
-Proof.
-auto with set.
-Qed.
-
-(* caracterisation of [union] via [subset] *)
-
-Lemma union_subset_1: subset s (union s s')=true.
-Proof.
-auto with set.
-Qed.
-
-Lemma union_subset_2: subset s' (union s s')=true.
-Proof.
-auto with set.
-Qed.
-
-Lemma union_subset_3:
- subset s s''=true -> subset s' s''=true ->
- subset (union s s') s''=true.
-Proof.
-intros; apply subset_1; apply union_subset_3; auto with set.
-Qed.
-
-(** Properties of [inter] *)
-
-Lemma inter_sym: equal (inter s s') (inter s' s)=true.
-Proof.
-auto with set.
-Qed.
-
-Lemma inter_subset_equal:
- subset s s'=true -> equal (inter s s') s=true.
-Proof.
-auto with set.
-Qed.
-
-Lemma inter_equal_1:
- equal s s'=true -> equal (inter s s'') (inter s' s'')=true.
-Proof.
-auto with set.
-Qed.
-
-Lemma inter_equal_2:
- equal s' s''=true -> equal (inter s s') (inter s s'')=true.
-Proof.
-auto with set.
-Qed.
-
-Lemma inter_assoc:
- equal (inter (inter s s') s'') (inter s (inter s' s''))=true.
-Proof.
-auto with set.
-Qed.
-
-Lemma union_inter_1:
- equal (inter (union s s') s'') (union (inter s s'') (inter s' s''))=true.
-Proof.
-auto with set.
-Qed.
-
-Lemma union_inter_2:
- equal (union (inter s s') s'') (inter (union s s'') (union s' s''))=true.
-Proof.
-auto with set.
-Qed.
-
-Lemma inter_add_1: mem x s'=true ->
- equal (inter (add x s) s') (add x (inter s s'))=true.
-Proof.
-auto with set.
-Qed.
-
-Lemma inter_add_2: mem x s'=false ->
- equal (inter (add x s) s') (inter s s')=true.
-Proof.
-intros; apply equal_1; apply inter_add_2.
-rewrite not_mem_iff; auto.
-Qed.
+Require FSetWeakEqProperties.
-(* caracterisation of [union] via [subset] *)
-
-Lemma inter_subset_1: subset (inter s s') s=true.
-Proof.
-auto with set.
-Qed.
-
-Lemma inter_subset_2: subset (inter s s') s'=true.
-Proof.
-auto with set.
-Qed.
-
-Lemma inter_subset_3:
- subset s'' s=true -> subset s'' s'=true ->
- subset s'' (inter s s')=true.
-Proof.
-intros; apply subset_1; apply inter_subset_3; auto with set.
-Qed.
-
-(** Properties of [diff] *)
-
-Lemma diff_subset: subset (diff s s') s=true.
-Proof.
-auto with set.
-Qed.
-
-Lemma diff_subset_equal:
- subset s s'=true -> equal (diff s s') empty=true.
-Proof.
-auto with set.
-Qed.
-
-Lemma remove_inter_singleton:
- equal (remove x s) (diff s (singleton x))=true.
-Proof.
-auto with set.
-Qed.
-
-Lemma diff_inter_empty:
- equal (inter (diff s s') (inter s s')) empty=true.
-Proof.
-auto with set.
-Qed.
-
-Lemma diff_inter_all:
- equal (union (diff s s') (inter s s')) s=true.
-Proof.
-auto with set.
-Qed.
-
-End BasicProperties.
-
-Hint Immediate empty_mem is_empty_equal_empty add_mem_1
- remove_mem_1 singleton_equal_add union_mem inter_mem
- diff_mem equal_sym add_remove remove_add : set.
-Hint Resolve equal_mem_1 subset_mem_1 choose_mem_1
- choose_mem_2 add_mem_2 remove_mem_2 equal_refl equal_equal
- subset_refl subset_equal subset_antisym
- add_mem_3 add_equal remove_mem_3 remove_equal : set.
-
-
-(** General recursion principle *)
-
-Lemma set_rec: forall (P:t->Type),
- (forall s s', equal s s'=true -> P s -> P s') ->
- (forall s x, mem x s=false -> P s -> P (add x s)) ->
- P empty -> forall s, P s.
-Proof.
-intros.
-apply set_induction; auto; intros.
-apply X with empty; auto with set.
-apply X with (add x s0); auto with set.
-apply equal_1; intro a; rewrite add_iff; rewrite (H0 a); tauto.
-apply X0; auto with set; apply mem_3; auto.
