aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/FSets/FMapFullAVL.v
diff options
context:
space:
mode:
authorGravatar letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7>2008-04-03 18:28:26 +0000
committerGravatar letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7>2008-04-03 18:28:26 +0000
commitb8b0e5813a01a0a8e816ee30be1b626cffbeb092 (patch)
tree0f6f7841efb8e99b7073fc0a725152d87139f701 /theories/FSets/FMapFullAVL.v
parentec3f3aed78e6c31ce819723a35efd68474d8c006 (diff)
New file FMapFullAVL containing the balancing proofs about FMapAVL:
As for FSetAVL vs. FSetFullAVL, preservation of the balancing of trees is not necessary anymore for just fulfilling the Map interface. But we still want theses proofs to exists somewhere, since they ensure the correct efficiency of the FMapAVL operations. In addition, FSetFullAVL also contains the non-structural, ocaml-faithful version of compare. git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@10748 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories/FSets/FMapFullAVL.v')
-rw-r--r--theories/FSets/FMapFullAVL.v823
1 files changed, 823 insertions, 0 deletions
diff --git a/theories/FSets/FMapFullAVL.v b/theories/FSets/FMapFullAVL.v
new file mode 100644
index 000000000..ae3bdb816
--- /dev/null
+++ b/theories/FSets/FMapFullAVL.v
@@ -0,0 +1,823 @@
+
+(***********************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
+(* \VV/ *************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(***********************************************************************)
+
+(* Finite map library. *)
+
+(* $Id$ *)
+
+(** * FMapFullAVL
+
+ This file contains some complements to [FMapAVL].
+
+ - Functor [AvlProofs] proves that trees of [FMapAVL] are not only
+ binary search trees, but moreover well-balanced ones. This is done
+ by proving that all operations preserve the balancing.
+
+ - We then pack the previous elements in a [IntMake] functor
+ similar to the one of [FMapAVL], but richer.
+
+ - In final [IntMake_ord] functor, the [compare] function is
+ different from the one in [FMapAVL]: this non-structural
+ version is closer to the original Ocaml code.
+
+*)
+
+Require Import Recdef FMapInterface FMapList ZArith Int FMapAVL.
+
+Set Implicit Arguments.
+Unset Strict Implicit.
+
+Module AvlProofs (Import I:Int)(X: OrderedType).
+Module Import Raw := Raw I X.
+Module Import II:=MoreInt(I).
+Import Raw.Proofs.
+Open Local Scope pair_scope.
+Open Local Scope Int_scope.
+
+Section Elt.
+Variable elt : Type.
+Implicit Types m r : t elt.
+
+(** * AVL trees *)
+
+(** [avl s] : [s] is a properly balanced AVL tree,
+ i.e. for any node the heights of the two children
+ differ by at most 2 *)
+
+Inductive avl : t elt -> Prop :=
+ | RBLeaf : avl (Leaf _)
+ | RBNode : forall x e l r h,
+ avl l ->
+ avl r ->
+ -(2) <= height l - height r <= 2 ->
+ h = max (height l) (height r) + 1 ->
+ avl (Node l x e r h).
+
+
+(** * Automation and dedicated tactics about [avl]. *)
+
+Hint Constructors avl.
+
+Lemma height_non_negative : forall (s : t elt), avl s ->
+ height s >= 0.
+Proof.
+ induction s; simpl; intros; auto with zarith.
+ inv avl; intuition; omega_max.
+Qed.
+
+Ltac avl_nn_hyp H :=
+ let nz := fresh "nz" in assert (nz := height_non_negative H).
+
+Ltac avl_nn h :=
+ let t := type of h in
+ match type of t with
+ | Prop => avl_nn_hyp h
+ | _ => match goal with H : avl h |- _ => avl_nn_hyp H end
+ end.
+
+(* Repeat the previous tactic.
+ Drawback: need to clear the [avl _] hyps ... Thank you Ltac *)
+
+Ltac avl_nns :=
+ match goal with
+ | H:avl _ |- _ => avl_nn_hyp H; clear H; avl_nns
+ | _ => idtac
+ end.
+
+
+(** * Basic results about [avl], [height] *)
+
+Lemma avl_node : forall x e l r, avl l -> avl r ->
+ -(2) <= height l - height r <= 2 ->
+ avl (Node l x e r (max (height l) (height r) + 1)).
+Proof.
+ intros; auto.
+Qed.
+Hint Resolve avl_node.
