aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Bool
diff options
context:
space:
mode:
authorGravatar herbelin <herbelin@85f007b7-540e-0410-9357-904b9bb8a0f7>2002-04-17 11:30:23 +0000
committerGravatar herbelin <herbelin@85f007b7-540e-0410-9357-904b9bb8a0f7>2002-04-17 11:30:23 +0000
commitcc1be0bf512b421336e81099aa6906ca47e4257a (patch)
treec25fa8ed965729d7a85efa3b3292fdf7f442963d /theories/Bool
parentebf9aa9f97ef0d49ed1b799c9213f78efad4fec7 (diff)
Uniformisation (Qed/Save et Implicits Arguments)
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@2650 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories/Bool')
-rwxr-xr-xtheories/Bool/Bool.v102
-rwxr-xr-xtheories/Bool/DecBool.v4
-rwxr-xr-xtheories/Bool/IfProp.v12
-rw-r--r--theories/Bool/Sumbool.v12
-rwxr-xr-xtheories/Bool/Zerob.v8
5 files changed, 69 insertions, 69 deletions
diff --git a/theories/Bool/Bool.v b/theories/Bool/Bool.v
index 1942ca6b3..cfd6f656a 100755
--- a/theories/Bool/Bool.v
+++ b/theories/Bool/Bool.v
@@ -23,12 +23,12 @@ Hints Unfold Is_true : bool.
Lemma Is_true_eq_left : (x:bool)x=true -> (Is_true x).
Proof.
Intros; Rewrite H; Auto with bool.
-Save.
+Qed.
Lemma Is_true_eq_right : (x:bool)true=x -> (Is_true x).
Proof.
Intros; Rewrite <- H; Auto with bool.
-Save.
+Qed.
Hints Immediate Is_true_eq_right Is_true_eq_left : bool.
@@ -40,7 +40,7 @@ Lemma diff_true_false : ~true=false.
Goal.
Unfold not; Intro contr; Change (Is_true false).
Elim contr; Simpl; Trivial with bool.
-Save.
+Qed.
Hints Resolve diff_true_false : bool v62.
Lemma diff_false_true : ~false=true.
@@ -48,12 +48,12 @@ Goal.
Red; Intros H; Apply diff_true_false.
Symmetry.
Assumption.
-Save.
+Qed.
Hints Resolve diff_false_true : bool v62.
Lemma eq_true_false_abs : (b:bool)(b=true)->(b=false)->False.
Intros b H; Rewrite H; Auto with bool.
-Save.
+Qed.
Hints Resolve eq_true_false_abs : bool.
Lemma not_true_is_false : (b:bool)~b=true->b=false.
@@ -63,7 +63,7 @@ Red in H; Elim H.
Reflexivity.
Intros abs.
Reflexivity.
-Save.
+Qed.
Lemma not_false_is_true : (b:bool)~b=false->b=true.
NewDestruct b.
@@ -71,7 +71,7 @@ Intros.
Reflexivity.
Intro H; Red in H; Elim H.
Reflexivity.
-Save.
+Qed.
(**********************)
(** Order on booleans *)
@@ -99,19 +99,19 @@ Definition eqb : bool->bool->bool :=
Lemma eqb_refl : (x:bool)(Is_true (eqb x x)).
NewDestruct x; Simpl; Auto with bool.
-Save.
+Qed.
Lemma eqb_eq : (x,y:bool)(Is_true (eqb x y))->x=y.
NewDestruct x; NewDestruct y; Simpl; Tauto.
-Save.
+Qed.
Lemma Is_true_eq_true : (x:bool) (Is_true x) -> x=true.
NewDestruct x; Simpl; Tauto.
-Save.
+Qed.
Lemma Is_true_eq_true2 : (x:bool) x=true -> (Is_true x).
NewDestruct x; Simpl; Auto with bool.
-Save.
+Qed.
Lemma eqb_subst :
(P:bool->Prop)(b1,b2:bool)(eqb b1 b2)=true->(P b1)->(P b2).
@@ -127,19 +127,19 @@ Case b2.
Intros H.
Inversion_clear H.
Trivial with bool.
-Save.
+Qed.
Lemma eqb_reflx : (b:bool)(eqb b b)=true.
Intro b.
Case b.
Trivial with bool.
Trivial with bool.
-Save.
+Qed.
Lemma eqb_prop : (a,b:bool)(eqb a b)=true -> a=b.
NewDestruct a; NewDestruct b; Simpl; Intro;
Discriminate H Orelse Reflexivity.
-Save.
+Qed.
(************************)
@@ -180,12 +180,12 @@ Definition negb := [b:bool]Cases b of
Lemma negb_intro : (b:bool)b=(negb (negb b)).
