aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Arith
diff options
context:
space:
mode:
authorGravatar herbelin <herbelin@85f007b7-540e-0410-9357-904b9bb8a0f7>2003-03-29 14:35:10 +0000
committerGravatar herbelin <herbelin@85f007b7-540e-0410-9357-904b9bb8a0f7>2003-03-29 14:35:10 +0000
commit91482e478e84932eed3746449aeb11d96c594056 (patch)
treeaaa312cbe4196ee9ff416b55aa479fd39b15479d /theories/Arith
parentcde6f21cd5cf45303f597bcda5b4a377ef93e74a (diff)
Implicit Variables Type
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@3809 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories/Arith')
-rw-r--r--theories/Arith/Bool_nat.v2
-rwxr-xr-xtheories/Arith/Compare.v5
-rwxr-xr-xtheories/Arith/Compare_dec.v2
-rwxr-xr-xtheories/Arith/Div.v2
-rw-r--r--theories/Arith/Div2.v2
-rwxr-xr-xtheories/Arith/EqNat.v3
-rw-r--r--theories/Arith/Euclid.v1
-rw-r--r--theories/Arith/Even.v3
-rwxr-xr-xtheories/Arith/Gt.v2
-rwxr-xr-xtheories/Arith/Le.v2
-rwxr-xr-xtheories/Arith/Lt.v2
-rwxr-xr-xtheories/Arith/Max.v3
-rwxr-xr-xtheories/Arith/Min.v3
-rwxr-xr-xtheories/Arith/Minus.v7
-rwxr-xr-xtheories/Arith/Mult.v2
-rwxr-xr-xtheories/Arith/Peano_dec.v3
-rwxr-xr-xtheories/Arith/Plus.v14
-rwxr-xr-xtheories/Arith/Wf_nat.v2
18 files changed, 48 insertions, 12 deletions
diff --git a/theories/Arith/Bool_nat.v b/theories/Arith/Bool_nat.v
index bbe1475f5..ff7f0ab5c 100644
--- a/theories/Arith/Bool_nat.v
+++ b/theories/Arith/Bool_nat.v
@@ -13,6 +13,8 @@ Require Export Peano_dec.
Require Sumbool.
Import nat_scope.
+Implicit Variables Type m,n,x,y:nat.
+
(** The decidability of equality and order relations over
type [nat] give some boolean functions with the adequate specification. *)
diff --git a/theories/Arith/Compare.v b/theories/Arith/Compare.v
index 5b12033dc..5d7f1e42c 100755
--- a/theories/Arith/Compare.v
+++ b/theories/Arith/Compare.v
@@ -11,9 +11,14 @@
(** Equality is decidable on [nat] *)
Import nat_scope.
+(*
Lemma not_eq_sym : (A:Set)(p,q:A)(~p=q) -> ~(q=p).
Proof sym_not_eq.
Hints Immediate not_eq_sym : arith.
+*)
+Notation not_eq_sym := sym_not_eq.
+
+Implicit Variables Type m,n,p,q:nat.
Require Arith.
Require Peano_dec.
diff --git a/theories/Arith/Compare_dec.v b/theories/Arith/Compare_dec.v
index 735d267d6..c30b90fae 100755
--- a/theories/Arith/Compare_dec.v
+++ b/theories/Arith/Compare_dec.v
@@ -14,6 +14,8 @@ Require Gt.
Require Decidable.
Import nat_scope.
+Implicit Variables Type m,n,x,y:nat.
+
Definition zerop : (n:nat){n=O}+{lt O n}.
NewDestruct n; Auto with arith.
Defined.
diff --git a/theories/Arith/Div.v b/theories/Arith/Div.v
index e4b0300dd..ed41c5a93 100755
--- a/theories/Arith/Div.v
+++ b/theories/Arith/Div.v
@@ -15,6 +15,8 @@ Require Le.
Require Euclid_def.
Require Compare_dec.
+Implicit Variables Type n,a,b,q,r:nat.
+
Fixpoint inf_dec [n:nat] : nat->bool :=
[m:nat] Cases n m of
O _ => true
diff --git a/theories/Arith/Div2.v b/theories/Arith/Div2.v
index dd0cc8458..a6782c5f8 100644
--- a/theories/Arith/Div2.v
+++ b/theories/Arith/Div2.v
@@ -14,6 +14,8 @@ Require Compare_dec.