+
+(** Results about [height] *)
+
+Lemma height_0 : forall l, avl l -> height l = 0 ->
+ l = Leaf _.
+Proof.
+ destruct 1; intuition; simpl in *.
+ avl_nns; simpl in *; elimtype False; omega_max.
+Qed.
+
+
+(** * Empty map *)
+
+Lemma empty_avl : avl (empty elt).
+Proof.
+ unfold empty; auto.
+Qed.
+
+
+(** * Helper functions *)
+
+Lemma create_avl :
+ forall l x e r, avl l -> avl r -> -(2) <= height l - height r <= 2 ->
+ avl (create l x e r).
+Proof.
+ unfold create; auto.
+Qed.
+
+Lemma create_height :
+ forall l x e r, avl l -> avl r -> -(2) <= height l - height r <= 2 ->
+ height (create l x e r) = max (height l) (height r) + 1.
+Proof.
+ unfold create; intros; auto.
+Qed.
+
+Lemma bal_avl : forall l x e r, avl l -> avl r ->
+ -(3) <= height l - height r <= 3 -> avl (bal l x e r).
+Proof.
+ intros l x e r; functional induction (bal l x e r); intros; clearf;
+ inv avl; simpl in *;
+ match goal with |- avl (assert_false _ _ _ _) => avl_nns
+ | _ => repeat apply create_avl; simpl in *; auto
+ end; omega_max.
+Qed.
+
+Lemma bal_height_1 : forall l x e r, avl l -> avl r ->
+ -(3) <= height l - height r <= 3 ->
+ 0 <= height (bal l x e r) - max (height l) (height r) <= 1.
+Proof.
+ intros l x e r; functional induction (bal l x e r); intros; clearf;
+ inv avl; avl_nns; simpl in *; omega_max.
+Qed.
+
+Lemma bal_height_2 :
+ forall l x e r, avl l -> avl r -> -(2) <= height l - height r <= 2 ->
+ height (bal l x e r) == max (height l) (height r) +1.
+Proof.
+ intros l x e r; functional induction (bal l x e r); intros; clearf;
+ inv avl; avl_nns; simpl in *; omega_max.
+Qed.
+
+Ltac omega_bal := match goal with
+ | H:avl ?l, H':avl ?r |- context [ bal ?l ?x ?e ?r ] =>
+ generalize (bal_height_1 x e H H') (bal_height_2 x e H H');
+ omega_max
+ end.
+
+(** * Insertion *)
+
+Lemma add_avl_1 : forall m x e, avl m ->
+ avl (add x e m) /\ 0 <= height (add x e m) - height m <= 1.
+Proof.
+ intros m x e; functional induction (add x e m); intros; inv avl; simpl in *.
+ intuition; try constructor; simpl; auto; try omega_max.
+ (* LT *)
+ destruct IHt; auto.
+ split.
+ apply bal_avl; auto; omega_max.
+ omega_bal.
+ (* EQ *)
+ intuition; omega_max.
+ (* GT *)
+ destruct IHt; auto.
+ split.
+ apply bal_avl; auto; omega_max.
+ omega_bal.
+Qed.
+
+Lemma add_avl : forall m x e, avl m -> avl (add x e m).
+Proof.
+ intros; generalize (add_avl_1 x e H); intuition.
+Qed.
+Hint Resolve add_avl.
+
+(** * Extraction of minimum binding *)
+
+Lemma remove_min_avl_1 : forall l x e r h, avl (Node l x e r h) ->
+ avl (remove_min l x e r)#1 /\
+ 0 <= height (Node l x e r h) - height (remove_min l x e r)#1 <= 1.
+Proof.
+ intros l x e r; functional induction (remove_min l x e r); simpl in *; intros.
+ inv avl; simpl in *; split; auto.
+ avl_nns; omega_max.
+ inversion_clear H.
+ rewrite e0 in IHp;simpl in IHp;destruct (IHp _x); auto.
+ split; simpl in *.
+ apply bal_avl; auto; omega_max.
+ omega_bal.
+Qed.
+
+Lemma remove_min_avl : forall l x e r h, avl (Node l x e r h) ->
+ avl (remove_min l x e r)#1.
+Proof.
+ intros; generalize (remove_min_avl_1 H); intuition.
+Qed.
+
+(** * Merging two trees *)
+
+Lemma merge_avl_1 : forall m1 m2, avl m1 -> avl m2 ->
+ -(2) <= height m1 - height m2 <= 2 ->
+ avl (merge m1 m2) /\
+ 0<= height (merge m1 m2) - max (height m1) (height m2) <=1.