Goal.
Induction b; Reflexivity.
-Save.
+Qed.
Lemma negb_elim : (b:bool)(negb (negb b))=b.
Goal.
Induction b; Reflexivity.
-Save.
+Qed.
Lemma negb_orb : (b1,b2:bool)
(negb (orb b1 b2)) = (andb (negb b1) (negb b2)).
@@ -202,24 +202,24 @@ Qed.
Lemma negb_sym : (b,b':bool)(b'=(negb b))->(b=(negb b')).
Goal.
Induction b; Induction b'; Intros; Simpl; Trivial with bool.
-Save.
+Qed.
Lemma no_fixpoint_negb : (b:bool)~(negb b)=b.
Goal.
Induction b; Simpl; Unfold not; Intro; Apply diff_true_false; Auto with bool.
-Save.
+Qed.
Lemma eqb_negb1 : (b:bool)(eqb (negb b) b)=false.
NewDestruct b.
Trivial with bool.
Trivial with bool.
-Save.
+Qed.
Lemma eqb_negb2 : (b:bool)(eqb b (negb b))=false.
NewDestruct b.
Trivial with bool.
Trivial with bool.
-Save.
+Qed.
Lemma if_negb : (A:Set) (b:bool) (x,y:A) (if (negb b) then x else y)=(if b then y else x).
@@ -235,12 +235,12 @@ Qed.
Lemma orb_prop :
(a,b:bool)(orb a b)=true -> (a = true)\/(b = true).
Induction a; Induction b; Simpl; Try (Intro H;Discriminate H); Auto with bool.
-Save.
+Qed.
Lemma orb_prop2 :
(a,b:bool)(Is_true (orb a b)) -> (Is_true a)\/(Is_true b).
Induction a; Induction b; Simpl; Try (Intro H;Discriminate H); Auto with bool.
-Save.
+Qed.
Lemma orb_true_intro
: (b1,b2:bool)(b1=true)\/(b2=true)->(orb b1 b2)=true.
@@ -248,37 +248,37 @@ NewDestruct b1; Auto with bool.
NewDestruct 1; Intros.
Elim diff_true_false; Auto with bool.
Rewrite H; Trivial with bool.
-Save.
+Qed.
Hints Resolve orb_true_intro : bool v62.
Lemma orb_b_true : (b:bool)(orb b true)=true.
Auto with bool.
-Save.
+Qed.
Hints Resolve orb_b_true : bool v62.
Lemma orb_true_b : (b:bool)(orb true b)=true.
Trivial with bool.
-Save.
+Qed.
Lemma orb_true_elim : (b1,b2:bool)(orb b1 b2)=true -> {b1=true}+{b2=true}.
NewDestruct b1; Simpl; Auto with bool.
-Save.
+Qed.
Lemma orb_false_intro
: (b1,b2:bool)(b1=false)->(b2=false)->(orb b1 b2)=false.
Intros b1 b2 H1 H2; Rewrite H1; Rewrite H2; Trivial with bool.
-Save.
+Qed.
Hints Resolve orb_false_intro : bool v62.
Lemma orb_b_false : (b:bool)(orb b false)=b.
Proof.
NewDestruct b; Trivial with bool.
-Save.
+Qed.
Hints Resolve orb_b_false : bool v62.
Lemma orb_false_b : (b:bool)(orb false b)=b.
Proof.
NewDestruct b; Trivial with bool.
-Save.
+Qed.
Hints Resolve orb_false_b : bool v62.
Lemma orb_false_elim :
@@ -289,23 +289,23 @@ Proof.
NewDestruct b2.
Intros; Elim diff_true_false; Auto with bool.
Auto with bool.
-Save.
+Qed.
Lemma orb_neg_b :
(b:bool)(orb b (negb b))=true.
Proof.
NewDestruct b; Reflexivity.
-Save.
+Qed.
Hints Resolve orb_neg_b : bool v62.
Lemma orb_sym : (b1,b2:bool)(orb b1 b2)=(orb b2 b1).
NewDestruct b1; NewDestruct b2; Reflexivity.
-Save.
+Qed.
Lemma orb_assoc : (b1,b2,b3:bool)(orb b1 (orb b2 b3))=(orb (orb b1 b2) b3).
Proof.
NewDestruct b1; NewDestruct b2; NewDestruct b3; Reflexivity.
-Save.
+Qed.
Hints Resolve orb_sym orb_assoc orb_b_false orb_false_b : bool v62.
@@ -319,7 +319,7 @@ Lemma andb_prop :
Proof.
Induction a; Induction b; Simpl; Try (Intro H;Discriminate H);
Auto with bool.
-Save.
+Qed.
