aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/FSets/FSetCompat.v
diff options
context:
space:
mode:
authorGravatar letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7>2009-10-20 11:49:19 +0000
committerGravatar letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7>2009-10-20 11:49:19 +0000
commitefc09aa417b49315aa9e1fea1a13987241d3752a (patch)
tree83a259efb5c67b94dd46af9b64546377f2975a91 /theories/FSets/FSetCompat.v
parentb2f8c34af642840ea80f14986cac285af1900767 (diff)
FSetCompat: a compatibility wrapper between FSets and MSets
Thanks to the functors in FSetCompat, the three implementations of FSets (FSetWeakList, FSetList, FSetAVL) are just made of a few lines adapting the corresponding MSets implementation to the old interface. This approach breaks FSetFullAVL. Since this file is of little use for stdlib users, we migrate it into contrib Orsay/FSets. git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@12402 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories/FSets/FSetCompat.v')
-rw-r--r--theories/FSets/FSetCompat.v413
1 files changed, 413 insertions, 0 deletions
diff --git a/theories/FSets/FSetCompat.v b/theories/FSets/FSetCompat.v
new file mode 100644
index 000000000..487b4fc32
--- /dev/null
+++ b/theories/FSets/FSetCompat.v
@@ -0,0 +1,413 @@
+(***********************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
+(* \VV/ *************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(***********************************************************************)
+
+(** * Compatibility functors between FSetInterface and MSetInterface. *)
+
+Require Import FSetInterface FSetFacts MSetInterface MSetFacts.
+Set Implicit Arguments.
+Unset Strict Implicit.
+
+(** * From new Weak Sets to old ones *)
+
+Module Backport_WSets
+ (E:DecidableType.DecidableType)
+ (M:MSetInterface.WSets with Definition E.t := E.t
+ with Definition E.eq := E.eq)
+ <: FSetInterface.WSfun E.
+
+ Definition elt := E.t.
+ Definition t := M.t.
+
+ Implicit Type s : t.
+ Implicit Type x y : elt.
+ Implicit Type f : elt -> bool.
+
+ Definition In : elt -> t -> Prop := M.In.
+ Definition Equal s s' := forall a : elt, In a s <-> In a s'.
+ Definition Subset s s' := forall a : elt, In a s -> In a s'.
+ Definition Empty s := forall a : elt, ~ In a s.
+ Definition For_all (P : elt -> Prop) s := forall x, In x s -> P x.
+ Definition Exists (P : elt -> Prop) s := exists x, In x s /\ P x.
+ Definition empty : t := M.empty.
+ Definition is_empty : t -> bool := M.is_empty.
+ Definition mem : elt -> t -> bool := M.mem.
+ Definition add : elt -> t -> t := M.add.
+ Definition singleton : elt -> t := M.singleton.
+ Definition remove : elt -> t -> t := M.remove.
+ Definition union : t -> t -> t := M.union.
+ Definition inter : t -> t -> t := M.inter.
+ Definition diff : t -> t -> t := M.diff.
+ Definition eq : t -> t -> Prop := M.eq.
+ Definition eq_dec : forall s s', {eq s s'}+{~eq s s'}:= M.eq_dec.
+ Definition equal : t -> t -> bool := M.equal.
+ Definition subset : t -> t -> bool := M.subset.
+ Definition fold : forall A : Type, (elt -> A -> A) -> t -> A -> A := M.fold.
+ Definition for_all : (elt -> bool) -> t -> bool := M.for_all.
+ Definition exists_ : (elt -> bool) -> t -> bool := M.exists_.
+ Definition filter : (elt -> bool) -> t -> t := M.filter.
+ Definition partition : (elt -> bool) -> t -> t * t:= M.partition.
+ Definition cardinal : t -> nat := M.cardinal.
+ Definition elements : t -> list elt := M.elements.
+ Definition choose : t -> option elt := M.choose.
+
+ Module MF := MSetFacts.WFacts M.
+
+ Definition In_1 : forall s x y, E.eq x y -> In x s -> In y s
+ := MF.In_1.
+ Definition eq_refl : forall s, eq s s
+ := @Equivalence_Reflexive _ _ M.eq_equiv.
+ Definition eq_sym : forall s s', eq s s' -> eq s' s
+ := @Equivalence_Symmetric _ _ M.eq_equiv.