-Qed.
-
-(** Properties of [fold] *)
-
-Lemma exclusive_set : forall s s' x,
- ~(In x s/\In x s') <-> mem x s && mem x s'=false.
-Proof.
-intros; do 2 rewrite mem_iff.
-destruct (mem x s); destruct (mem x s'); intuition.
-Qed.
-
-Section Fold.
-Variables (A:Set)(eqA:A->A->Prop)(st:Setoid_Theory _ eqA).
-Variables (f:elt->A->A)(Comp:compat_op E.eq eqA f)(Ass:transpose eqA f).
-Variables (i:A).
-Variables (s s':t)(x:elt).
-
-Lemma fold_empty: eqA (fold f empty i) i.
-Proof.
-apply fold_empty; auto.
-Qed.
-
-Lemma fold_equal:
- equal s s'=true -> eqA (fold f s i) (fold f s' i).
-Proof.
-intros; apply fold_equal with (eqA:=eqA); auto with set.
-Qed.
-
-Lemma fold_add:
- mem x s=false -> eqA (fold f (add x s) i) (f x (fold f s i)).
-Proof.
-intros; apply fold_add with (eqA:=eqA); auto.
-rewrite not_mem_iff; auto.
-Qed.
-
-Lemma add_fold:
- mem x s=true -> eqA (fold f (add x s) i) (fold f s i).
-Proof.
-intros; apply add_fold with (eqA:=eqA); auto with set.
-Qed.
-
-Lemma remove_fold_1:
- mem x s=true -> eqA (f x (fold f (remove x s) i)) (fold f s i).
-Proof.
-intros; apply remove_fold_1 with (eqA:=eqA); auto with set.
-Qed.
-
-Lemma remove_fold_2:
- mem x s=false -> eqA (fold f (remove x s) i) (fold f s i).
-Proof.
-intros; apply remove_fold_2 with (eqA:=eqA); auto.
-rewrite not_mem_iff; auto.
-Qed.
-
-Lemma fold_union:
- (forall x, mem x s && mem x s'=false) ->
- eqA (fold f (union s s') i) (fold f s (fold f s' i)).
-Proof.
-intros; apply fold_union with (eqA:=eqA); auto.
-intros; rewrite exclusive_set; auto.
-Qed.
-
-End Fold.
-
-(** Properties of [cardinal] *)
-
-Lemma add_cardinal_1:
- forall s x, mem x s=true -> cardinal (add x s)=cardinal s.
-Proof.
-auto with set.
-Qed.
-
-Lemma add_cardinal_2:
- forall s x, mem x s=false -> cardinal (add x s)=S (cardinal s).
-Proof.
-intros; apply add_cardinal_2; auto.
-rewrite not_mem_iff; auto.
-Qed.
-
-Lemma remove_cardinal_1:
- forall s x, mem x s=true -> S (cardinal (remove x s))=cardinal s.
-Proof.
-intros; apply remove_cardinal_1; auto with set.
-Qed.
-
-Lemma remove_cardinal_2:
- forall s x, mem x s=false -> cardinal (remove x s)=cardinal s.
-Proof.
-intros; apply Equal_cardinal; apply equal_2; auto with set.
-Qed.
-
-Lemma union_cardinal:
- forall s s', (forall x, mem x s && mem x s'=false) ->
- cardinal (union s s')=cardinal s+cardinal s'.
-Proof.
-intros; apply union_cardinal; auto; intros.
-rewrite exclusive_set; auto.
-Qed.
-
-Lemma subset_cardinal:
- forall s s', subset s s'=true -> cardinal s<=cardinal s'.
-Proof.
-intros; apply subset_cardinal; auto with set.
-Qed.
-
-Section Bool.
-
-(** Properties of [filter] *)
-
-Variable f:elt->bool.
-Variable Comp: compat_bool E.eq f.
-
-Let Comp' : compat_bool E.eq (fun x =>negb (f x)).
-Proof.
-unfold compat_bool in *; intros; f_equal; auto.
-Qed.
-
-Lemma filter_mem: forall s x, mem x (filter f s)=mem x s && f x.
-Proof.
-intros; apply filter_b; auto.
-Qed.
-
-Lemma for_all_filter:
- forall s, for_all f s=is_empty (filter (fun x => negb (f x)) s).
-Proof.
-intros; apply bool_1; split; intros.
-apply is_empty_1.
-unfold Empty; intros.
-rewrite filter_iff; auto.
-red; destruct 1.