Hints Resolve andb_prop : bool v62.
Definition andb_true_eq : (a,b:bool) true = (andb a b) -> true = a /\ true = b.
@@ -332,67 +332,67 @@ Lemma andb_prop2 :
Proof.
Induction a; Induction b; Simpl; Try (Intro H;Discriminate H);
Auto with bool.
-Save.
+Qed.
Hints Resolve andb_prop2 : bool v62.
Lemma andb_true_intro : (b1,b2:bool)(b1=true)/\(b2=true)->(andb b1 b2)=true.
Proof.
NewDestruct b1; NewDestruct b2; Simpl; Tauto Orelse Auto with bool.
-Save.
+Qed.
Hints Resolve andb_true_intro : bool v62.
Lemma andb_true_intro2 :
(b1,b2:bool)(Is_true b1)->(Is_true b2)->(Is_true (andb b1 b2)).
Proof.
NewDestruct b1; NewDestruct b2; Simpl; Tauto.
-Save.
+Qed.
Hints Resolve andb_true_intro2 : bool v62.
Lemma andb_false_intro1
: (b1,b2:bool)(b1=false)->(andb b1 b2)=false.
NewDestruct b1; NewDestruct b2; Simpl; Tauto Orelse Auto with bool.
-Save.
+Qed.
Lemma andb_false_intro2
: (b1,b2:bool)(b2=false)->(andb b1 b2)=false.
NewDestruct b1; NewDestruct b2; Simpl; Tauto Orelse Auto with bool.
-Save.
+Qed.
Lemma andb_b_false : (b:bool)(andb b false)=false.
NewDestruct b; Auto with bool.
-Save.
+Qed.
Lemma andb_false_b : (b:bool)(andb false b)=false.
Trivial with bool.
-Save.
+Qed.
Lemma andb_b_true : (b:bool)(andb b true)=b.
NewDestruct b; Auto with bool.
-Save.
+Qed.
Lemma andb_true_b : (b:bool)(andb true b)=b.
Trivial with bool.
-Save.
+Qed.
Lemma andb_false_elim :
(b1,b2:bool)(andb b1 b2)=false -> {b1=false}+{b2=false}.
NewDestruct b1; Simpl; Auto with bool.
-Save.
+Qed.
Hints Resolve andb_false_elim : bool v62.
Lemma andb_neg_b :
(b:bool)(andb b (negb b))=false.
NewDestruct b; Reflexivity.
-Save.
+Qed.
Hints Resolve andb_neg_b : bool v62.
Lemma andb_sym : (b1,b2:bool)(andb b1 b2)=(andb b2 b1).
NewDestruct b1; NewDestruct b2; Reflexivity.
-Save.
+Qed.
Lemma andb_assoc : (b1,b2,b3:bool)(andb b1 (andb b2 b3))=(andb (andb b1 b2) b3).
NewDestruct b1; NewDestruct b2; NewDestruct b3; Reflexivity.
-Save.
+Qed.
Hints Resolve andb_sym andb_assoc : bool v62.
@@ -469,22 +469,22 @@ Qed.
Lemma demorgan1 : (b1,b2,b3:bool)
(andb b1 (orb b2 b3)) = (orb (andb b1 b2) (andb b1 b3)).
NewDestruct b1; NewDestruct b2; NewDestruct b3; Reflexivity.
-Save.
+Qed.
Lemma demorgan2 : (b1,b2,b3:bool)
(andb (orb b1 b2) b3) = (orb (andb b1 b3) (andb b2 b3)).
NewDestruct b1; NewDestruct b2; NewDestruct b3; Reflexivity.
-Save.
+Qed.
Lemma demorgan3 : (b1,b2,b3:bool)
(orb b1 (andb b2 b3)) = (andb (orb b1 b2) (orb b1 b3)).
NewDestruct b1; NewDestruct b2; NewDestruct b3; Reflexivity.
-Save.
+Qed.
Lemma demorgan4 : (b1,b2,b3:bool)
(orb (andb b1 b2) b3) = (andb (orb b1 b3) (orb b2 b3)).
NewDestruct b1; NewDestruct b2; NewDestruct b3; Reflexivity.
-Save.
+Qed.
Lemma absoption_andb : (b1,b2:bool)
(andb b1 (orb b1 b2)) = b1.
diff --git a/theories/Bool/DecBool.v b/theories/Bool/DecBool.v
index 8daabd479..28ef57eac 100755
--- a/theories/Bool/DecBool.v
+++ b/theories/Bool/DecBool.v
@@ -17,11 +17,11 @@ Definition ifdec : (A,B:Prop)(C:Set)({A}+{B})->C->C->C
Theorem ifdec_left : (A,B:Prop)(C:Set)(H:{A}+{B})~B->(x,y:C)(ifdec H x y)=x.