+ Definition eq_trans : forall s s' s'', eq s s' -> eq s' s'' -> eq s s''
+ := @Equivalence_Transitive _ _ M.eq_equiv.
+ Definition mem_1 : forall s x, In x s -> mem x s = true
+ := MF.mem_1.
+ Definition mem_2 : forall s x, mem x s = true -> In x s
+ := MF.mem_2.
+ Definition equal_1 : forall s s', Equal s s' -> equal s s' = true
+ := MF.equal_1.
+ Definition equal_2 : forall s s', equal s s' = true -> Equal s s'
+ := MF.equal_2.
+ Definition subset_1 : forall s s', Subset s s' -> subset s s' = true
+ := MF.subset_1.
+ Definition subset_2 : forall s s', subset s s' = true -> Subset s s'
+ := MF.subset_2.
+ Definition empty_1 : Empty empty := MF.empty_1.
+ Definition is_empty_1 : forall s, Empty s -> is_empty s = true
+ := MF.is_empty_1.
+ Definition is_empty_2 : forall s, is_empty s = true -> Empty s
+ := MF.is_empty_2.
+ Definition add_1 : forall s x y, E.eq x y -> In y (add x s)
+ := MF.add_1.
+ Definition add_2 : forall s x y, In y s -> In y (add x s)
+ := MF.add_2.
+ Definition add_3 : forall s x y, ~ E.eq x y -> In y (add x s) -> In y s
+ := MF.add_3.
+ Definition remove_1 : forall s x y, E.eq x y -> ~ In y (remove x s)
+ := MF.remove_1.
+ Definition remove_2 : forall s x y, ~ E.eq x y -> In y s -> In y (remove x s)
+ := MF.remove_2.
+ Definition remove_3 : forall s x y, In y (remove x s) -> In y s
+ := MF.remove_3.
+ Definition union_1 : forall s s' x, In x (union s s') -> In x s \/ In x s'
+ := MF.union_1.
+ Definition union_2 : forall s s' x, In x s -> In x (union s s')
+ := MF.union_2.
+ Definition union_3 : forall s s' x, In x s' -> In x (union s s')
+ := MF.union_3.
+ Definition inter_1 : forall s s' x, In x (inter s s') -> In x s
+ := MF.inter_1.
+ Definition inter_2 : forall s s' x, In x (inter s s') -> In x s'
+ := MF.inter_2.
+ Definition inter_3 : forall s s' x, In x s -> In x s' -> In x (inter s s')
+ := MF.inter_3.
+ Definition diff_1 : forall s s' x, In x (diff s s') -> In x s
+ := MF.diff_1.
+ Definition diff_2 : forall s s' x, In x (diff s s') -> ~ In x s'
+ := MF.diff_2.
+ Definition diff_3 : forall s s' x, In x s -> ~ In x s' -> In x (diff s s')
+ := MF.diff_3.
+ Definition singleton_1 : forall x y, In y (singleton x) -> E.eq x y
+ := MF.singleton_1.
+ Definition singleton_2 : forall x y, E.eq x y -> In y (singleton x)
+ := MF.singleton_2.
+ Definition fold_1 : forall s (A : Type) (i : A) (f : elt -> A -> A),
+ fold f s i = fold_left (fun a e => f e a) (elements s) i
+ := MF.fold_1.
+ Definition cardinal_1 : forall s, cardinal s = length (elements s)
+ := MF.cardinal_1.
+ Definition filter_1 : forall s x f, compat_bool E.eq f ->
+ In x (filter f s) -> In x s
+ := MF.filter_1.
+ Definition filter_2 : forall s x f, compat_bool E.eq f ->
+ In x (filter f s) -> f x = true
+ := MF.filter_2.
+ Definition filter_3 : forall s x f, compat_bool E.eq f ->
+ In x s -> f x = true -> In x (filter f s)
+ := MF.filter_3.
+ Definition for_all_1 : forall s f, compat_bool E.eq f ->
+ For_all (fun x => f x = true) s -> for_all f s = true
+ := MF.for_all_1.
+ Definition for_all_2 : forall s f, compat_bool E.eq f ->
+ for_all f s = true -> For_all (fun x => f x = true) s
+ := MF.for_all_2.
+ Definition exists_1 : forall s f, compat_bool E.eq f ->
+ Exists (fun x => f x = true) s -> exists_ f s = true
+ := MF.exists_1.