+Proof.
+ intros m1 m2; functional induction (merge m1 m2); intros;
+ try factornode _x _x0 _x1 _x2 _x3 as m1.
+ simpl; split; auto; avl_nns; omega_max.
+ simpl; split; auto; avl_nns; omega_max.
+ generalize (remove_min_avl_1 H0).
+ rewrite e1; destruct 1.
+ split.
+ apply bal_avl; auto.
+ omega_max.
+ omega_bal.
+Qed.
+
+Lemma merge_avl : forall m1 m2, avl m1 -> avl m2 ->
+ -(2) <= height m1 - height m2 <= 2 -> avl (merge m1 m2).
+Proof.
+ intros; generalize (merge_avl_1 H H0 H1); intuition.
+Qed.
+
+
+(** * Deletion *)
+
+Lemma remove_avl_1 : forall m x, avl m ->
+ avl (remove x m) /\ 0 <= height m - height (remove x m) <= 1.
+Proof.
+ intros m x; functional induction (remove x m); intros.
+ split; auto; omega_max.
+ (* LT *)
+ inv avl.
+ destruct (IHt H0).
+ split.
+ apply bal_avl; auto.
+ omega_max.
+ omega_bal.
+ (* EQ *)
+ inv avl.
+ generalize (merge_avl_1 H0 H1 H2).
+ intuition omega_max.
+ (* GT *)
+ inv avl.
+ destruct (IHt H1).
+ split.
+ apply bal_avl; auto.
+ omega_max.
+ omega_bal.
+Qed.
+
+Lemma remove_avl : forall m x, avl m -> avl (remove x m).
+Proof.
+ intros; generalize (remove_avl_1 x H); intuition.
+Qed.
+Hint Resolve remove_avl.
+
+
+(** * Join *)
+
+Lemma join_avl_1 : forall l x d r, avl l -> avl r ->
+ avl (join l x d r) /\
+ 0<= height (join l x d r) - max (height l) (height r) <= 1.
+Proof.
+ join_tac.
+
+ split; simpl; auto.
+ destruct (add_avl_1 x d H0).
+ avl_nns; omega_max.
+ set (l:=Node ll lx ld lr lh) in *.
+ split; auto.
+ destruct (add_avl_1 x d H).
+ simpl (height (Leaf elt)).
+ avl_nns; omega_max.
+
+ inversion_clear H.
+ assert (height (Node rl rx rd rr rh) = rh); auto.
+ set (r := Node rl rx rd rr rh) in *; clearbody r.
+ destruct (Hlr x d r H2 H0); clear Hrl Hlr.
+ set (j := join lr x d r) in *; clearbody j.
+ simpl.
+ assert (-(3) <= height ll - height j <= 3) by omega_max.
+ split.
+ apply bal_avl; auto.
+ omega_bal.
+
+ inversion_clear H0.
+ assert (height (Node ll lx ld lr lh) = lh); auto.
+ set (l := Node ll lx ld lr lh) in *; clearbody l.
+ destruct (Hrl H H1); clear Hrl Hlr.
+ set (j := join l x d rl) in *; clearbody j.
+ simpl.
+ assert (-(3) <= height j - height rr <= 3) by omega_max.
+ split.
+ apply bal_avl; auto.
+ omega_bal.
+
+ clear Hrl Hlr.
+ assert (height (Node ll lx ld lr lh) = lh); auto.
+ assert (height (Node rl rx rd rr rh) = rh); auto.
+ set (l := Node ll lx ld lr lh) in *; clearbody l.
+ set (r := Node rl rx rd rr rh) in *; clearbody r.
+ assert (-(2) <= height l - height r <= 2) by omega_max.
+ split.
+ apply create_avl; auto.
+ rewrite create_height; auto; omega_max.
+Qed.
+
+Lemma join_avl : forall l x d r, avl l -> avl r -> avl (join l x d r).
+Proof.
+ intros; destruct (join_avl_1 x d H H0); auto.
+Qed.
+Hint Resolve join_avl.
+
+(** concat *)
+
+Lemma concat_avl : forall m1 m2, avl m1 -> avl m2 -> avl (concat m1 m2).
+Proof.
+ intros m1 m2; functional induction (concat m1 m2); auto.
+ intros; apply join_avl; auto.
+ generalize (remove_min_avl H0); rewrite e1; simpl; auto.
+Qed.
+Hint Resolve concat_avl.
+
+(** split *)
+
+Lemma split_avl : forall m x, avl m ->
+ avl (split x m)#l /\ avl (split x m)#r.
