diff options
author | herbelin <herbelin@85f007b7-540e-0410-9357-904b9bb8a0f7> | 2012-10-04 22:08:05 +0000 |
---|---|---|
committer | herbelin <herbelin@85f007b7-540e-0410-9357-904b9bb8a0f7> | 2012-10-04 22:08:05 +0000 |
commit | dcda0fbe3784d9cfa45ee5273e2354f3c7b2c9b8 (patch) | |
tree | 307d038c83e9d0acdf0878b795e57e8f19e50cd9 /theories/Arith | |
parent | 7ac4aae4c5dcb32cb6fb79caaadb3f3550936381 (diff) |
En cours pour 'generalize in clause' et 'induction in clause'
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@15852 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories/Arith')
-rw-r--r-- | theories/Arith/Wf_nat.v | 93 |
1 files changed, 41 insertions, 52 deletions
diff --git a/theories/Arith/Wf_nat.v b/theories/Arith/Wf_nat.v index b55451233..dd22d493e 100644 --- a/theories/Arith/Wf_nat.v +++ b/theories/Arith/Wf_nat.v @@ -24,16 +24,16 @@ Definition gtof (a b:A) := f b > f a. Theorem well_founded_ltof : well_founded ltof. Proof. - red. - cut (forall n (a:A), f a < n -> Acc ltof a). - intros H a; apply (H (S (f a))); auto with arith. - induction n. - intros; absurd (f a < 0); auto with arith. - intros a ltSma. - apply Acc_intro. - unfold ltof; intros b ltfafb. - apply IHn. - apply lt_le_trans with (f a); auto with arith. +(* forall n (a : A), f a < n -> Acc ltof a *) + + intro a; assert (H: f a <= f a) by trivial with arith. + set (n:=f a) in H at 2. clearbody n. (* + remember (f a) in H at 2. as n. + revert H. generalize (f a) at 2 as n; intros n. revert a. *) induction n in a, H |- *; apply Acc_intro; +(* induction (f a) in a, H at 2 |- *; apply Acc_intro; *) + intros b ltfafb; unfold ltof in ltfafb. + - inversion H as [H0|]. rewrite H0 in ltfafb. inversion ltfafb. + - apply IHn. apply le_S_n, lt_le_trans with (f a); assumption. Defined. Theorem well_founded_gtof : well_founded gtof. @@ -67,15 +67,11 @@ Theorem induction_ltof1 : forall P:A -> Set, (forall x:A, (forall y:A, ltof y x -> P y) -> P x) -> forall a:A, P a. Proof. - intros P F; cut (forall n (a:A), f a < n -> P a). - intros H a; apply (H (S (f a))); auto with arith. - induction n. - intros; absurd (f a < 0); auto with arith. - intros a ltSma. - apply F. - unfold ltof; intros b ltfafb. - apply IHn. - apply lt_le_trans with (f a); auto with arith. + intros P F a; assert (H : f a < S (f a)) by trivial with arith. + induction (S (f a)) in a, H |- *. + - absurd (f a < 0); auto with arith. + - apply F. intros b ltfafb. apply IHn, le_S_n. + induction H; auto using Le.le_n_S. Defined. Theorem induction_gtof1 : @@ -108,16 +104,12 @@ Hypothesis H_compat : forall x y:A, R x y -> f x < f y. Theorem well_founded_lt_compat : well_founded R. Proof. - red. - cut (forall n (a:A), f a < n -> Acc R a). - intros H a; apply (H (S (f a))); auto with arith. - induction n. - intros; absurd (f a < 0); auto with arith. - intros a ltSma. - apply Acc_intro. - intros b ltfafb. - apply IHn. - apply lt_le_trans with (f a); auto with arith. + intros a; assert (H : f a < S (f a)) by trivial with arith. + induction (S (f a)) in a, H |- *. + - absurd (f a < 0); auto with arith. + - apply Acc_intro. intros b ltfafb. apply IHn, le_S_n. + apply H_compat in ltfafb. + induction H; auto using Le.le_n_S. Defined. End Well_founded_Nat. @@ -161,8 +153,7 @@ Lemma lt_wf_double_rec : (forall p q, p < n -> P p q) -> (forall p, p < m -> P n p) -> P n m) -> forall n m, P n m. Proof. - intros P Hrec p; pattern p; apply lt_wf_rec. - intros n H q; pattern q; apply lt_wf_rec; auto with arith. + intros P Hrec p. destruct p using lt_wf_ind, m using lt_wf_ind. auto. Defined. Lemma lt_wf_double_ind : @@ -199,7 +190,7 @@ Section LT_WF_REL. Theorem well_founded_inv_lt_rel_compat : well_founded R. Proof. constructor; intros. - case (F_compat y a); trivial; intros. + destruct (F_compat y a); trivial. apply acc_lt_rel; trivial. exists x; trivial. Qed. @@ -231,29 +222,27 @@ Proof. assert (forall n, (exists n', n'<n /\ P n' /\ forall n'', P n'' -> n'<=n'') \/(forall n', P n' -> n<=n')). - induction n. - right. - intros n' Hn'. - apply le_O_n. - destruct IHn. - left; destruct H as (n', (Hlt', HPn')). - exists n'; split. - apply lt_S; assumption. - assumption. - destruct (Pdec n). - left; exists n; split. - apply lt_n_Sn. - split; assumption. - right. - intros n' Hltn'. - destruct (le_lt_eq_dec n n') as [Hltn|Heqn]. - apply H; assumption. - assumption. - destruct H0. - rewrite Heqn; assumption. + { induction n. + - right. intros n' Hn'. apply le_O_n. + - destruct IHn. + + left; destruct H as (n', (Hlt', HPn')). + exists n'; split. + * apply lt_S; assumption. + * assumption. + + destruct (Pdec n). + * left; exists n; split. + apply lt_n_Sn. + split; assumption. + * right. + intros n' Hltn'. + destruct (le_lt_eq_dec n n') as [Hltn| ->]. + apply H; assumption. + assumption. + destruct H0 as []; assumption. } destruct (H n0) as [(n,(Hltn,(Hmin,Huniqn)))|]; [exists n | exists n0]; repeat split; assumption || intros n' (HPn',Hminn'); apply le_antisym; auto. + Qed. Unset Implicit Arguments. |