-rewrite <- (@for_all_iff s f) in H; auto.
-rewrite (H a H0) in H1; discriminate.
-apply for_all_1; auto; red; intros.
-revert H; rewrite <- is_empty_iff.
-unfold Empty; intro H; generalize (H x); clear H.
-rewrite filter_iff; auto.
-destruct (f x); auto.
-Qed.
-
-Lemma exists_filter :
- forall s, exists_ f s=negb (is_empty (filter f s)).
-Proof.
-intros; apply bool_1; split; intros.
-destruct (exists_2 Comp H) as (a,(Ha1,Ha2)).
-apply bool_6.
-red; intros; apply (@is_empty_2 _ H0 a); auto with set.
-generalize (@choose_1 (filter f s)) (@choose_2 (filter f s)).
-destruct (choose (filter f s)).
-intros H0 _; apply exists_1; auto.
-exists e; generalize (H0 e); rewrite filter_iff; auto.
-intros _ H0.
-rewrite (is_empty_1 (H0 (refl_equal None))) in H; auto; discriminate.
-Qed.
-
-Lemma partition_filter_1:
- forall s, equal (fst (partition f s)) (filter f s)=true.
-Proof.
-auto with set.
-Qed.
-
-Lemma partition_filter_2:
- forall s, equal (snd (partition f s)) (filter (fun x => negb (f x)) s)=true.
-Proof.
-auto with set.
-Qed.
-
-Lemma filter_add_1 : forall s x, f x = true ->
- filter f (add x s) [=] add x (filter f s).
-Proof.
-red; intros; set_iff; do 2 (rewrite filter_iff; auto); set_iff.
-intuition.
-rewrite <- H; apply Comp; auto.
-Qed.
-
-Lemma filter_add_2 : forall s x, f x = false ->
- filter f (add x s) [=] filter f s.
-Proof.
-red; intros; do 2 (rewrite filter_iff; auto); set_iff.
-intuition.
-assert (f x = f a) by (apply Comp; auto).
-rewrite H in H1; rewrite H2 in H1; discriminate.
-Qed.
-
-Lemma add_filter_1 : forall s s' x,
- f x=true -> (Add x s s') -> (Add x (filter f s) (filter f s')).
-Proof.
-unfold Add, MP.Add; intros.
-repeat rewrite filter_iff; auto.
-rewrite H0; clear H0.
-assert (E.eq x y -> f y = true) by
- (intro H0; rewrite <- (Comp _ _ H0); auto).
-tauto.
-Qed.
-
-Lemma add_filter_2 : forall s s' x,
- f x=false -> (Add x s s') -> filter f s [=] filter f s'.
-Proof.
-unfold Add, MP.Add, Equal; intros.
-repeat rewrite filter_iff; auto.
-rewrite H0; clear H0.
-assert (f a = true -> ~E.eq x a).
- intros H0 H1.
- rewrite (Comp _ _ H1) in H.
- rewrite H in H0; discriminate.
-tauto.
-Qed.
-
-Lemma union_filter: forall f g, (compat_bool E.eq f) -> (compat_bool E.eq g) ->
- forall s, union (filter f s) (filter g s) [=] filter (fun x=>orb (f x) (g x)) s.
-Proof.
-clear Comp' Comp f.
-intros.
-assert (compat_bool E.eq (fun x => orb (f x) (g x))).
- unfold compat_bool; intros.
- rewrite (H x y H1); rewrite (H0 x y H1); auto.
-unfold Equal; intros; set_iff; repeat rewrite filter_iff; auto.
-assert (f a || g a = true <-> f a = true \/ g a = true).
- split; auto with bool.
- intro H3; destruct (orb_prop _ _ H3); auto.
-tauto.
-Qed.
-
-Lemma filter_union: forall s s', filter f (union s s') [=] union (filter f s) (filter f s').
-Proof.
-unfold Equal; intros; set_iff; repeat rewrite filter_iff; auto; set_iff; tauto.
-Qed.
-
-(** Properties of [for_all] *)
-
-Lemma for_all_mem_1: forall s,
- (forall x, (mem x s)=true->(f x)=true) -> (for_all f s)=true.
-Proof.
-intros.
-rewrite for_all_filter; auto.
-rewrite is_empty_equal_empty.
-apply equal_mem_1;intros.
-rewrite filter_b; auto.
-rewrite empty_mem.
-generalize (H a); case (mem a s);intros;auto.
-rewrite H0;auto.
-Qed.
-
-Lemma for_all_mem_2: forall s,
- (for_all f s)=true -> forall x,(mem x s)=true -> (f x)=true.