+Proof.
+ intros m x; functional induction (split x m); simpl; auto.
+ rewrite e1 in IHt;simpl in IHt;inversion_clear 1; intuition.
+ simpl; inversion_clear 1; auto.
+ rewrite e1 in IHt;simpl in IHt;inversion_clear 1; intuition.
+Qed.
+
+End Elt.
+Hint Constructors avl.
+
+Section Map.
+Variable elt elt' : Type.
+Variable f : elt -> elt'.
+
+Lemma map_height : forall m, height (map f m) = height m.
+Proof.
+destruct m; simpl; auto.
+Qed.
+
+Lemma map_avl : forall m, avl m -> avl (map f m).
+Proof.
+induction m; simpl; auto.
+inversion_clear 1; constructor; auto; do 2 rewrite map_height; auto.
+Qed.
+
+End Map.
+
+Section Mapi.
+Variable elt elt' : Type.
+Variable f : key -> elt -> elt'.
+
+Lemma mapi_height : forall m, height (mapi f m) = height m.
+Proof.
+destruct m; simpl; auto.
+Qed.
+
+Lemma mapi_avl : forall m, avl m -> avl (mapi f m).
+Proof.
+induction m; simpl; auto.
+inversion_clear 1; constructor; auto; do 2 rewrite mapi_height; auto.
+Qed.
+
+End Mapi.
+
+Section Map_option.
+Variable elt elt' : Type.
+Variable f : key -> elt -> option elt'.
+
+Lemma map_option_avl : forall m, avl m -> avl (map_option f m).
+Proof.
+induction m; simpl; auto; intros.
+inv avl; destruct (f k e); auto using join_avl, concat_avl.
+Qed.
+
+End Map_option.
+
+Section Map2_opt.
+Variable elt elt' elt'' : Type.
+Variable f : key -> elt -> option elt' -> option elt''.
+Variable mapl : t elt -> t elt''.
+Variable mapr : t elt' -> t elt''.
+Hypothesis mapl_avl : forall m, avl m -> avl (mapl m).
+Hypothesis mapr_avl : forall m', avl m' -> avl (mapr m').
+
+Notation map2_opt := (map2_opt f mapl mapr).
+
+Lemma map2_opt_avl : forall m1 m2, avl m1 -> avl m2 ->
+ avl (map2_opt m1 m2).
+Proof.
+intros m1 m2; functional induction (map2_opt m1 m2); auto;
+factornode _x0 _x1 _x2 _x3 _x4 as r2; intros;
+destruct (split_avl x1 H0); rewrite e1 in *; simpl in *; inv avl;
+auto using join_avl, concat_avl.
+Qed.
+
+End Map2_opt.
+
+Section Map2.
+Variable elt elt' elt'' : Type.
+Variable f : option elt -> option elt' -> option elt''.
+
+Lemma map2_avl : forall m1 m2, avl m1 -> avl m2 -> avl (map2 f m1 m2).
+Proof.
+unfold map2; auto using map2_opt_avl, map_option_avl.
+Qed.
+
+End Map2.
+End AvlProofs.
+
+(** * Encapsulation
+
+ We can implement [S] with balanced binary search trees.
+ When compared to [FMapAVL], we maintain here two invariants
+ (bst and avl) instead of only bst, which is enough for fulfilling
+ the FMap interface.
+*)
+
+Module IntMake (I:Int)(X: OrderedType) <: S with Module E := X.
+
+ Module E := X.
+ Module Import AvlProofs := AvlProofs I X.
+ Import Raw.
+ Import Raw.Proofs.
+
+ Record bbst (elt:Type) :=
+ Bbst {this :> tree elt; is_bst : bst this; is_avl: avl this}.
+
+ Definition t := bbst.
+ Definition key := E.t.
+
+ Section Elt.
+ Variable elt elt' elt'': Type.
+
+ Implicit Types m : t elt.
+ Implicit Types x y : key.
+ Implicit Types e : elt.
+
+ Definition empty : t elt := Bbst (empty_bst elt) (empty_avl elt).
+ Definition is_empty m : bool := is_empty m.(this).
+ Definition add x e m : t elt :=
+ Bbst (add_bst x e m.(is_bst)) (add_avl x e m.(is_avl)).
+ Definition remove x m : t elt :=
+ Bbst (remove_bst x m.(is_bst)) (remove_avl x m.(is_avl)).
+ Definition mem x m : bool := mem x m.(this).