+ Definition exists_2 : forall s f, compat_bool E.eq f ->
+ exists_ f s = true -> Exists (fun x => f x = true) s
+ := MF.exists_2.
+ Definition partition_1 : forall s f, compat_bool E.eq f ->
+ Equal (fst (partition f s)) (filter f s)
+ := MF.partition_1.
+ Definition partition_2 : forall s f, compat_bool E.eq f ->
+ Equal (snd (partition f s)) (filter (fun x => negb (f x)) s)
+ := MF.partition_2.
+ Definition choose_1 : forall s x, choose s = Some x -> In x s
+ := MF.choose_1.
+ Definition choose_2 : forall s, choose s = None -> Empty s
+ := MF.choose_2.
+ Definition elements_1 : forall s x, In x s -> InA E.eq x (elements s)
+ := MF.elements_1.
+ Definition elements_2 : forall s x, InA E.eq x (elements s) -> In x s
+ := MF.elements_2.
+ Definition elements_3w : forall s, NoDupA E.eq (elements s)
+ := MF.elements_3w.
+
+End Backport_WSets.
+
+
+(** * From new Sets to new ones *)
+
+Module Backport_Sets
+ (E:OrderedType.OrderedType)
+ (M:MSetInterface.Sets with Definition E.t := E.t
+ with Definition E.eq := E.eq
+ with Definition E.lt := E.lt)
+ <: FSetInterface.S with Module E:=E.
+
+ Include Backport_WSets E M.
+
+ Module E := E.
+
+ Implicit Type s : t.
+ Implicit Type x y : elt.
+
+ Definition lt : t -> t -> Prop := M.lt.
+ Definition min_elt : t -> option elt := M.min_elt.
+ Definition max_elt : t -> option elt := M.max_elt.
+ Definition min_elt_1 : forall s x, min_elt s = Some x -> In x s
+ := M.min_elt_spec1.
+ Definition min_elt_2 : forall s x y,
+ min_elt s = Some x -> In y s -> ~ E.lt y x
+ := M.min_elt_spec2.
+ Definition min_elt_3 : forall s, min_elt s = None -> Empty s
+ := M.min_elt_spec3.
+ Definition max_elt_1 : forall s x, max_elt s = Some x -> In x s
+ := M.max_elt_spec1.
+ Definition max_elt_2 : forall s x y,
+ max_elt s = Some x -> In y s -> ~ E.lt x y
+ := M.max_elt_spec2.
+ Definition max_elt_3 : forall s, max_elt s = None -> Empty s
+ := M.max_elt_spec3.
+ Definition elements_3 : forall s, sort E.lt (elements s)
+ := M.elements_spec2.
+ Definition choose_3 : forall s s' x y,
+ choose s = Some x -> choose s' = Some y -> Equal s s' -> E.eq x y
+ := M.choose_spec3.
+ Definition lt_trans : forall s s' s'', lt s s' -> lt s' s'' -> lt s s''
+ := @StrictOrder_Transitive _ _ M.lt_strorder.
+ Lemma lt_not_eq : forall s s', lt s s' -> ~ eq s s'.
+ Proof.
+ unfold lt, eq. intros s s' Hlt Heq. rewrite Heq in Hlt.
+ apply (StrictOrder_Irreflexive s'); auto.
+ Qed.
+ Definition compare : forall s s', Compare lt eq s s'.
+ Proof.
+ intros s s'. generalize (M.compare_spec s s').
+ destruct (M.compare s s'); simpl; intros.
+ constructor 2; auto.
+ constructor 1; auto.
+ constructor 3; auto.
+ Defined.
+
+End Backport_Sets.
+
+
+(** * From old Weak Sets to new ones. *)
+
+Module Update_WSets
+ (E:DecidableType2.DecidableType)
+ (M:FSetInterface.WS with Definition E.t := E.t
+ with Definition E.eq := E.eq)
+ <: MSetInterface.WSetsOn E.
+
+ Definition elt := E.t.
+ Definition t := M.t.
+
+ Implicit Type s : t.
+ Implicit Type x y : elt.
+ Implicit Type f : elt -> bool.
+
+ Definition In : elt -> t -> Prop := M.In.
+ Definition Equal s s' := forall a : elt, In a s <-> In a s'.
+ Definition Subset s s' := forall a : elt, In a s -> In a s'.
