diff options
author | vsiles <vsiles@85f007b7-540e-0410-9357-904b9bb8a0f7> | 2007-10-05 13:02:23 +0000 |
---|---|---|
committer | vsiles <vsiles@85f007b7-540e-0410-9357-904b9bb8a0f7> | 2007-10-05 13:02:23 +0000 |
commit | cf136fb80c1b461b16d733830d8a320e6d03d06b (patch) | |
tree | cf35437a1b92529cbe6ad95fb7c0e225478fbb5f /theories/Bool | |
parent | 20720975c49e5c48f6b03a96df0186b56557eb3e (diff) |
Added the automatic generation of the boolean equality if possible and the
decidability of the usual equality
Major changes:
* andb_prop & andb_true_intro have been moved from Bool.v to Datatypes.v
* added 2 files:
* toplevel/ind_tables.ml* : tables where the boolean eqs and the
decidability proofs are stored
* toplevel/auto_ind_decl.ml* : code of the schemes that are automatically
generated from inductives types (currently boolean eq & decidability )
* improvement of injection: if the decidability have been correctly computed,
injection can now break the equalities over dependant pair
How to use:
Set Equality Scheme. to set the automatic generation of the equality when you
create a new inductive type
Scheme Equality for I. tries to create the equality for the already declared
type I
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@10180 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories/Bool')
-rw-r--r-- | theories/Bool/Bool.v | 14 |
1 files changed, 0 insertions, 14 deletions
diff --git a/theories/Bool/Bool.v b/theories/Bool/Bool.v index 8f739e0da..0d674ebf9 100644 --- a/theories/Bool/Bool.v +++ b/theories/Bool/Bool.v @@ -308,26 +308,12 @@ Hint Resolve orb_comm orb_assoc: bool v62. (** * Properties of [andb] *) (*******************************) -Lemma andb_prop : forall a b:bool, a && b = true -> a = true /\ b = true. -Proof. - destruct a; destruct b; simpl in |- *; try (intro H; discriminate H); - auto with bool. -Qed. -Hint Resolve andb_prop: bool v62. - Lemma andb_true_eq : forall a b:bool, true = a && b -> true = a /\ true = b. Proof. destruct a; destruct b; auto. Defined. -Lemma andb_true_intro : - forall b1 b2:bool, b1 = true /\ b2 = true -> b1 && b2 = true. -Proof. - destruct b1; destruct b2; simpl in |- *; tauto || auto with bool. -Qed. -Hint Resolve andb_true_intro: bool v62. - Lemma andb_false_intro1 : forall b1 b2:bool, b1 = false -> b1 && b2 = false. Proof. destruct b1; destruct b2; simpl in |- *; tauto || auto with bool. |