+ Definition find x m : option elt := find x m.(this).
+ Definition map f m : t elt' :=
+ Bbst (map_bst f m.(is_bst)) (map_avl f m.(is_avl)).
+ Definition mapi (f:key->elt->elt') m : t elt' :=
+ Bbst (mapi_bst f m.(is_bst)) (mapi_avl f m.(is_avl)).
+ Definition map2 f m (m':t elt') : t elt'' :=
+ Bbst (map2_bst f m.(is_bst) m'.(is_bst)) (map2_avl f m.(is_avl) m'.(is_avl)).
+ Definition elements m : list (key*elt) := elements m.(this).
+ Definition cardinal m := cardinal m.(this).
+ Definition fold (A:Type) (f:key->elt->A->A) m i := fold (A:=A) f m.(this) i.
+ Definition equal cmp m m' : bool := equal cmp m.(this) m'.(this).
+
+ Definition MapsTo x e m : Prop := MapsTo x e m.(this).
+ Definition In x m : Prop := In0 x m.(this).
+ Definition Empty m : Prop := Empty m.(this).
+
+ Definition eq_key : (key*elt) -> (key*elt) -> Prop := @PX.eqk elt.
+ Definition eq_key_elt : (key*elt) -> (key*elt) -> Prop := @PX.eqke elt.
+ Definition lt_key : (key*elt) -> (key*elt) -> Prop := @PX.ltk elt.
+
+ Lemma MapsTo_1 : forall m x y e, E.eq x y -> MapsTo x e m -> MapsTo y e m.
+ Proof. intros m; exact (@MapsTo_1 _ m.(this)). Qed.
+
+ Lemma mem_1 : forall m x, In x m -> mem x m = true.
+ Proof.
+ unfold In, mem; intros m x; rewrite In_alt; simpl; apply mem_1; auto.
+ apply m.(is_bst).
+ Qed.
+
+ Lemma mem_2 : forall m x, mem x m = true -> In x m.
+ Proof.
+ unfold In, mem; intros m x; rewrite In_alt; simpl; apply mem_2; auto.
+ Qed.
+
+ Lemma empty_1 : Empty empty.
+ Proof. exact (@empty_1 elt). Qed.
+
+ Lemma is_empty_1 : forall m, Empty m -> is_empty m = true.
+ Proof. intros m; exact (@is_empty_1 _ m.(this)). Qed.
+ Lemma is_empty_2 : forall m, is_empty m = true -> Empty m.
+ Proof. intros m; exact (@is_empty_2 _ m.(this)). Qed.
+
+ Lemma add_1 : forall m x y e, E.eq x y -> MapsTo y e (add x e m).
+ Proof. intros m x y e; exact (@add_1 elt _ x y e). Qed.
+ Lemma add_2 : forall m x y e e', ~ E.eq x y -> MapsTo y e m -> MapsTo y e (add x e' m).
+ Proof. intros m x y e e'; exact (@add_2 elt _ x y e e'). Qed.
+ Lemma add_3 : forall m x y e e', ~ E.eq x y -> MapsTo y e (add x e' m) -> MapsTo y e m.
+ Proof. intros m x y e e'; exact (@add_3 elt _ x y e e'). Qed.
+
+ Lemma remove_1 : forall m x y, E.eq x y -> ~ In y (remove x m).
+ Proof.
+ unfold In, remove; intros m x y; rewrite In_alt; simpl; apply remove_1; auto.
+ apply m.(is_bst).
+ Qed.
+ Lemma remove_2 : forall m x y e, ~ E.eq x y -> MapsTo y e m -> MapsTo y e (remove x m).
+ Proof. intros m x y e; exact (@remove_2 elt _ x y e m.(is_bst)). Qed.
+ Lemma remove_3 : forall m x y e, MapsTo y e (remove x m) -> MapsTo y e m.
+ Proof. intros m x y e; exact (@remove_3 elt _ x y e m.(is_bst)). Qed.
+
+
+ Lemma find_1 : forall m x e, MapsTo x e m -> find x m = Some e.
+ Proof. intros m x e; exact (@find_1 elt _ x e m.(is_bst)). Qed.
+ Lemma find_2 : forall m x e, find x m = Some e -> MapsTo x e m.
+ Proof. intros m; exact (@find_2 elt m.(this)). Qed.
+
+ Lemma fold_1 : forall m (A : Type) (i : A) (f : key -> elt -> A -> A),
+ fold f m i = fold_left (fun a p => f (fst p) (snd p) a) (elements m) i.