-Proof.
-intros.
-rewrite for_all_filter in H; auto.
-rewrite is_empty_equal_empty in H.
-generalize (equal_mem_2 _ _ H x).
-rewrite filter_b; auto.
-rewrite empty_mem.
-rewrite H0; simpl;intros.
-replace true with (negb false);auto;apply negb_sym;auto.
-Qed.
-
-Lemma for_all_mem_3:
- forall s x,(mem x s)=true -> (f x)=false -> (for_all f s)=false.
-Proof.
-intros.
-apply (bool_eq_ind (for_all f s));intros;auto.
-rewrite for_all_filter in H1; auto.
-rewrite is_empty_equal_empty in H1.
-generalize (equal_mem_2 _ _ H1 x).
-rewrite filter_b; auto.
-rewrite empty_mem.
-rewrite H.
-rewrite H0.
-simpl;auto.
-Qed.
-
-Lemma for_all_mem_4:
- forall s, for_all f s=false -> {x:elt | mem x s=true /\ f x=false}.
-Proof.
-intros.
-rewrite for_all_filter in H; auto.
-destruct (choose_mem_3 _ H) as (x,(H0,H1));intros.
-exists x.
-rewrite filter_b in H1; auto.
-elim (andb_prop _ _ H1).
-split;auto.
-replace false with (negb true);auto;apply negb_sym;auto.
-Qed.
-
-(** Properties of [exists] *)
-
-Lemma for_all_exists:
- forall s, exists_ f s = negb (for_all (fun x =>negb (f x)) s).
-Proof.
-intros.
-rewrite for_all_b; auto.
-rewrite exists_b; auto.
-induction (elements s); simpl; auto.
-destruct (f a); simpl; auto.
-Qed.
-
-End Bool.
-Section Bool'.
-
-Variable f:elt->bool.
-Variable Comp: compat_bool E.eq f.
-
-Let Comp' : compat_bool E.eq (fun x =>negb (f x)).
-Proof.
-unfold compat_bool in *; intros; f_equal; auto.
-Qed.
-
-Lemma exists_mem_1:
- forall s, (forall x, mem x s=true->f x=false) -> exists_ f s=false.
-Proof.
-intros.
-rewrite for_all_exists; auto.
-rewrite for_all_mem_1;auto with bool.
-intros;generalize (H x H0);intros.
-symmetry;apply negb_sym;simpl;auto.
-Qed.
-
-Lemma exists_mem_2:
- forall s, exists_ f s=false -> forall x, mem x s=true -> f x=false.
-Proof.
-intros.
-rewrite for_all_exists in H; auto.
-replace false with (negb true);auto;apply negb_sym;symmetry.
-rewrite (for_all_mem_2 (fun x => negb (f x)) Comp' s);simpl;auto.
-replace true with (negb false);auto;apply negb_sym;auto.
-Qed.
-
-Lemma exists_mem_3:
- forall s x, mem x s=true -> f x=true -> exists_ f s=true.
-Proof.
-intros.
-rewrite for_all_exists; auto.
-symmetry;apply negb_sym;simpl.
-apply for_all_mem_3 with x;auto.
-rewrite H0;auto.
-Qed.
-
-Lemma exists_mem_4:
- forall s, exists_ f s=true -> {x:elt | (mem x s)=true /\ (f x)=true}.
-Proof.
-intros.
-rewrite for_all_exists in H; auto.
-elim (for_all_mem_4 (fun x =>negb (f x)) Comp' s);intros.
-elim p;intros.
-exists x;split;auto.
-replace true with (negb false);auto;apply negb_sym;auto.
-replace false with (negb true);auto;apply negb_sym;auto.
-Qed.
-
-End Bool'.
-
-Section Sum.
-
-(** Adding a valuation function on all elements of a set. *)
-
-Definition sum (f:elt -> nat)(s:t) := fold (fun x => plus (f x)) s 0.
-
-Lemma sum_plus :
- forall f g, compat_nat E.eq f -> compat_nat E.eq g ->
- forall s, sum (fun x =>f x+g x) s = sum f s + sum g s.
-Proof.
-unfold sum.
-intros f g Hf Hg.
-assert (fc : compat_op E.eq (@eq _) (fun x:elt =>plus (f x))). auto.
-assert (ft : transpose (@eq _) (fun x:elt =>plus (f x))). red; intros; omega.
-assert (gc : compat_op E.eq (@eq _) (fun x:elt => plus (g x))). auto.