Require Even.
Import nat_scope.
+Implicit Variables Type n:nat.
+
(** Here we define [n/2] and prove some of its properties *)
Fixpoint div2 [n:nat] : nat :=
diff --git a/theories/Arith/EqNat.v b/theories/Arith/EqNat.v
index 88cca274b..c42deebd2 100755
--- a/theories/Arith/EqNat.v
+++ b/theories/Arith/EqNat.v
@@ -9,8 +9,11 @@
(*i $Id$ i*)
(** Equality on natural numbers *)
+
Import nat_scope.
+Implicit Variables Type m,n,x,y:nat.
+
Fixpoint eq_nat [n:nat] : nat -> Prop :=
[m:nat]Cases n m of
O O => True
diff --git a/theories/Arith/Euclid.v b/theories/Arith/Euclid.v
index 173a90638..7f4e325be 100644
--- a/theories/Arith/Euclid.v
+++ b/theories/Arith/Euclid.v
@@ -13,6 +13,7 @@ Require Compare_dec.
Require Wf_nat.
Import nat_scope.
+Implicit Variables Type a,b,n,q,r:nat.
Inductive diveucl [a,b:nat] : Set
:= divex : (q,r:nat)(gt b r)->(a=(plus (mult q b) r))->(diveucl a b).
diff --git a/theories/Arith/Even.v b/theories/Arith/Even.v
index 034a60088..ca0637955 100644
--- a/theories/Arith/Even.v
+++ b/theories/Arith/Even.v
@@ -11,8 +11,11 @@
(** Here we define the predicates [even] and [odd] by mutual induction
and we prove the decidability and the exclusion of those predicates.
The main results about parity are proved in the module Div2. *)
+
Import nat_scope.
+Implicit Variables Type m,n:nat.
+
Inductive even : nat->Prop :=
even_O : (even O)
| even_S : (n:nat)(odd n)->(even (S n))
diff --git a/theories/Arith/Gt.v b/theories/Arith/Gt.v
index 6b55c5bd3..d4bc8531d 100755
--- a/theories/Arith/Gt.v
+++ b/theories/Arith/Gt.v
@@ -13,6 +13,8 @@ Require Lt.
Require Plus.
Import nat_scope.
+Implicit Variables Type m,n,p:nat.
+
Theorem gt_Sn_O : (n:nat)(gt (S n) O).
Proof.
Auto with arith.
diff --git a/theories/Arith/Le.v b/theories/Arith/Le.v
index 7765187cf..5321637be 100755
--- a/theories/Arith/Le.v
+++ b/theories/Arith/Le.v
@@ -12,6 +12,8 @@
Import nat_scope.
Open Scope nat_scope.
+Implicit Variables Type m,n,p:nat.
+
Theorem le_n_S : (n,m:nat)(le n m)->(le (S n) (S m)).
Proof.
NewInduction 1; Auto.
diff --git a/theories/Arith/Lt.v b/theories/Arith/Lt.v
index 96541cb9f..94bb00c8f 100755
--- a/theories/Arith/Lt.v
+++ b/theories/Arith/Lt.v
@@ -11,6 +11,8 @@
Require Le.
Import nat_scope.
+Implicit Variables Type m,n,p:nat.
+
Theorem lt_n_Sn : (n:nat)(lt n (S n)).
Proof.
Auto with arith.
diff --git a/theories/Arith/Max.v b/theories/Arith/Max.v
index 8a599ed7e..8b4c86cd5 100755
--- a/theories/Arith/Max.v
+++ b/theories/Arith/Max.v
@@ -9,8 +9,11 @@
(*i $Id$ i*)
Require Arith.
+
Import nat_scope.
+Implicit Variables Type m,n:nat.
+
(** maximum of two natural numbers *)
Fixpoint max [n:nat] : nat -> nat :=
diff --git a/theories/Arith/Min.v b/theories/Arith/Min.v
index 650b95380..a762a06d5 100755
--- a/theories/Arith/Min.v
+++ b/theories/Arith/Min.v
@@ -9,8 +9,11 @@
(*i $Id$ i*)
Require Arith.
