diff options
author | msozeau <msozeau@85f007b7-540e-0410-9357-904b9bb8a0f7> | 2011-03-13 14:41:09 +0000 |
---|---|---|
committer | msozeau <msozeau@85f007b7-540e-0410-9357-904b9bb8a0f7> | 2011-03-13 14:41:09 +0000 |
commit | c9931180560b7b343427811be0f14281bc791bda (patch) | |
tree | d46ad35a87de254eac349db3ff31bcaa2ed985f8 /theories/Classes | |
parent | c70460837f5158325626b9412d8fa0651340b50f (diff) |
- Add modulo_delta_types flag for unification to allow full
conversion when checking types of instanciations while having
restricted delta reduction for unification itself. This
makes auto/eauto... backward compatible.
- Change semantics of [Instance foo : C a.] to _not_ search
for an instance of [C a] automatically and potentially slow
down interaction, except for trivial classes with no fields.
Use [C a := _.] or [C a := {}] to search for an instance of
the class or for every field.
- Correct treatment of transparency information for classes
declared in sections.
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@13908 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories/Classes')
-rw-r--r-- | theories/Classes/RelationPairs.v | 6 |
1 files changed, 3 insertions, 3 deletions
diff --git a/theories/Classes/RelationPairs.v b/theories/Classes/RelationPairs.v index 7972c96ca..0fa5bfaa6 100644 --- a/theories/Classes/RelationPairs.v +++ b/theories/Classes/RelationPairs.v @@ -88,10 +88,10 @@ Section RelCompFun_Instances. `(Measure A B f, Irreflexive _ R) : Irreflexive (R@@f). Proof. firstorder. Qed. - Global Instance RelCompFun_Equivalence + Global Program Instance RelCompFun_Equivalence `(Measure A B f, Equivalence _ R) : Equivalence (R@@f). - Global Instance RelCompFun_StrictOrder + Global Program Instance RelCompFun_StrictOrder `(Measure A B f, StrictOrder _ R) : StrictOrder (R@@f). End RelCompFun_Instances. @@ -108,7 +108,7 @@ Instance RelProd_Transitive {A B}(RA:relation A)(RB:relation B) `(Transitive _ RA, Transitive _ RB) : Transitive (RA*RB). Proof. firstorder. Qed. -Instance RelProd_Equivalence {A B}(RA:relation A)(RB:relation B) +Program Instance RelProd_Equivalence {A B}(RA:relation A)(RB:relation B) `(Equivalence _ RA, Equivalence _ RB) : Equivalence (RA*RB). Lemma FstRel_ProdRel {A B}(RA:relation A) : |