-assert (gt : transpose (@eq _) (fun x:elt =>plus (g x))). red; intros; omega.
-assert (fgc : compat_op E.eq (@eq _) (fun x:elt =>plus ((f x)+(g x)))). auto.
-assert (fgt : transpose (@eq _) (fun x:elt=>plus ((f x)+(g x)))). red; intros; omega.
-assert (st := gen_st nat).
-intros s;pattern s; apply set_rec.
-intros.
-rewrite <- (fold_equal _ _ st _ fc 0 _ _ H).
-rewrite <- (fold_equal _ _ st _ gc 0 _ _ H).
-rewrite <- (fold_equal _ _ st _ fgc 0 _ _ H); auto.
-intros; do 3 (rewrite (fold_add _ _ st);auto).
-rewrite H0;simpl;omega.
-intros; do 3 rewrite (fold_empty _ _ st);auto.
-Qed.
-
-Lemma sum_filter : forall f, (compat_bool E.eq f) ->
- forall s, (sum (fun x => if f x then 1 else 0) s) = (cardinal (filter f s)).
-Proof.
-unfold sum; intros f Hf.
-assert (st := gen_st nat).
-assert (cc : compat_op E.eq (@eq _) (fun x => plus (if f x then 1 else 0))).
- unfold compat_op; intros.
- rewrite (Hf x x' H); auto.
-assert (ct : transpose (@eq _) (fun x => plus (if f x then 1 else 0))).
- unfold transpose; intros; omega.
-intros s;pattern s; apply set_rec.
-intros.
-change elt with E.t.
-rewrite <- (fold_equal _ _ st _ cc 0 _ _ H).
-rewrite <- (MP.Equal_cardinal (filter_equal Hf (equal_2 H))); auto.
-intros; rewrite (fold_add _ _ st _ cc ct); auto.
-generalize (@add_filter_1 f Hf s0 (add x s0) x) (@add_filter_2 f Hf s0 (add x s0) x) .
-assert (~ In x (filter f s0)).
- intro H1; rewrite (mem_1 (filter_1 Hf H1)) in H; discriminate H.
-case (f x); simpl; intros.
-rewrite (MP.cardinal_2 H1 (H2 (refl_equal true) (MP.Add_add s0 x))); auto.
-rewrite <- (MP.Equal_cardinal (H3 (refl_equal false) (MP.Add_add s0 x))); auto.
-intros; rewrite (fold_empty _ _ st);auto.
-rewrite MP.cardinal_1; auto.
-unfold Empty; intros.
-rewrite filter_iff; auto; set_iff; tauto.
-Qed.
-
-Lemma fold_compat :
- forall (A:Set)(eqA:A->A->Prop)(st:(Setoid_Theory _ eqA))
- (f g:elt->A->A),
- (compat_op E.eq eqA f) -> (transpose eqA f) ->
- (compat_op E.eq eqA g) -> (transpose eqA g) ->
- forall (i:A)(s:t),(forall x:elt, (In x s) -> forall y, (eqA (f x y) (g x y))) ->
- (eqA (fold f s i) (fold g s i)).
-Proof.
-intros A eqA st f g fc ft gc gt i.
-intro s; pattern s; apply set_rec; intros.
-trans_st (fold f s0 i).
-apply fold_equal with (eqA:=eqA); auto.
-rewrite equal_sym; auto.
-trans_st (fold g s0 i).
-apply H0; intros; apply H1; auto with set.
-elim (equal_2 H x); auto with set; intros.
-apply fold_equal with (eqA:=eqA); auto with set.
-trans_st (f x (fold f s0 i)).
-apply fold_add with (eqA:=eqA); auto with set.
-trans_st (g x (fold f s0 i)); auto with set.
-trans_st (g x (fold g s0 i)); auto with set.
-sym_st; apply fold_add with (eqA:=eqA); auto.
-trans_st i; [idtac | sym_st ]; apply fold_empty; auto.
-Qed.
-
-Lemma sum_compat :
- forall f g, compat_nat E.eq f -> compat_nat E.eq g ->
- forall s, (forall x, In x s -> f x=g x) -> sum f s=sum g s.
-intros.
-unfold sum; apply (fold_compat _ (@eq nat)); auto.
-unfold transpose; intros; omega.
-unfold transpose; intros; omega.
-Qed.
-
-End Sum.
-
-End EqProperties.
+Module EqProperties (M:S).
+ Module D := OT_as_DT M.E.
+ Include FSetWeakEqProperties.EqProperties M D.
+End EqProperties.