diff options
author | pottier <pottier@85f007b7-540e-0410-9357-904b9bb8a0f7> | 2010-06-04 08:53:04 +0000 |
---|---|---|
committer | pottier <pottier@85f007b7-540e-0410-9357-904b9bb8a0f7> | 2010-06-04 08:53:04 +0000 |
commit | d72bcdf45bcd026a613838caebc209200ee2153f (patch) | |
tree | dec793f41fcc862960fc1ac5da0203ff0c5c4dec /test-suite | |
parent | 3f96c12fc3108b3b66f78b3288d29ef26da98ed8 (diff) |
Grobner.v removed
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@13069 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'test-suite')
-rw-r--r-- | test-suite/success/Groebner.v | 79 |
1 files changed, 0 insertions, 79 deletions
diff --git a/test-suite/success/Groebner.v b/test-suite/success/Groebner.v deleted file mode 100644 index 7312d16bf..000000000 --- a/test-suite/success/Groebner.v +++ /dev/null @@ -1,79 +0,0 @@ -Require Import GroebnerR ZArith Reals List Ring_polynom. - -(** These exemples were initially in GroebnerR.v *) - -Section Examples. - -Delimit Scope PE_scope with PE. -Infix "+" := PEadd : PE_scope. -Infix "*" := PEmul : PE_scope. -Infix "-" := PEsub : PE_scope. -Infix "^" := PEpow : PE_scope. -Notation "[ n ]" := (@PEc Z n) (at level 0). - -Open Scope R_scope. - -Lemma example1 : forall x y, - x+y=0 -> - x*y=0 -> - x^2=0. -Proof. - groebnerR. -Qed. - -Lemma example2 : forall x, x^2=0 -> x=0. -Proof. - groebnerR. -Qed. - -(* -Notation X := (PEX Z 3). -Notation Y := (PEX Z 2). -Notation Z_ := (PEX Z 1). -*) -Lemma example3 : forall x y z, - x+y+z=0 -> - x*y+x*z+y*z=0-> - x*y*z=0 -> x^3=0. -Proof. -Time groebnerR. -Qed. - -(* -Notation X := (PEX Z 4). -Notation Y := (PEX Z 3). -Notation Z_ := (PEX Z 2). -Notation U := (PEX Z 1). -*) -Lemma example4 : forall x y z u, - x+y+z+u=0 -> - x*y+x*z+x*u+y*z+y*u+z*u=0-> - x*y*z+x*y*u+x*z*u+y*z*u=0-> - x*y*z*u=0 -> x^4=0. -Proof. -Time groebnerR. -Qed. - -(* -Notation x_ := (PEX Z 5). -Notation y_ := (PEX Z 4). -Notation z_ := (PEX Z 3). -Notation u_ := (PEX Z 2). -Notation v_ := (PEX Z 1). -Notation "x :: y" := (List.cons x y) -(at level 60, right associativity, format "'[hv' x :: '/' y ']'"). -Notation "x :: y" := (List.app x y) -(at level 60, right associativity, format "x :: y"). -*) - -Lemma example5 : forall x y z u v, - x+y+z+u+v=0 -> - x*y+x*z+x*u+x*v+y*z+y*u+y*v+z*u+z*v+u*v=0-> - x*y*z+x*y*u+x*y*v+x*z*u+x*z*v+x*u*v+y*z*u+y*z*v+y*u*v+z*u*v=0-> - x*y*z*u+y*z*u*v+z*u*v*x+u*v*x*y+v*x*y*z=0 -> - x*y*z*u*v=0 -> x^5=0. -Proof. -Time groebnerR. -Qed. - -End Examples.
\ No newline at end of file |