aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Bool
diff options
context:
space:
mode:
authorGravatar Théo Zimmermann <theo.zimmermann@univ-paris-diderot.fr>2016-10-24 17:28:51 +0200
committerGravatar Théo Zimmermann <theo.zimmermann@univ-paris-diderot.fr>2016-10-24 17:28:51 +0200
commit7e38b6627caaab7d19c4fc0ee542a67d9f8970c2 (patch)
tree375ed6a0a45131e479dea6d3d8c9cf64a786fcf7 /theories/Bool
parent46462c3cc69e97bf3260f1aad5faaa6eaf6c2722 (diff)
Remove v62 from stdlib.
This old compatibility hint database can be safely removed now that coq-contribs do not depend on it anymore.
Diffstat (limited to 'theories/Bool')
-rw-r--r--theories/Bool/Bool.v30
-rw-r--r--theories/Bool/IfProp.v2
2 files changed, 16 insertions, 16 deletions
diff --git a/theories/Bool/Bool.v b/theories/Bool/Bool.v
index 721ab6932..06096c66a 100644
--- a/theories/Bool/Bool.v
+++ b/theories/Bool/Bool.v
@@ -39,13 +39,13 @@ Lemma diff_true_false : true <> false.
Proof.
discriminate.
Qed.
-Hint Resolve diff_true_false : bool v62.
+Hint Resolve diff_true_false : bool.
Lemma diff_false_true : false <> true.
Proof.
discriminate.
Qed.
-Hint Resolve diff_false_true : bool v62.
+Hint Resolve diff_false_true : bool.
Hint Extern 1 (false <> true) => exact diff_false_true.
Lemma eq_true_false_abs : forall b:bool, b = true -> b = false -> False.
@@ -82,7 +82,7 @@ Definition leb (b1 b2:bool) :=
| true => b2 = true
| false => True
end.
-Hint Unfold leb: bool v62.
+Hint Unfold leb: bool.
Lemma leb_implb : forall b1 b2, leb b1 b2 <-> implb b1 b2 = true.
Proof.
@@ -242,14 +242,14 @@ Lemma orb_true_intro :
Proof.
intros; apply orb_true_iff; trivial.
Qed.
-Hint Resolve orb_true_intro: bool v62.
+Hint Resolve orb_true_intro: bool.
Lemma orb_false_intro :
forall b1 b2:bool, b1 = false -> b2 = false -> b1 || b2 = false.
Proof.
intros. subst. reflexivity.
Qed.
-Hint Resolve orb_false_intro: bool v62.
+Hint Resolve orb_false_intro: bool.
Lemma orb_false_elim :
forall b1 b2:bool, b1 || b2 = false -> b1 = false /\ b2 = false.
@@ -268,7 +268,7 @@ Lemma orb_true_r : forall b:bool, b || true = true.
Proof.
destr_bool.
Qed.
-Hint Resolve orb_true_r: bool v62.
+Hint Resolve orb_true_r: bool.
Lemma orb_true_l : forall b:bool, true || b = true.
Proof.
@@ -284,13 +284,13 @@ Lemma orb_false_r : forall b:bool, b || false = b.
Proof.
destr_bool.
Qed.
-Hint Resolve orb_false_r: bool v62.
+Hint Resolve orb_false_r: bool.
Lemma orb_false_l : forall b:bool, false || b = b.
Proof.
destr_bool.
Qed.
-Hint Resolve orb_false_l: bool v62.
+Hint Resolve orb_false_l: bool.
Notation orb_b_false := orb_false_r (only parsing).
Notation orb_false_b := orb_false_l (only parsing).
@@ -301,7 +301,7 @@ Lemma orb_negb_r : forall b:bool, b || negb b = true.
Proof.
destr_bool.
Qed.
-Hint Resolve orb_negb_r: bool v62.
+Hint Resolve orb_negb_r: bool.
Notation orb_neg_b := orb_negb_r (only parsing).
@@ -318,7 +318,7 @@ Lemma orb_assoc : forall b1 b2 b3:bool, b1 || (b2 || b3) = b1 || b2 || b3.
Proof.
destr_bool.
Qed.
-Hint Resolve orb_comm orb_assoc: bool v62.
+Hint Resolve orb_comm orb_assoc: bool.
(*******************************)
(** * Properties of [andb] *)
@@ -392,7 +392,7 @@ Lemma andb_false_elim :
Proof.
destruct b1; simpl; auto.
Defined.
-Hint Resolve andb_false_elim: bool v62.
+Hint Resolve andb_false_elim: bool.
(** Complementation *)
@@ -400,7 +400,7 @@ Lemma andb_negb_r : forall b:bool, b && negb b = false.
Proof.
destr_bool.
Qed.
-Hint Resolve andb_negb_r: bool v62.
+Hint Resolve andb_negb_r: bool.
Notation andb_neg_b := andb_negb_r (only parsing).
@@ -418,7 +418,7 @@ Proof.
destr_bool.
Qed.
-Hint Resolve andb_comm andb_assoc: bool v62.
+Hint Resolve andb_comm andb_assoc: bool.
(*******************************************)
(** * Properties mixing [andb] and [orb] *)
@@ -688,7 +688,7 @@ Lemma andb_prop_intro :
Proof.
destr_bool; tauto.
Qed.
-Hint Resolve andb_prop_intro: bool v62.
+Hint Resolve andb_prop_intro: bool.
Notation andb_true_intro2 :=
(fun b1 b2 H1 H2 => andb_prop_intro b1 b2 (conj H1 H2))
@@ -699,7 +699,7 @@ Lemma andb_prop_elim :
Proof.
destr_bool; auto.
Qed.
-Hint Resolve andb_prop_elim: bool v62.
+Hint Resolve andb_prop_elim: bool.
Notation andb_prop2 := andb_prop_elim (only parsing).
diff --git a/theories/Bool/IfProp.v b/theories/Bool/IfProp.v
index 11f3d1d6f..4257b4bc1 100644
--- a/theories/Bool/IfProp.v
+++ b/theories/Bool/IfProp.v
@@ -12,7 +12,7 @@ Inductive IfProp (A B:Prop) : bool -> Prop :=
| Iftrue : A -> IfProp A B true
| Iffalse : B -> IfProp A B false.
-Hint Resolve Iftrue Iffalse: bool v62.
+Hint Resolve Iftrue Iffalse: bool.
Lemma Iftrue_inv : forall (A B:Prop) (b:bool), IfProp A B b -> b = true -> A.
destruct 1; intros; auto with bool.