+
Import nat_scope.
+Implicit Variables Type m,n:nat.
+
(** minimum of two natural numbers *)
Fixpoint min [n:nat] : nat -> nat :=
diff --git a/theories/Arith/Minus.v b/theories/Arith/Minus.v
index 42f44083a..de06c097a 100755
--- a/theories/Arith/Minus.v
+++ b/theories/Arith/Minus.v
@@ -14,12 +14,7 @@ Require Lt.
Require Le.
Import nat_scope.
-Fixpoint minus [n:nat] : nat -> nat :=
- [m:nat]Cases n m of
- O _ => O
- | (S k) O => (S k)
- | (S k) (S l) => (minus k l)
- end.
+Implicit Variables Type m,n,p:nat.
Lemma minus_plus_simpl :
(n,m,p:nat)((minus n m)=(minus (plus p n) (plus p m))).
diff --git a/theories/Arith/Mult.v b/theories/Arith/Mult.v
index 1daf8567c..7c2ea25cd 100755
--- a/theories/Arith/Mult.v
+++ b/theories/Arith/Mult.v
@@ -13,6 +13,8 @@ Require Export Minus.
Require Export Lt.
Import nat_scope.
+Implicit Variables Type m,n,p:nat.
+
(** Multiplication *)
Lemma mult_plus_distr :
diff --git a/theories/Arith/Peano_dec.v b/theories/Arith/Peano_dec.v
index e998e0b7c..c5f0ecdcc 100755
--- a/theories/Arith/Peano_dec.v
+++ b/theories/Arith/Peano_dec.v
@@ -9,8 +9,11 @@
(*i $Id$ i*)
Require Decidable.
+
Import nat_scope.
+Implicit Variables Type m,n,x,y:nat.
+
Theorem O_or_S : (n:nat)({m:nat|(S m)=n})+{O=n}.
Proof.
NewInduction n.
diff --git a/theories/Arith/Plus.v b/theories/Arith/Plus.v
index 3ad37d13a..debad4ca7 100755
--- a/theories/Arith/Plus.v
+++ b/theories/Arith/Plus.v
@@ -15,6 +15,8 @@ Require Lt.
Import nat_scope.
+Implicit Variables Type m,n,p,q:nat.
+
Lemma plus_sym : (n,m:nat)(n+m)=(m+n).
Proof.
Intros n m ; Elim n ; Simpl ; Auto with arith.
@@ -150,11 +152,11 @@ Proof.
Simpl in H. Discriminate H.
Defined.
-Lemma plus_permute_2_in_4 : (a,b,c,d:nat) ((a+b)+(c+d))=((a+c)+(b+d)).
+Lemma plus_permute_2_in_4 : (m,n,p,q:nat) ((m+n)+(p+q))=((m+p)+(n+q)).
Proof.
Intros.
- Rewrite <- (plus_assoc_l a b (c+d)). Rewrite (plus_assoc_l b c d).
- Rewrite (plus_sym b c). Rewrite <- (plus_assoc_l c b d). Apply plus_assoc_l.
+ Rewrite <- (plus_assoc_l m n (p+q)). Rewrite (plus_assoc_l n p q).
+ Rewrite (plus_sym n p). Rewrite <- (plus_assoc_l p n q). Apply plus_assoc_l.
Qed.
@@ -164,10 +166,10 @@ Qed.
tail-recursive, whereas [plus] is not. This can be useful
when extracting programs. *)
-Fixpoint plus_acc [s,n:nat] : nat :=
+Fixpoint plus_acc [q,n:nat] : nat :=
Cases n of
- O => s
- | (S p) => (plus_acc (S s) p)
+ O => q
+ | (S p) => (plus_acc (S q) p)
end.
Definition tail_plus := [n,m:nat](plus_acc m n).
diff --git a/theories/Arith/Wf_nat.v b/theories/Arith/Wf_nat.v
index b0c715c8b..0c299bd37 100755
--- a/theories/Arith/Wf_nat.v
+++ b/theories/Arith/Wf_nat.v
@@ -14,6 +14,8 @@ Require Lt.
Import nat_scope.
+Implicit Variables Type m,n,p:nat.
+
Chapter Well_founded_Nat.
Variable A : Set.