diff options
author | herbelin <herbelin@85f007b7-540e-0410-9357-904b9bb8a0f7> | 2006-01-23 09:07:54 +0000 |
---|---|---|
committer | herbelin <herbelin@85f007b7-540e-0410-9357-904b9bb8a0f7> | 2006-01-23 09:07:54 +0000 |
commit | 526057e6daf4a9c0eb7b931386fd1cc350c8c210 (patch) | |
tree | 521ddf0b10a3019f8297892c202be8b3518f1ebc /test-suite | |
parent | 493c92e5445b033e0c25142d04336349b3a67628 (diff) |
Répercussion mise à jour de Pierre Casteran vis à vis du changement de statut du paramètre de Acc
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@7921 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'test-suite')
-rw-r--r-- | test-suite/success/RecTutorial.v | 17 |
1 files changed, 8 insertions, 9 deletions
diff --git a/test-suite/success/RecTutorial.v b/test-suite/success/RecTutorial.v index 7d3d6730f..d79b85df1 100644 --- a/test-suite/success/RecTutorial.v +++ b/test-suite/success/RecTutorial.v @@ -769,7 +769,7 @@ Eval simpl in even_test. Eval simpl in (fun x : nat => even_test x). - +Eval simpl in (fun x : nat => plus 5 x). Eval simpl in (fun x : nat => even_test (plus 5 x)). Eval simpl in (fun x : nat => even_test (plus x 5)). @@ -778,11 +778,11 @@ Eval simpl in (fun x : nat => even_test (plus x 5)). Section Principle_of_Induction. Variable P : nat -> Prop. Hypothesis base_case : P 0. -Hypothesis inductive_hyp : forall n:nat, P n -> P (S n). +Hypothesis inductive_step : forall n:nat, P n -> P (S n). Fixpoint nat_ind (n:nat) : (P n) := match n return P n with | 0 => base_case - | S m => inductive_hyp m (nat_ind m) + | S m => inductive_step m (nat_ind m) end. End Principle_of_Induction. @@ -802,12 +802,12 @@ Section Principle_of_Double_Induction. Variable P : nat -> nat ->Prop. Hypothesis base_case1 : forall x:nat, P 0 x. Hypothesis base_case2 : forall x:nat, P (S x) 0. -Hypothesis inductive_hyp : forall n m:nat, P n m -> P (S n) (S m). +Hypothesis inductive_step : forall n m:nat, P n m -> P (S n) (S m). Fixpoint nat_double_ind (n m:nat){struct n} : P n m := match n, m return P n m with | 0 , x => base_case1 x | (S x), 0 => base_case2 x - | (S x), (S y) => inductive_hyp x y (nat_double_ind x y) + | (S x), (S y) => inductive_step x y (nat_double_ind x y) end. End Principle_of_Double_Induction. @@ -815,12 +815,12 @@ Section Principle_of_Double_Recursion. Variable P : nat -> nat -> Set. Hypothesis base_case1 : forall x:nat, P 0 x. Hypothesis base_case2 : forall x:nat, P (S x) 0. -Hypothesis inductive_hyp : forall n m:nat, P n m -> P (S n) (S m). +Hypothesis inductive_step : forall n m:nat, P n m -> P (S n) (S m). Fixpoint nat_double_rec (n m:nat){struct n} : P n m := match n, m return P n m with | 0 , x => base_case1 x | (S x), 0 => base_case2 x - | (S x), (S y) => inductive_hyp x y (nat_double_rec x y) + | (S x), (S y) => inductive_step x y (nat_double_rec x y) end. End Principle_of_Double_Recursion. @@ -912,7 +912,7 @@ Definition minus_decrease : forall x y:nat, Acc lt x -> Acc lt (x-y). Proof. intros x y H; case H. - intros z Hz posz posy. + intros Hz posz posy. apply Hz; apply minus_smaller_positive; assumption. Defined. @@ -1227,4 +1227,3 @@ Qed. - |