diff options
author | letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7> | 2012-07-05 22:51:11 +0000 |
---|---|---|
committer | letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7> | 2012-07-05 22:51:11 +0000 |
commit | 2ed6aeb03fc0e25a47223189d8444cbb6b749f2d (patch) | |
tree | 653de6038f3247ef8e18610ad07f1b83c6f253b5 /test-suite | |
parent | afe903e7889625986edab5506e3bb2cb90f7f483 (diff) |
Legacy Ring and Legacy Field migrated to contribs
One slight point to check someday : fourier used to
launch a tactic called Ring.polynom in some cases.
It it crucial ? If so, how to replace with the setoid_ring
equivalent ?
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@15524 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'test-suite')
-rw-r--r-- | test-suite/success/LegacyField.v | 76 |
1 files changed, 0 insertions, 76 deletions
diff --git a/test-suite/success/LegacyField.v b/test-suite/success/LegacyField.v deleted file mode 100644 index df4da431f..000000000 --- a/test-suite/success/LegacyField.v +++ /dev/null @@ -1,76 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) -(* \VV/ **************************************************************) -(* // * This file is distributed under the terms of the *) -(* * GNU Lesser General Public License Version 2.1 *) -(************************************************************************) - -(**** Tests of Field with real numbers ****) - -Require Import Reals LegacyRfield. - -(* Example 1 *) -Goal -forall eps : R, -(eps * (1 / (2 + 2)) + eps * (1 / (2 + 2)))%R = (eps * (1 / 2))%R. -Proof. - intros. - legacy field. -Abort. - -(* Example 2 *) -Goal -forall (f g : R -> R) (x0 x1 : R), -((f x1 - f x0) * (1 / (x1 - x0)) + (g x1 - g x0) * (1 / (x1 - x0)))%R = -((f x1 + g x1 - (f x0 + g x0)) * (1 / (x1 - x0)))%R. -Proof. - intros. - legacy field. -Abort. - -(* Example 3 *) -Goal forall a b : R, (1 / (a * b) * (1 / 1 / b))%R = (1 / a)%R. -Proof. - intros. - legacy field. -Abort. - -(* Example 4 *) -Goal -forall a b : R, a <> 0%R -> b <> 0%R -> (1 / (a * b) / 1 / b)%R = (1 / a)%R. -Proof. - intros. - legacy field. -Abort. - -(* Example 5 *) -Goal forall a : R, 1%R = (1 * (1 / a) * a)%R. -Proof. - intros. - legacy field. -Abort. - -(* Example 6 *) -Goal forall a b : R, b = (b * / a * a)%R. -Proof. - intros. - legacy field. -Abort. - -(* Example 7 *) -Goal forall a b : R, b = (b * (1 / a) * a)%R. -Proof. - intros. - legacy field. -Abort. - -(* Example 8 *) -Goal -forall x y : R, -(x * (1 / x + x / (x + y)))%R = -(- (1 / y) * y * (- (x * (x / (x + y))) - 1))%R. -Proof. - intros. - legacy field. -Abort. |