aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Classes
diff options
context:
space:
mode:
authorGravatar msozeau <msozeau@85f007b7-540e-0410-9357-904b9bb8a0f7>2011-03-13 14:41:09 +0000
committerGravatar msozeau <msozeau@85f007b7-540e-0410-9357-904b9bb8a0f7>2011-03-13 14:41:09 +0000
commitc9931180560b7b343427811be0f14281bc791bda (patch)
treed46ad35a87de254eac349db3ff31bcaa2ed985f8 /theories/Classes
parentc70460837f5158325626b9412d8fa0651340b50f (diff)
- Add modulo_delta_types flag for unification to allow full
conversion when checking types of instanciations while having restricted delta reduction for unification itself. This makes auto/eauto... backward compatible. - Change semantics of [Instance foo : C a.] to _not_ search for an instance of [C a] automatically and potentially slow down interaction, except for trivial classes with no fields. Use [C a := _.] or [C a := {}] to search for an instance of the class or for every field. - Correct treatment of transparency information for classes declared in sections. git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@13908 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories/Classes')
-rw-r--r--theories/Classes/RelationPairs.v6
1 files changed, 3 insertions, 3 deletions
diff --git a/theories/Classes/RelationPairs.v b/theories/Classes/RelationPairs.v
index 7972c96ca..0fa5bfaa6 100644
--- a/theories/Classes/RelationPairs.v
+++ b/theories/Classes/RelationPairs.v
@@ -88,10 +88,10 @@ Section RelCompFun_Instances.
`(Measure A B f, Irreflexive _ R) : Irreflexive (R@@f).
Proof. firstorder. Qed.
- Global Instance RelCompFun_Equivalence
+ Global Program Instance RelCompFun_Equivalence
`(Measure A B f, Equivalence _ R) : Equivalence (R@@f).
- Global Instance RelCompFun_StrictOrder
+ Global Program Instance RelCompFun_StrictOrder
`(Measure A B f, StrictOrder _ R) : StrictOrder (R@@f).
End RelCompFun_Instances.
@@ -108,7 +108,7 @@ Instance RelProd_Transitive {A B}(RA:relation A)(RB:relation B)
`(Transitive _ RA, Transitive _ RB) : Transitive (RA*RB).
Proof. firstorder. Qed.
-Instance RelProd_Equivalence {A B}(RA:relation A)(RB:relation B)
+Program Instance RelProd_Equivalence {A B}(RA:relation A)(RB:relation B)
`(Equivalence _ RA, Equivalence _ RB) : Equivalence (RA*RB).
Lemma FstRel_ProdRel {A B}(RA:relation A) :