aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Arith/EqNat.v
diff options
context:
space:
mode:
authorGravatar herbelin <herbelin@85f007b7-540e-0410-9357-904b9bb8a0f7>2001-08-05 19:04:16 +0000
committerGravatar herbelin <herbelin@85f007b7-540e-0410-9357-904b9bb8a0f7>2001-08-05 19:04:16 +0000
commit83c56744d7e232abeb5f23e6d0f23cd0abc14a9c (patch)
tree6d7d4c2ce3bb159b8f81a4193abde1e3573c28d4 /theories/Arith/EqNat.v
parentf7351ff222bad0cc906dbee3c06b20babf920100 (diff)
Expérimentation de NewDestruct et parfois NewInduction
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@1880 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories/Arith/EqNat.v')
-rwxr-xr-xtheories/Arith/EqNat.v18
1 files changed, 9 insertions, 9 deletions
diff --git a/theories/Arith/EqNat.v b/theories/Arith/EqNat.v
index 8392f17ce..d0bd9afc6 100755
--- a/theories/Arith/EqNat.v
+++ b/theories/Arith/EqNat.v
@@ -21,17 +21,17 @@ Fixpoint eq_nat [n:nat] : nat -> Prop :=
end.
Theorem eq_nat_refl : (n:nat)(eq_nat n n).
-Induction n; Simpl; Auto.
+NewInduction n; Simpl; Auto.
Qed.
Hints Resolve eq_nat_refl : arith v62.
Theorem eq_eq_nat : (n,m:nat)(n=m)->(eq_nat n m).
-Induction 1; Trivial with arith.
+NewInduction 1; Trivial with arith.
Qed.
Hints Immediate eq_eq_nat : arith v62.
Theorem eq_nat_eq : (n,m:nat)(eq_nat n m)->(n=m).
-Induction n; Induction m; Simpl; Contradiction Orelse Auto with arith.
+NewInduction n; NewInduction m; Simpl; Contradiction Orelse Auto with arith.
Qed.
Hints Immediate eq_nat_eq : arith v62.
@@ -40,15 +40,15 @@ Intros; Replace m with n; Auto with arith.
Qed.
Theorem eq_nat_decide : (n,m:nat){(eq_nat n m)}+{~(eq_nat n m)}.
-Induction n.
-Destruct m.
+NewInduction n.
+NewDestruct m.
Auto with arith.
-Intro; Right; Red; Trivial with arith.
-Destruct m.
+Intros; Right; Red; Trivial with arith.
+NewDestruct m.
Right; Red; Auto with arith.
Intros.
Simpl.
-Apply H.
+Apply IHn.
Defined.
Fixpoint beq_nat [n:nat] : nat -> bool :=
@@ -61,7 +61,7 @@ Fixpoint beq_nat [n:nat] : nat -> bool :=
Lemma beq_nat_refl : (x:nat)true=(beq_nat x x).
Proof.
- Induction x; Simpl; Auto.
+ NewInduction x; Simpl; Auto.
Qed.
Definition beq_nat_eq : (x,y:nat)true=(beq_nat x y)->x=y.