+ Definition Empty s := forall a : elt, ~ In a s.
+ Definition For_all (P : elt -> Prop) s := forall x, In x s -> P x.
+ Definition Exists (P : elt -> Prop) s := exists x, In x s /\ P x.
+ Definition empty : t := M.empty.
+ Definition is_empty : t -> bool := M.is_empty.
+ Definition mem : elt -> t -> bool := M.mem.
+ Definition add : elt -> t -> t := M.add.
+ Definition singleton : elt -> t := M.singleton.
+ Definition remove : elt -> t -> t := M.remove.
+ Definition union : t -> t -> t := M.union.
+ Definition inter : t -> t -> t := M.inter.
+ Definition diff : t -> t -> t := M.diff.
+ Definition eq : t -> t -> Prop := M.eq.
+ Definition eq_dec : forall s s', {eq s s'}+{~eq s s'}:= M.eq_dec.
+ Definition equal : t -> t -> bool := M.equal.
+ Definition subset : t -> t -> bool := M.subset.
+ Definition fold : forall A : Type, (elt -> A -> A) -> t -> A -> A := M.fold.
+ Definition for_all : (elt -> bool) -> t -> bool := M.for_all.
+ Definition exists_ : (elt -> bool) -> t -> bool := M.exists_.
+ Definition filter : (elt -> bool) -> t -> t := M.filter.
+ Definition partition : (elt -> bool) -> t -> t * t:= M.partition.
+ Definition cardinal : t -> nat := M.cardinal.
+ Definition elements : t -> list elt := M.elements.
+ Definition choose : t -> option elt := M.choose.
+
+ Module MF := FSetFacts.WFacts M.
+
+ Instance In_compat : Proper (E.eq==>Logic.eq==>iff) In.
+ Proof. intros x x' Hx s s' Hs. subst. apply MF.In_eq_iff; auto. Qed.
+
+ Instance eq_equiv : Equivalence eq.
+
+ Section Spec.
+ Variable s s': t.
+ Variable x y : elt.
+
+ Lemma mem_spec : mem x s = true <-> In x s.
+ Proof. intros; symmetry; apply MF.mem_iff. Qed.
+
+ Lemma equal_spec : equal s s' = true <-> Equal s s'.
+ Proof. intros; symmetry; apply MF.equal_iff. Qed.
+
+ Lemma subset_spec : subset s s' = true <-> Subset s s'.
+ Proof. intros; symmetry; apply MF.subset_iff. Qed.
+
+ Definition empty_spec : Empty empty := M.empty_1.
+
+ Lemma is_empty_spec : is_empty s = true <-> Empty s.
+ Proof. intros; symmetry; apply MF.is_empty_iff. Qed.
+
+ Lemma add_spec : In y (add x s) <-> E.eq y x \/ In y s.
+ Proof. intros. rewrite MF.add_iff. intuition. Qed.
+
+ Lemma remove_spec : In y (remove x s) <-> In y s /\ ~E.eq y x.
+ Proof. intros. rewrite MF.remove_iff. intuition. Qed.
+
+ Lemma singleton_spec : In y (singleton x) <-> E.eq y x.
+ Proof. intros; rewrite MF.singleton_iff. intuition. Qed.
+
+ Definition union_spec : In x (union s s') <-> In x s \/ In x s'
+ := @MF.union_iff s s' x.
+ Definition inter_spec : In x (inter s s') <-> In x s /\ In x s'
+ := @MF.inter_iff s s' x.
+ Definition diff_spec : In x (diff s s') <-> In x s /\ ~In x s'
+ := @MF.diff_iff s s' x.
+ Definition fold_spec : forall (A : Type) (i : A) (f : elt -> A -> A),
+ fold f s i = fold_left (flip f) (elements s) i
+ := @M.fold_1 s.
+ Definition cardinal_spec : cardinal s = length (elements s)
+ := @M.cardinal_1 s.
+
+ Lemma elements_spec1 : InA E.eq x (elements s) <-> In x s.
+ Proof. intros; symmetry; apply MF.elements_iff. Qed.
+
+ Definition elements_spec2w : NoDupA E.eq (elements s)
+ := @M.elements_3w s.
+ Definition choose_spec1 : choose s = Some x -> In x s
+ := @M.choose_1 s x.
