aboutsummaryrefslogtreecommitdiffhomepage
path: root/test-suite
diff options
context:
space:
mode:
authorGravatar bertot <bertot@85f007b7-540e-0410-9357-904b9bb8a0f7>2003-02-27 15:12:27 +0000
committerGravatar bertot <bertot@85f007b7-540e-0410-9357-904b9bb8a0f7>2003-02-27 15:12:27 +0000
commitc7b40c6ce35eb54f708d5d91ef264f6be92949c0 (patch)
tree88325df730614deb1832f5f5634f63d8a1e9aae3 /test-suite
parent97ad592fc2b52d6d2fc3ec3f6196b96380830457 (diff)
Adding tests for the "functional induction" facility.
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@3711 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'test-suite')
-rw-r--r--test-suite/success/Funind.v371
1 files changed, 371 insertions, 0 deletions
diff --git a/test-suite/success/Funind.v b/test-suite/success/Funind.v
new file mode 100644
index 000000000..9e509a21d
--- /dev/null
+++ b/test-suite/success/Funind.v
@@ -0,0 +1,371 @@
+Require Export Arith.
+
+Fixpoint trivfun [n : nat] : nat :=
+ Cases n of O => O | (S m) => (trivfun m) end.
+
+
+(* essaie de parametre variables non locaux:*)
+
+Parameter varessai:nat.
+
+Lemma first_try (trivfun varessai) = O.
+Functional Induction trivfun varessai.
+Trivial.
+Simpl.
+Assumption.
+Defined.
+
+
+Functional Scheme triv_ind := Induction for trivfun.
+
+Lemma bisrepetita:(n' : nat) (trivfun n') = O.
+Intros n'.
+Functional Induction trivfun n'.
+Trivial.
+Simpl.
+Assumption.
+Save.
+
+
+Fixpoint iseven [n : nat] : bool :=
+ Cases n of O => true | (S (S m)) => (iseven m) | _ => false end.
+
+Fixpoint funex [n : nat] : nat :=
+ Cases (iseven n) of
+ true => n
+ | false =>
+ Cases n of O => O | (S r) => (funex r) end
+ end.
+
+Fixpoint nat_equal_bool [n : nat] : nat -> bool :=
+ [m : nat] Cases n of
+ O =>
+ Cases m of O => true | _ => false end
+ | (S p) =>
+ Cases m of O => false | (S q) => (nat_equal_bool p q) end
+ end.
+Require Export Div2.
+
+Lemma div2_inf: (n : nat) (le (div2 n) n).
+Intros n.
+(Functional Induction div2 n).
+Auto with arith.
+Auto with arith.
+
+Simpl.
+Apply le_S.
+Apply le_n_S.
+Exact H.
+Qed.
+
+Fixpoint essai [x : nat] : nat * nat -> nat :=
+ [p : nat * nat] ( Case p of [n, m : ?] Cases n of
+ O => O
+ | (S q) =>
+ Cases x of
+ O => (S O)
+ | (S r) => (S (essai r (q, m)))
+ end
+ end end ).
+
+Lemma essai_essai:
+ (x : nat)
+ (p : nat * nat) ( Case p of [n, m : ?] (lt O n) -> (lt O (essai x p)) end ).
+Intros x p.
+(Functional Induction essai x p); Intros.
+Inversion H.
+Simpl; Try Abstract ( Auto with arith ).
+Simpl; Try Abstract ( Auto with arith ).
+Qed.
+
+Fixpoint plus_x_not_five' [n : nat] : nat -> nat :=
+ [m : nat] Cases n of
+ O => O
+ | (S q) =>
+ Cases m of
+ O => (S (plus_x_not_five' q O))
+ | (S r) => (S (plus_x_not_five' q (S r)))
+ end
+ end.
+
+Lemma notplusfive':
+ (x, y : nat) y = (S (S (S (S (S O))))) -> (plus_x_not_five' x y) = x.
+Intros x y.
+(Functional Induction plus_x_not_five' x y); Intros hyp.
+Auto.
+Inversion hyp.
+Intros.
+Simpl.
+Auto.
+Qed.
+
+Fixpoint plus_x_not_five [n : nat] : nat -> nat :=
+ [m : nat]
+ Cases n of
+ O => O
+ | (S q) =>
+ Cases (nat_equal_bool m (S q)) of true => (S (plus_x_not_five q m))
+ | false => (S (plus_x_not_five q m))
+ end
+ end.
+
+Lemma notplusfive:
+ (x, y : nat) y = (S (S (S (S (S O))))) -> (plus_x_not_five x y) = x.
+Intros x y.
+Unfold plus_x_not_five.
