aboutsummaryrefslogtreecommitdiffhomepage
path: root/test-suite
diff options
context:
space:
mode:
authorGravatar pottier <pottier@85f007b7-540e-0410-9357-904b9bb8a0f7>2010-06-04 08:53:04 +0000
committerGravatar pottier <pottier@85f007b7-540e-0410-9357-904b9bb8a0f7>2010-06-04 08:53:04 +0000
commitd72bcdf45bcd026a613838caebc209200ee2153f (patch)
treedec793f41fcc862960fc1ac5da0203ff0c5c4dec /test-suite
parent3f96c12fc3108b3b66f78b3288d29ef26da98ed8 (diff)
Grobner.v removed
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@13069 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'test-suite')
-rw-r--r--test-suite/success/Groebner.v79
1 files changed, 0 insertions, 79 deletions
diff --git a/test-suite/success/Groebner.v b/test-suite/success/Groebner.v
deleted file mode 100644
index 7312d16bf..000000000
--- a/test-suite/success/Groebner.v
+++ /dev/null
@@ -1,79 +0,0 @@
-Require Import GroebnerR ZArith Reals List Ring_polynom.
-
-(** These exemples were initially in GroebnerR.v *)
-
-Section Examples.
-
-Delimit Scope PE_scope with PE.
-Infix "+" := PEadd : PE_scope.
-Infix "*" := PEmul : PE_scope.
-Infix "-" := PEsub : PE_scope.
-Infix "^" := PEpow : PE_scope.
-Notation "[ n ]" := (@PEc Z n) (at level 0).
-
-Open Scope R_scope.
-
-Lemma example1 : forall x y,
- x+y=0 ->
- x*y=0 ->
- x^2=0.
-Proof.
- groebnerR.
-Qed.
-
-Lemma example2 : forall x, x^2=0 -> x=0.
-Proof.
- groebnerR.
-Qed.
-
-(*
-Notation X := (PEX Z 3).
-Notation Y := (PEX Z 2).
-Notation Z_ := (PEX Z 1).
-*)
-Lemma example3 : forall x y z,
- x+y+z=0 ->
- x*y+x*z+y*z=0->
- x*y*z=0 -> x^3=0.
-Proof.
-Time groebnerR.
-Qed.
-
-(*
-Notation X := (PEX Z 4).
-Notation Y := (PEX Z 3).
-Notation Z_ := (PEX Z 2).
-Notation U := (PEX Z 1).
-*)
-Lemma example4 : forall x y z u,
- x+y+z+u=0 ->
- x*y+x*z+x*u+y*z+y*u+z*u=0->
- x*y*z+x*y*u+x*z*u+y*z*u=0->
- x*y*z*u=0 -> x^4=0.
-Proof.
-Time groebnerR.
-Qed.
-
-(*
-Notation x_ := (PEX Z 5).
-Notation y_ := (PEX Z 4).
-Notation z_ := (PEX Z 3).
-Notation u_ := (PEX Z 2).
-Notation v_ := (PEX Z 1).
-Notation "x :: y" := (List.cons x y)
-(at level 60, right associativity, format "'[hv' x :: '/' y ']'").
-Notation "x :: y" := (List.app x y)
-(at level 60, right associativity, format "x :: y").
-*)
-
-Lemma example5 : forall x y z u v,
- x+y+z+u+v=0 ->
- x*y+x*z+x*u+x*v+y*z+y*u+y*v+z*u+z*v+u*v=0->
- x*y*z+x*y*u+x*y*v+x*z*u+x*z*v+x*u*v+y*z*u+y*z*v+y*u*v+z*u*v=0->
- x*y*z*u+y*z*u*v+z*u*v*x+u*v*x*y+v*x*y*z=0 ->
- x*y*z*u*v=0 -> x^5=0.
-Proof.
-Time groebnerR.
-Qed.
-
-End Examples. \ No newline at end of file