+ Proof. intros m; exact (@fold_1 elt m.(this) m.(is_bst)). Qed.
+
+ Lemma elements_1 : forall m x e,
+ MapsTo x e m -> InA eq_key_elt (x,e) (elements m).
+ Proof.
+ intros; unfold elements, MapsTo, eq_key_elt; rewrite elements_mapsto; auto.
+ Qed.
+
+ Lemma elements_2 : forall m x e,
+ InA eq_key_elt (x,e) (elements m) -> MapsTo x e m.
+ Proof.
+ intros; unfold elements, MapsTo, eq_key_elt; rewrite <- elements_mapsto; auto.
+ Qed.
+
+ Lemma elements_3 : forall m, sort lt_key (elements m).
+ Proof. intros m; exact (@elements_sort elt m.(this) m.(is_bst)). Qed.
+
+ Lemma elements_3w : forall m, NoDupA eq_key (elements m).
+ Proof. intros m; exact (@elements_nodup elt m.(this) m.(is_bst)). Qed.
+
+ Lemma cardinal_1 : forall m, cardinal m = length (elements m).
+ Proof. intro m; exact (@elements_cardinal elt m.(this)). Qed.
+
+ Definition Equal m m' := forall y, find y m = find y m'.
+ Definition Equiv (eq_elt:elt->elt->Prop) m m' :=
+ (forall k, In k m <-> In k m') /\
+ (forall k e e', MapsTo k e m -> MapsTo k e' m' -> eq_elt e e').
+ Definition Equivb cmp := Equiv (Cmp cmp).
+
+ Lemma Equivb_Equivb : forall cmp m m',
+ Equivb cmp m m' <-> Raw.Proofs.Equivb cmp m m'.
+ Proof.
+ intros; unfold Equivb, Equiv, Raw.Proofs.Equivb, In; intuition.
+ generalize (H0 k); do 2 rewrite In_alt; intuition.
+ generalize (H0 k); do 2 rewrite In_alt; intuition.
+ generalize (H0 k); do 2 rewrite <- In_alt; intuition.
+ generalize (H0 k); do 2 rewrite <- In_alt; intuition.
+ Qed.
+
+ Lemma equal_1 : forall m m' cmp,
+ Equivb cmp m m' -> equal cmp m m' = true.
+ Proof.
+ unfold equal; intros (m,b,a) (m',b',a') cmp; rewrite Equivb_Equivb;
+ intros; simpl in *; rewrite equal_Equivb; auto.
+ Qed.
+
+ Lemma equal_2 : forall m m' cmp,
+ equal cmp m m' = true -> Equivb cmp m m'.
+ Proof.
+ unfold equal; intros (m,b,a) (m',b',a') cmp; rewrite Equivb_Equivb;
+ intros; simpl in *; rewrite <-equal_Equivb; auto.
+ Qed.
+
+ End Elt.
+
+ Lemma map_1 : forall (elt elt':Type)(m: t elt)(x:key)(e:elt)(f:elt->elt'),
+ MapsTo x e m -> MapsTo x (f e) (map f m).
+ Proof. intros elt elt' m x e f; exact (@map_1 elt elt' f m.(this) x e). Qed.
+
+ Lemma map_2 : forall (elt elt':Type)(m:t elt)(x:key)(f:elt->elt'), In x (map f m) -> In x m.
+ Proof.
+ intros elt elt' m x f; do 2 unfold In in *; do 2 rewrite In_alt; simpl.
+ apply map_2; auto.
+ Qed.
+
+ Lemma mapi_1 : forall (elt elt':Type)(m: t elt)(x:key)(e:elt)
+ (f:key->elt->elt'), MapsTo x e m ->
+ exists y, E.eq y x /\ MapsTo x (f y e) (mapi f m).
+ Proof. intros elt elt' m x e f; exact (@mapi_1 elt elt' f m.(this) x e). Qed.
+ Lemma mapi_2 : forall (elt elt':Type)(m: t elt)(x:key)
+ (f:key->elt->elt'), In x (mapi f m) -> In x m.
+ Proof.
+ intros elt elt' m x f; unfold In in *; do 2 rewrite In_alt; simpl; apply mapi_2; auto.
+ Qed.
+
+ Lemma map2_1 : forall (elt elt' elt'':Type)(m: t elt)(m': t elt')
+ (x:key)(f:option elt->option elt'->option elt''),
+ In x m \/ In x m' ->
+ find x (map2 f m m') = f (find x m) (find x m').