+(Functional Induction plus_x_not_five x y) ; Simpl; Intros hyp;
+ Fold plus_x_not_five.
+Auto.
+Auto.
+Auto.
+Qed.
+
+Fixpoint plus_x_not_five'' [n : nat] : nat -> nat :=
+ [m : nat] let x = (nat_equal_bool m (S (S (S (S (S O)))))) in
+ let y = O in
+ Cases n of
+ O => y
+ | (S q) =>
+ let recapp = (plus_x_not_five'' q m) in
+ Cases x of true => (S recapp) | false => (S recapp) end
+ end.
+
+Lemma notplusfive'':
+ (x, y : nat) y = (S (S (S (S (S O))))) -> (plus_x_not_five'' x y) = x.
+Intros a b.
+Unfold plus_x_not_five''.
+(Functional Induction plus_x_not_five'' a b); Intros hyp; Simpl; Auto.
+Qed.
+
+Lemma iseq_eq: (n, m : nat) n = m -> (nat_equal_bool n m) = true.
+Intros n m.
+Unfold nat_equal_bool.
+(Functional Induction nat_equal_bool n m); Simpl; Intros hyp; Auto.
+Inversion hyp.
+Inversion hyp.
+Qed.
+
+Lemma iseq_eq': (n, m : nat) (nat_equal_bool n m) = true -> n = m.
+Intros n m.
+Unfold nat_equal_bool.
+(Functional Induction nat_equal_bool n m); Simpl; Intros eg; Auto.
+Inversion eg.
+Inversion eg.
+Qed.
+
+Definition iszero : nat -> bool :=
+ [n : nat] Cases n of O => true | _ => false end.
+
+Inductive istrue : bool -> Prop :=
+ istrue0: (istrue true) .
+
+Lemma toto: (n : nat) n = O -> (istrue (iszero n)).
+Intros x.
+(Functional Induction iszero x); Intros eg; Simpl.
+Apply istrue0.
+Inversion eg.
+Qed.
+
+Lemma inf_x_plusxy': (x, y : nat) (le x (plus x y)).
+Intros n m.
+(Functional Induction plus n m); Intros.
+Auto with arith.
+Auto with arith.
+Qed.
+
+
+Lemma inf_x_plusxy'': (x : nat) (le x (plus x O)).
+Intros n.
+Unfold plus.
+(Functional Induction plus n O); Intros.
+Auto with arith.
+Apply le_n_S.
+Assumption.
+Qed.
+
+Lemma inf_x_plusxy''': (x : nat) (le x (plus O x)).
+Intros n.
+(Functional Induction plus O n); Intros;Auto with arith.
+Qed.
+
+Fixpoint mod2 [n : nat] : nat :=
+ Cases n of O => O
+ | (S (S m)) => (S (mod2 m))
+ | _ => O end.
+
+Lemma princ_mod2: (n : nat) (le (mod2 n) n).
+Intros n.
+(Functional Induction mod2 n); Simpl; Auto with arith.
+Qed.
+
+Definition isfour : nat -> bool :=
+ [n : nat] Cases n of (S (S (S (S O)))) => true | _ => false end.
+
+Definition isononeorfour : nat -> bool :=
+ [n : nat] Cases n of (S O) => true
+ | (S (S (S (S O)))) => true
+ | _ => false end.
+
+Lemma toto'': (n : nat) (istrue (isfour n)) -> (istrue (isononeorfour n)).
+Intros n.
+(Functional Induction isononeorfour n); Intros istr; Simpl; Inversion istr.
+Apply istrue0.
+Qed.
+
+Lemma toto': (n, m : nat) n = (S (S (S (S O)))) -> (istrue (isononeorfour n)).
+Intros n.
+(Functional Induction isononeorfour n); Intros m istr; Inversion istr.
+Apply istrue0.
+Qed.
+
+Definition ftest : nat -> nat -> nat :=
+ [n, m : nat] Cases n of
+ O =>
+ Cases m of O => O | _ => (S O) end
+ | (S p) => O
+ end.
+
+Lemma test1: (n, m : nat) (le (ftest n m) (S (S O))).
+Intros n m.
+(Functional Induction ftest n m); Auto with arith.
+Qed.
+
+Lemma test11: (m : nat) (le (ftest O m) (S (S O))).
+Intros m.
+(Functional Induction ftest O m).
+Auto with arith.
+Auto with arith.
+Qed.
+
+Definition ftest4 : nat -> nat -> nat :=
+ [n, m : nat] Cases n of
+ O =>
+ Cases m of O => O | (S q) => (S O) end
+ | (S p) =>
+ Cases m of O => O | (S r) => (S O) end
+ end.