+ Definition choose_spec2 : choose s = None -> Empty s
+ := @M.choose_2 s.
+ Definition filter_spec : forall f, Proper (E.eq==>Logic.eq) f ->
+ (In x (filter f s) <-> In x s /\ f x = true)
+ := @MF.filter_iff s x.
+ Definition partition_spec1 : forall f, Proper (E.eq==>Logic.eq) f ->
+ Equal (fst (partition f s)) (filter f s)
+ := @M.partition_1 s.
+ Definition partition_spec2 : forall f, Proper (E.eq==>Logic.eq) f ->
+ Equal (snd (partition f s)) (filter (fun x => negb (f x)) s)
+ := @M.partition_2 s.
+
+ Lemma for_all_spec : forall f, Proper (E.eq==>Logic.eq) f ->
+ (for_all f s = true <-> For_all (fun x => f x = true) s).
+ Proof. intros; symmetry; apply MF.for_all_iff; auto. Qed.
+
+ Lemma exists_spec : forall f, Proper (E.eq==>Logic.eq) f ->
+ (exists_ f s = true <-> Exists (fun x => f x = true) s).
+ Proof. intros; symmetry; apply MF.exists_iff; auto. Qed.
+
+ End Spec.
+
+End Update_WSets.
+
+
+(** * From old Sets to new ones. *)
+
+Module Update_Sets
+ (E:OrderedType2.OrderedType)
+ (M:FSetInterface.S with Definition E.t := E.t
+ with Definition E.eq := E.eq
+ with Definition E.lt := E.lt)
+ <: MSetInterface.Sets with Module E:=E.
+
+ Module E := E.
+
+ Include Update_WSets E M.
+
+ Implicit Type s : t.
+ Implicit Type x y : elt.
+
+ Definition lt : t -> t -> Prop := M.lt.
+ Definition min_elt : t -> option elt := M.min_elt.
+ Definition max_elt : t -> option elt := M.max_elt.
+ Definition min_elt_spec1 : forall s x, min_elt s = Some x -> In x s
+ := M.min_elt_1.
+ Definition min_elt_spec2 : forall s x y,
+ min_elt s = Some x -> In y s -> ~ E.lt y x
+ := M.min_elt_2.
+ Definition min_elt_spec3 : forall s, min_elt s = None -> Empty s
+ := M.min_elt_3.
+ Definition max_elt_spec1 : forall s x, max_elt s = Some x -> In x s
+ := M.max_elt_1.
+ Definition max_elt_spec2 : forall s x y,
+ max_elt s = Some x -> In y s -> ~ E.lt x y
+ := M.max_elt_2.
+ Definition max_elt_spec3 : forall s, max_elt s = None -> Empty s
+ := M.max_elt_3.
+ Definition elements_spec2 : forall s, sort E.lt (elements s)
+ := M.elements_3.
+ Definition choose_spec3 : forall s s' x y,
+ choose s = Some x -> choose s' = Some y -> Equal s s' -> E.eq x y
+ := M.choose_3.
+
+ Instance lt_strorder : StrictOrder lt.
+ Proof.
+ split.
+ intros x Hx. apply (M.lt_not_eq Hx); auto with *.
+ exact M.lt_trans.
+ Qed.
+
+ Instance lt_compat : Proper (eq==>eq==>iff) lt.
+ Proof.
+ apply proper_sym_impl_iff_2; auto with *.
+ intros s s' Hs u u' Hu H.
+ assert (H0 : lt s' u).
+ destruct (M.compare s' u) as [H'|H'|H']; auto.
+ elim (M.lt_not_eq H). transitivity s'; auto with *.
+ elim (M.lt_not_eq (M.lt_trans H H')); auto.
+ destruct (M.compare s' u') as [H'|H'|H']; auto.
+ elim (M.lt_not_eq H).
+ transitivity u'; auto with *. transitivity s'; auto with *.
+ elim (M.lt_not_eq (M.lt_trans H' H0)); auto with *.
+ Qed.
+
+ Definition compare s s' :=
+ match M.compare s s' with
+ | EQ _ => Eq
+ | LT _ => Lt
+ | GT _ => Gt
+ end.
+
+ Lemma compare_spec : forall s s', Cmp eq lt (compare s s') s s'.
+ Proof. intros; unfold compare; destruct M.compare; auto. Qed.
+
+End Update_Sets.