+ Proof.
+ unfold find, map2, In; intros elt elt' elt'' m m' x f.
+ do 2 rewrite In_alt; intros; simpl; apply map2_1; auto.
+ apply m.(is_bst).
+ apply m'.(is_bst).
+ Qed.
+
+ Lemma map2_2 : forall (elt elt' elt'':Type)(m: t elt)(m': t elt')
+ (x:key)(f:option elt->option elt'->option elt''),
+ In x (map2 f m m') -> In x m \/ In x m'.
+ Proof.
+ unfold In, map2; intros elt elt' elt'' m m' x f.
+ do 3 rewrite In_alt; intros; simpl in *; eapply map2_2; eauto.
+ apply m.(is_bst).
+ apply m'.(is_bst).
+ Qed.
+
+End IntMake.
+
+
+Module IntMake_ord (I:Int)(X: OrderedType)(D : OrderedType) <:
+ Sord with Module Data := D
+ with Module MapS.E := X.
+
+ Module Data := D.
+ Module Import MapS := IntMake(I)(X).
+ Import AvlProofs.
+ Import Raw.Proofs.
+ Module Import MD := OrderedTypeFacts(D).
+ Module LO := FMapList.Make_ord(X)(D).
+
+ Definition t := MapS.t D.t.
+
+ Definition cmp e e' :=
+ match D.compare e e' with EQ _ => true | _ => false end.
+
+ Definition elements (m:t) :=
+ LO.MapS.Build_slist (Raw.Proofs.elements_sort m.(is_bst)).
+
+ (** * As comparison function, we propose here a non-structural
+ version faithful to the code of Ocaml's Map library, instead of
+ the structural version of FMapAVL *)
+
+ Fixpoint cardinal_e (e:Raw.enumeration D.t) :=
+ match e with
+ | Raw.End => 0%nat
+ | Raw.More _ _ r e => S (Raw.cardinal r + cardinal_e e)
+ end.
+
+ Lemma cons_cardinal_e : forall m e,
+ cardinal_e (Raw.cons m e) = (Raw.cardinal m + cardinal_e e)%nat.
+ Proof.
+ induction m; simpl; intros; auto.
+ rewrite IHm1; simpl; rewrite <- plus_n_Sm; auto with arith.
+ Qed.
+
+ Definition cardinal_e_2 ee :=
+ (cardinal_e (fst ee) + cardinal_e (snd ee))%nat.
+
+ Function compare_aux (ee:Raw.enumeration D.t * Raw.enumeration D.t)
+ { measure cardinal_e_2 ee } : comparison :=
+ match ee with
+ | (Raw.End, Raw.End) => Eq
+ | (Raw.End, Raw.More _ _ _ _) => Lt
+ | (Raw.More _ _ _ _, Raw.End) => Gt
+ | (Raw.More x1 d1 r1 e1, Raw.More x2 d2 r2 e2) =>
+ match X.compare x1 x2 with
+ | EQ _ => match D.compare d1 d2 with
+ | EQ _ => compare_aux (Raw.cons r1 e1, Raw.cons r2 e2)
+ | LT _ => Lt
+ | GT _ => Gt
+ end
+ | LT _ => Lt
+ | GT _ => Gt
+ end
+ end.
+ Proof.
+ intros; unfold cardinal_e_2; simpl;
+ abstract (do 2 rewrite cons_cardinal_e; romega with * ).
+ Defined.
+
+ Definition Cmp c :=
+ match c with
+ | Eq => LO.eq_list
+ | Lt => LO.lt_list
+ | Gt => (fun l1 l2 => LO.lt_list l2 l1)
+ end.
+
+ Lemma cons_Cmp : forall c x1 x2 d1 d2 l1 l2,
+ X.eq x1 x2 -> D.eq d1 d2 ->
+ Cmp c l1 l2 -> Cmp c ((x1,d1)::l1) ((x2,d2)::l2).
+ Proof.
+ destruct c; simpl; intros; MX.elim_comp; auto.
+ Qed.
+ Hint Resolve cons_Cmp.
+
+ Lemma compare_aux_Cmp : forall e,
+ Cmp (compare_aux e) (flatten_e (fst e)) (flatten_e (snd e)).
+ Proof.
+ intros e; functional induction (compare_aux e); simpl in *;
+ auto; intros; try clear e0; try clear e3; try MX.elim_comp; auto.
+ rewrite 2 cons_1 in IHc; auto.
+ Qed.