+
+Lemma test4: (n, m : nat) (le (ftest n m) (S (S O))).
+Intros n m.
+(Functional Induction ftest n m); Auto with arith.
+Qed.
+
+Lemma test4': (n, m : nat) (le (ftest4 (S n) m) (S (S O))).
+Intros n m.
+(Functional Induction ftest4 (S n) m).
+Auto with arith.
+Auto with arith.
+Qed.
+
+Definition ftest44 : nat * nat -> nat -> nat -> nat :=
+ [x : nat * nat]
+ [n, m : nat]
+ ( Case x of [p, q : ?] Cases n of
+ O =>
+ Cases m of O => O | (S q) => (S O) end
+ | (S p) =>
+ Cases m of O => O | (S r) => (S O) end
+ end end ).
+
+Lemma test44:
+ (pq : nat * nat) (n, m, o, r, s : nat) (le (ftest44 pq n (S m)) (S (S O))).
+Intros pq n m o r s.
+(Functional Induction ftest44 pq n (S m)).
+Auto with arith.
+Auto with arith.
+Auto with arith.
+Auto with arith.
+Qed.
+
+Fixpoint ftest2 [n : nat] : nat -> nat :=
+ [m : nat] Cases n of
+ O =>
+ Cases m of O => O | (S q) => O end
+ | (S p) => (ftest2 p m)
+ end.
+
+Lemma test2: (n, m : nat) (le (ftest2 n m) (S (S O))).
+Intros n m.
+(Functional Induction ftest2 n m) ; Simpl; Intros; Auto.
+Qed.
+
+Fixpoint ftest3 [n : nat] : nat -> nat :=
+ [m : nat] Cases n of
+ O => O
+ | (S p) =>
+ Cases m of O => (ftest3 p O) | (S r) => O end
+ end.
+
+Lemma test3: (n, m : nat) (le (ftest3 n m) (S (S O))).
+Intros n m.
+(Functional Induction ftest3 n m).
+Intros.
+Auto.
+Intros.
+Auto.
+Intros.
+Simpl.
+Auto.
+Qed.
+
+Fixpoint ftest5 [n : nat] : nat -> nat :=
+ [m : nat] Cases n of
+ O => O
+ | (S p) =>
+ Cases m of O => (ftest5 p O) | (S r) => (ftest5 p r) end
+ end.
+
+Lemma test5: (n, m : nat) (le (ftest5 n m) (S (S O))).
+Intros n m.
+(Functional Induction ftest5 n m).
+Intros.
+Auto.
+Intros.
+Auto.
+Intros.
+Simpl.
+Auto.
+Qed.
+
+Definition ftest7 : (n : nat) nat :=
+ [n : nat] Cases (ftest5 n O) of O => O | (S r) => O end.
+
+Lemma essai7:
+ (Hrec : (n : nat) (ftest5 n O) = O -> (le (ftest7 n) (S (S O))))
+ (Hrec0 : (n, r : nat) (ftest5 n O) = (S r) -> (le (ftest7 n) (S (S O))))
+ (n : nat) (le (ftest7 n) (S (S O))).
+Intros hyp1 hyp2 n.
+Unfold ftest7.
+(Functional Induction ftest7 n); Auto.
+Qed.
+
+Fixpoint ftest6 [n : nat] : nat -> nat :=
+ [m : nat]
+ Cases n of
+ O => O
+ | (S p) =>
+ Cases (ftest5 p O) of O => (ftest6 p O) | (S r) => (ftest6 p r) end
+ end.
+
+
+Lemma princ6:
+ ((n, m : nat) n = O -> (le (ftest6 O m) (S (S O)))) ->
+ ((n, m, p : nat)
+ (le (ftest6 p O) (S (S O))) ->
+ (ftest5 p O) = O -> n = (S p) -> (le (ftest6 (S p) m) (S (S O)))) ->
+ ((n, m, p, r : nat)
+ (le (ftest6 p r) (S (S O))) ->
+ (ftest5 p O) = (S r) -> n = (S p) -> (le (ftest6 (S p) m) (S (S O)))) ->
+ (x, y : nat) (le (ftest6 x y) (S (S O))).
+Intros hyp1 hyp2 hyp3 n m.
+Generalize hyp1 hyp2 hyp3.
+Clear hyp1 hyp2 hyp3.
+(Functional Induction ftest6 n m);Auto.
+Qed.
+
+Lemma essai6: (n, m : nat) (le (ftest6 n m) (S (S O))).
+Intros n m.
+Unfold ftest6.
+(Functional Induction ftest6 n m); Simpl; Auto.
+Qed.
+