Intros; Case H; Auto.
Intro; Absurd B; Trivial.
-Save.
+Qed.
Theorem ifdec_right : (A,B:Prop)(C:Set)(H:{A}+{B})~A->(x,y:C)(ifdec H x y)=y.
Intros; Case H; Auto.
Intro; Absurd A; Trivial.
-Save.
+Qed.
Unset Implicit Arguments.
diff --git a/theories/Bool/IfProp.v b/theories/Bool/IfProp.v
index d0c089c7a..48180678f 100755
--- a/theories/Bool/IfProp.v
+++ b/theories/Bool/IfProp.v
@@ -19,31 +19,31 @@ Hints Resolve Iftrue Iffalse : bool v62.
Lemma Iftrue_inv : (A,B:Prop)(b:bool) (IfProp A B b) -> b=true -> A.
NewDestruct 1; Intros; Auto with bool.
Case diff_true_false; Auto with bool.
-Save.
+Qed.
Lemma Iffalse_inv : (A,B:Prop)(b:bool) (IfProp A B b) -> b=false -> B.
NewDestruct 1; Intros; Auto with bool.
Case diff_true_false; Trivial with bool.
-Save.
+Qed.
Lemma IfProp_true : (A,B:Prop)(IfProp A B true) -> A.
Intros.
Inversion H.
Assumption.
-Save.
+Qed.
Lemma IfProp_false : (A,B:Prop)(IfProp A B false) -> B.
Intros.
Inversion H.
Assumption.
-Save.
+Qed.
Lemma IfProp_or : (A,B:Prop)(b:bool)(IfProp A B b) -> A\/B.
NewDestruct 1; Auto with bool.
-Save.
+Qed.
Lemma IfProp_sum : (A,B:Prop)(b:bool)(IfProp A B b) -> {A}+{B}.
NewDestruct b; Intro H.
Left; Inversion H; Auto with bool.
Right; Inversion H; Auto with bool.
-Save.
+Qed.
diff --git a/theories/Bool/Sumbool.v b/theories/Bool/Sumbool.v
index 44311a127..817212909 100644
--- a/theories/Bool/Sumbool.v
+++ b/theories/Bool/Sumbool.v
@@ -18,19 +18,19 @@
Lemma sumbool_of_bool : (b:bool) {b=true}+{b=false}.
Proof.
Induction b; Auto.
-Save.
+Qed.
Hints Resolve sumbool_of_bool : bool.
Lemma bool_eq_rec : (b:bool)(P:bool->Set)
((b=true)->(P true))->((b=false)->(P false))->(P b).
Induction b; Auto.
-Save.
+Qed.
Lemma bool_eq_ind : (b:bool)(P:bool->Prop)
((b=true)->(P true))->((b=false)->(P false))->(P b).
Induction b; Auto.
-Save.
+Qed.
(*i pourquoi ce machin-la est dans BOOL et pas dans LOGIC ? Papageno i*)
@@ -47,17 +47,17 @@ Hypothesis H2 : {C}+{D}.
Lemma sumbool_and : {A/\C}+{B\/D}.
Proof.
Case H1; Case H2; Auto.
-Save.
+Qed.
Lemma sumbool_or : {A\/C}+{B/\D}.
Proof.
Case H1; Case H2; Auto.
-Save.
+Qed.
Lemma sumbool_not : {B}+{A}.
Proof.
Case H1; Auto.
-Save.
+Qed.
End connectives.
diff --git a/theories/Bool/Zerob.v b/theories/Bool/Zerob.v
index 4422a03f4..07b4c68c8 100755
--- a/theories/Bool/Zerob.v
+++ b/theories/Bool/Zerob.v
@@ -16,18 +16,18 @@ Definition zerob : nat->bool
Lemma zerob_true_intro : (n:nat)(n=O)->(zerob n)=true.
NewDestruct n; [Trivial with bool | Inversion 1].
-Save.
+Qed.
Hints Resolve zerob_true_intro : bool.
Lemma zerob_true_elim : (n:nat)(zerob n)=true->(n=O).
NewDestruct n; [Trivial with bool | Inversion 1].
-Save.
+Qed.
Lemma zerob_false_intro : (n:nat)~(n=O)->(zerob n)=false.
NewDestruct n; [NewDestruct 1; Auto with bool | Trivial with bool].
-Save.
+Qed.
Hints Resolve zerob_false_intro : bool.
Lemma zerob_false_elim : (n:nat)(zerob n)=false -> ~(n=O).
NewDestruct n; [Intro H; Inversion H | Auto with bool].
-Save.
+Qed.