+
+ Lemma compare_Cmp : forall m1 m2,
+ Cmp (compare_aux (Raw.cons m1 (Raw.End _), Raw.cons m2 (Raw.End _)))
+ (Raw.elements m1) (Raw.elements m2).
+ Proof.
+ intros.
+ assert (H1:=cons_1 m1 (Raw.End _)).
+ assert (H2:=cons_1 m2 (Raw.End _)).
+ simpl in *; rewrite <- app_nil_end in *; rewrite <-H1,<-H2.
+ apply (@compare_aux_Cmp (Raw.cons m1 (Raw.End _),
+ Raw.cons m2 (Raw.End _))).
+ Qed.
+
+ Definition eq (m1 m2 : t) := LO.eq_list (Raw.elements m1) (Raw.elements m2).
+ Definition lt (m1 m2 : t) := LO.lt_list (Raw.elements m1) (Raw.elements m2).
+
+ Definition compare (s s':t) : Compare lt eq s s'.
+ Proof.
+ intros (s,b,a) (s',b',a').
+ generalize (compare_Cmp s s').
+ destruct compare_aux; intros; [apply EQ|apply LT|apply GT]; red; auto.
+ Defined.
+
+
+ (* Proofs about [eq] and [lt] *)
+
+ Definition selements (m1 : t) :=
+ LO.MapS.Build_slist (elements_sort m1.(is_bst)).
+
+ Definition seq (m1 m2 : t) := LO.eq (selements m1) (selements m2).
+ Definition slt (m1 m2 : t) := LO.lt (selements m1) (selements m2).
+
+ Lemma eq_seq : forall m1 m2, eq m1 m2 <-> seq m1 m2.
+ Proof.
+ unfold eq, seq, selements, elements, LO.eq; intuition.
+ Qed.
+
+ Lemma lt_slt : forall m1 m2, lt m1 m2 <-> slt m1 m2.
+ Proof.
+ unfold lt, slt, selements, elements, LO.lt; intuition.
+ Qed.
+
+ Lemma eq_1 : forall (m m' : t), MapS.Equivb cmp m m' -> eq m m'.
+ Proof.
+ intros m m'.
+ rewrite eq_seq; unfold seq.
+ rewrite Equivb_Equivb.
+ rewrite Equivb_elements.
+ auto using LO.eq_1.
+ Qed.
+
+ Lemma eq_2 : forall m m', eq m m' -> MapS.Equivb cmp m m'.
+ Proof.
+ intros m m'.
+ rewrite eq_seq; unfold seq.
+ rewrite Equivb_Equivb.
+ rewrite Equivb_elements.
+ intros.
+ generalize (LO.eq_2 H).
+ auto.
+ Qed.
+
+ Lemma eq_refl : forall m : t, eq m m.
+ Proof.
+ intros; rewrite eq_seq; unfold seq; intros; apply LO.eq_refl.
+ Qed.
+
+ Lemma eq_sym : forall m1 m2 : t, eq m1 m2 -> eq m2 m1.
+ Proof.
+ intros m1 m2; rewrite 2 eq_seq; unfold seq; intros; apply LO.eq_sym; auto.
+ Qed.
+
+ Lemma eq_trans : forall m1 m2 m3 : t, eq m1 m2 -> eq m2 m3 -> eq m1 m3.
+ Proof.
+ intros m1 m2 M3; rewrite 3 eq_seq; unfold seq.
+ intros; eapply LO.eq_trans; eauto.
+ Qed.
+
+ Lemma lt_trans : forall m1 m2 m3 : t, lt m1 m2 -> lt m2 m3 -> lt m1 m3.
+ Proof.
+ intros m1 m2 m3; rewrite 3 lt_slt; unfold slt;
+ intros; eapply LO.lt_trans; eauto.
+ Qed.
+
+ Lemma lt_not_eq : forall m1 m2 : t, lt m1 m2 -> ~ eq m1 m2.
+ Proof.
+ intros m1 m2; rewrite lt_slt, eq_seq; unfold slt, seq;
+ intros; apply LO.lt_not_eq; auto.
+ Qed.
+
+End IntMake_ord.
+
+(* For concrete use inside Coq, we propose an instantiation of [Int] by [Z]. *)
+
+Module Make (X: OrderedType) <: S with Module E := X
+ :=IntMake(Z_as_Int)(X).
+
+Module Make_ord (X: OrderedType)(D: OrderedType)
+ <: Sord with Module Data := D
+ with Module MapS.E := X
+ :=IntMake_ord(Z_as_Int)(X)(D).
+