aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Bool
diff options
context:
space:
mode:
authorGravatar vsiles <vsiles@85f007b7-540e-0410-9357-904b9bb8a0f7>2007-10-05 13:02:23 +0000
committerGravatar vsiles <vsiles@85f007b7-540e-0410-9357-904b9bb8a0f7>2007-10-05 13:02:23 +0000
commitcf136fb80c1b461b16d733830d8a320e6d03d06b (patch)
treecf35437a1b92529cbe6ad95fb7c0e225478fbb5f /theories/Bool
parent20720975c49e5c48f6b03a96df0186b56557eb3e (diff)
Added the automatic generation of the boolean equality if possible and the
decidability of the usual equality Major changes: * andb_prop & andb_true_intro have been moved from Bool.v to Datatypes.v * added 2 files: * toplevel/ind_tables.ml* : tables where the boolean eqs and the decidability proofs are stored * toplevel/auto_ind_decl.ml* : code of the schemes that are automatically generated from inductives types (currently boolean eq & decidability ) * improvement of injection: if the decidability have been correctly computed, injection can now break the equalities over dependant pair How to use: Set Equality Scheme. to set the automatic generation of the equality when you create a new inductive type Scheme Equality for I. tries to create the equality for the already declared type I git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@10180 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories/Bool')
-rw-r--r--theories/Bool/Bool.v14
1 files changed, 0 insertions, 14 deletions
diff --git a/theories/Bool/Bool.v b/theories/Bool/Bool.v
index 8f739e0da..0d674ebf9 100644
--- a/theories/Bool/Bool.v
+++ b/theories/Bool/Bool.v
@@ -308,26 +308,12 @@ Hint Resolve orb_comm orb_assoc: bool v62.
(** * Properties of [andb] *)
(*******************************)
-Lemma andb_prop : forall a b:bool, a && b = true -> a = true /\ b = true.
-Proof.
- destruct a; destruct b; simpl in |- *; try (intro H; discriminate H);
- auto with bool.
-Qed.
-Hint Resolve andb_prop: bool v62.
-
Lemma andb_true_eq :
forall a b:bool, true = a && b -> true = a /\ true = b.
Proof.
destruct a; destruct b; auto.
Defined.
-Lemma andb_true_intro :
- forall b1 b2:bool, b1 = true /\ b2 = true -> b1 && b2 = true.
-Proof.
- destruct b1; destruct b2; simpl in |- *; tauto || auto with bool.
-Qed.
-Hint Resolve andb_true_intro: bool v62.
-
Lemma andb_false_intro1 : forall b1 b2:bool, b1 = false -> b1 && b2 = false.
Proof.
destruct b1; destruct b2; simpl in |- *; tauto || auto with bool.