diff options
author | barras <barras@85f007b7-540e-0410-9357-904b9bb8a0f7> | 2008-11-13 12:57:53 +0000 |
---|---|---|
committer | barras <barras@85f007b7-540e-0410-9357-904b9bb8a0f7> | 2008-11-13 12:57:53 +0000 |
commit | 6c79471f2d1f358b51ba367b094d4b01486a490c (patch) | |
tree | 1a44b4a7384b18ab0cb6403c7c1a149b2866682a /test-suite | |
parent | 1f645556ceb902d1ce3379411a52329299b4bb5d (diff) |
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@11583 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'test-suite')
-rw-r--r-- | test-suite/bugs/closed/shouldsucceed/1951.v | 63 |
1 files changed, 63 insertions, 0 deletions
diff --git a/test-suite/bugs/closed/shouldsucceed/1951.v b/test-suite/bugs/closed/shouldsucceed/1951.v new file mode 100644 index 000000000..4fbd6b22d --- /dev/null +++ b/test-suite/bugs/closed/shouldsucceed/1951.v @@ -0,0 +1,63 @@ + +(* First a simplification of the bug *) + +Set Printing Universes. + +Inductive enc (A:Type (*1*)) (* : Type.1 *) := C : A -> enc A. + +Definition id (X:Type(*5*)) (x:X) := x. + +Lemma test : let S := Type(*6 : 7*) in enc S -> S. +simpl; intros. +apply enc. +apply id. +apply Prop. +Defined. + +(* Then the original bug *) + +Require Import List. + +Inductive a : Set := (* some dummy inductive *) +b : (list a) -> a. (* i don't know if this *) + (* happens for smaller *) + (* ones *) + +Inductive sg : Type := Sg. (* single *) + +Definition ipl2 (P : a -> Type) := (* in Prop, that means P is true forall *) +fold_right (fun x => prod (P x)) sg. (* the elements of a given list *) + +Definition ind + : forall S : a -> Type, + (forall ls : list a, ipl2 S ls -> S (b ls)) -> forall s : a, S s := +fun (S : a -> Type) + (X : forall ls : list a, ipl2 S ls -> S (b ls)) => +fix ind2 (s : a) := +match s as a return (S a) with +| b l => + X l + (list_rect (fun l0 : list a => ipl2 S l0) Sg + (fun (a0 : a) (l0 : list a) (IHl : ipl2 S l0) => + pair (ind2 a0) IHl) l) +end. (* some induction principle *) + +Implicit Arguments ind [S]. + +Lemma k : a -> Type. (* some ininteresting lemma *) +intro;pattern H;apply ind;intros. + assert (K : Type). + induction ls. + exact sg. + exact sg. + exact (prod K sg). +Defined. + +Lemma k' : a -> Type. (* same lemma but with our bug *) +intro;pattern H;apply ind;intros. + apply prod. + induction ls. + exact sg. + exact sg. + exact sg. (* Proof complete *) +Defined. (* bug *) |