diff options
author | barras <barras@85f007b7-540e-0410-9357-904b9bb8a0f7> | 2003-12-15 19:48:24 +0000 |
---|---|---|
committer | barras <barras@85f007b7-540e-0410-9357-904b9bb8a0f7> | 2003-12-15 19:48:24 +0000 |
commit | 3675bac6c38e0a26516e434be08bc100865b339b (patch) | |
tree | 87f8eb1905c7b508dea60b1e216f79120e9e772d /theories/Arith | |
parent | c881bc37b91a201f7555ee021ccb74adb360d131 (diff) |
modif existentielle (exists | --> exists ,) + bug d'affichage des pt fixes
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@5099 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories/Arith')
-rwxr-xr-x | theories/Arith/Between.v | 4 | ||||
-rwxr-xr-x | theories/Arith/Compare.v | 2 | ||||
-rw-r--r-- | theories/Arith/Euclid.v | 4 | ||||
-rwxr-xr-x | theories/Arith/Wf_nat.v | 4 |
4 files changed, 7 insertions, 7 deletions
diff --git a/theories/Arith/Between.v b/theories/Arith/Between.v index 665f96c68..e79b5d7c3 100755 --- a/theories/Arith/Between.v +++ b/theories/Arith/Between.v @@ -122,7 +122,7 @@ induction 1; auto with arith. Qed. Lemma exists_in_int : - forall k l, exists_between k l -> exists2 m : nat | in_int k l m & Q m. + forall k l, exists_between k l -> exists2 m : nat, in_int k l m & Q m. Proof. induction 1. case IHexists_between; intros p inp Qp; exists p; auto with arith. @@ -174,7 +174,7 @@ induction 1; intros; auto with arith. apply le_trans with (S k); auto with arith. Qed. -Definition eventually (n:nat) := exists2 k : nat | k <= n & Q k. +Definition eventually (n:nat) := exists2 k : nat, k <= n & Q k. Lemma event_O : eventually 0 -> Q 0. Proof. diff --git a/theories/Arith/Compare.v b/theories/Arith/Compare.v index b5afebd94..b3a85ba06 100755 --- a/theories/Arith/Compare.v +++ b/theories/Arith/Compare.v @@ -41,7 +41,7 @@ Proof le_lt_or_eq. (* By special request of G. Kahn - Used in Group Theory *) Lemma discrete_nat : - forall n m, n < m -> S n = m \/ ( exists r : nat | m = S (S (n + r))). + forall n m, n < m -> S n = m \/ (exists r : nat, m = S (S (n + r))). Proof. intros m n H. lapply (lt_le_S m n); auto with arith. diff --git a/theories/Arith/Euclid.v b/theories/Arith/Euclid.v index 02c48f028..b246de635 100644 --- a/theories/Arith/Euclid.v +++ b/theories/Arith/Euclid.v @@ -36,7 +36,7 @@ Qed. Lemma quotient : forall n, n > 0 -> - forall m:nat, {q : nat | exists r : nat | m = q * n + r /\ n > r}. + forall m:nat, {q : nat | exists r : nat, m = q * n + r /\ n > r}. intros b H a; pattern a in |- *; apply gt_wf_rec; intros n H0. elim (le_gt_dec b n). intro lebn. @@ -53,7 +53,7 @@ Qed. Lemma modulo : forall n, n > 0 -> - forall m:nat, {r : nat | exists q : nat | m = q * n + r /\ n > r}. + forall m:nat, {r : nat | exists q : nat, m = q * n + r /\ n > r}. intros b H a; pattern a in |- *; apply gt_wf_rec; intros n H0. elim (le_gt_dec b n). intro lebn. diff --git a/theories/Arith/Wf_nat.v b/theories/Arith/Wf_nat.v index a7a50795e..6e95af673 100755 --- a/theories/Arith/Wf_nat.v +++ b/theories/Arith/Wf_nat.v @@ -179,10 +179,10 @@ Variable R : A -> A -> Prop. (* Relational form of inversion *) Variable F : A -> nat -> Prop. Definition inv_lt_rel x y := - exists2 n : _ | F x n & (forall m, F y m -> n < m). + exists2 n : _, F x n & (forall m, F y m -> n < m). Hypothesis F_compat : forall x y:A, R x y -> inv_lt_rel x y. -Remark acc_lt_rel : forall x:A, ( exists n : _ | F x n) -> Acc R x. +Remark acc_lt_rel : forall x:A, (exists n : _, F x n) -> Acc R x. intros x [n fxn]; generalize x fxn; clear x fxn. pattern n in |- *; apply lt_wf_ind; intros. constructor; intros. |