aboutsummaryrefslogtreecommitdiffhomepage
path: root/test-suite/success
diff options
context:
space:
mode:
authorGravatar letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7>2011-02-21 18:05:41 +0000
committerGravatar letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7>2011-02-21 18:05:41 +0000
commit5d9d019b1978f1a3ebb8429fcf23d8da9bf52212 (patch)
tree036fc4e6de72614a641c38adfa1104fa78dc3c7f /test-suite/success
parent440af48253bb8b9870c78e1392f0c7a10c23feee (diff)
Some fixes of the test-suite scripts
In particular, the Fail meta-command cannot for the moment catch a Syntax Error, which is raised by Vernac.parse_sentence, before we even now that the line starts by a Fail... git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@13847 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'test-suite/success')
-rw-r--r--test-suite/success/Hints.v4
-rw-r--r--test-suite/success/Inversion.v8
-rw-r--r--test-suite/success/RecTutorial.v98
3 files changed, 56 insertions, 54 deletions
diff --git a/test-suite/success/Hints.v b/test-suite/success/Hints.v
index 4aa00e689..6bbb0ff17 100644
--- a/test-suite/success/Hints.v
+++ b/test-suite/success/Hints.v
@@ -24,7 +24,7 @@ Hint Destruct h8 := 4 Hypothesis (_ <= _) => fun H => apply H.
(* Checks that local names are accepted *)
Section A.
Remark Refl : forall (A : Set) (x : A), x = x.
- Proof. exact refl_equal. Defined.
+ Proof. exact @refl_equal. Defined.
Definition Sym := sym_equal.
Let Trans := trans_equal.
@@ -51,6 +51,8 @@ Axiom a : forall n, n=0 <-> n<=0.
Hint Resolve -> a.
Goal forall n, n=0 -> n<=0.
auto.
+
+Print Hints
Qed.
diff --git a/test-suite/success/Inversion.v b/test-suite/success/Inversion.v
index 043d949c9..b068f7298 100644
--- a/test-suite/success/Inversion.v
+++ b/test-suite/success/Inversion.v
@@ -73,15 +73,15 @@ Require Import Bvector.
Inductive I : nat -> Set :=
| C1 : I 1
- | C2 : forall k i : nat, vector (I i) k -> I i.
+ | C2 : forall k i : nat, Vector.t (I i) k -> I i.
-Inductive SI : forall k : nat, I k -> vector nat k -> nat -> Prop :=
+Inductive SI : forall k : nat, I k -> Vector.t nat k -> nat -> Prop :=
SC2 :
- forall (k i vf : nat) (v : vector (I i) k) (xi : vector nat i),
+ forall (k i vf : nat) (v : Vector.t (I i) k) (xi : Vector.t nat i),
SI (C2 v) xi vf.
Theorem SUnique :
- forall (k : nat) (f : I k) (c : vector nat k) v v',
+ forall (k : nat) (f : I k) (c : Vector.t nat k) v v',
SI f c v -> SI f c v' -> v = v'.
Proof.
induction 1.
diff --git a/test-suite/success/RecTutorial.v b/test-suite/success/RecTutorial.v
index d4e6a82ef..2602c7e35 100644
--- a/test-suite/success/RecTutorial.v
+++ b/test-suite/success/RecTutorial.v
@@ -55,13 +55,13 @@ Check (cons 3 (cons 2 nil)).
Require Import Bvector.
-Print vector.
+Print Vector.t.
-Check (Vnil nat).
+Check (Vector.nil nat).
-Check (fun (A:Set)(a:A)=> Vcons _ a _ (Vnil _)).
+Check (fun (A:Set)(a:A)=> Vector.cons _ a _ (Vector.nil _)).
-Check (Vcons _ 5 _ (Vcons _ 3 _ (Vnil _))).
+Check (Vector.cons _ 5 _ (Vector.cons _ 3 _ (Vector.nil _))).
@@ -315,16 +315,16 @@ Proof.
Qed.
Definition Vtail_total
- (A : Set) (n : nat) (v : vector A n) : vector A (pred n):=
-match v in (vector _ n0) return (vector A (pred n0)) with
-| Vnil => Vnil A
-| Vcons _ n0 v0 => v0
+ (A : Set) (n : nat) (v : Vector.t A n) : Vector.t A (pred n):=
+match v in (Vector.t _ n0) return (Vector.t A (pred n0)) with
+| Vector.nil => Vector.nil A
+| Vector.cons _ n0 v0 => v0
end.
-Definition Vtail' (A:Set)(n:nat)(v:vector A n) : vector A (pred n).
+Definition Vtail' (A:Set)(n:nat)(v:Vector.t A n) : Vector.t A (pred n).
case v.
simpl.
- exact (Vnil A).
+ exact (Vector.nil A).
simpl.
auto.
Defined.
@@ -543,7 +543,7 @@ Inductive ex_Set (P : Set -> Prop) : Type :=
Inductive comes_from_the_left (P Q:Prop): P \/ Q -> Prop :=
c1 : forall p, comes_from_the_left P Q (or_introl (A:=P) Q p).
-Goal (comes_from_the_left _ _ (or_introl True I)).
+Goal (comes_from_the_left _ _ (or_introl True I)).
split.
Qed.
@@ -966,37 +966,37 @@ let rec div_aux x y =
| Right -> div_aux (minus x y) y)
*)
-Lemma vector0_is_vnil : forall (A:Set)(v:vector A 0), v = Vnil A.
+Lemma vector0_is_vnil : forall (A:Set)(v:Vector.t A 0), v = Vector.nil A.
Proof.
intros A v;inversion v.
Abort.
(*
- Lemma vector0_is_vnil_aux : forall (A:Set)(n:nat)(v:vector A n),
+ Lemma Vector.t0_is_vnil_aux : forall (A:Set)(n:nat)(v:Vector.t A n),
n= 0 -> v = Vnil A.
Toplevel input, characters 40281-40287
-> Lemma vector0_is_vnil_aux : forall (A:Set)(n:nat)(v:vector A n), n= 0 -> v = Vnil A.
+> Lemma Vector.t0_is_vnil_aux : forall (A:Set)(n:nat)(v:Vector.t A n), n= 0 -> v = Vnil A.
> ^^^^^^
Error: In environment
A : Set
n : nat
-v : vector A n
+v : Vector.t A n
e : n = 0
-The term "Vnil A" has type "vector A 0" while it is expected to have type
- "vector A n"
+The term "Vnil A" has type "Vector.t A 0" while it is expected to have type
+ "Vector.t A n"
*)
Require Import JMeq.
-Lemma vector0_is_vnil_aux : forall (A:Set)(n:nat)(v:vector A n),
- n= 0 -> JMeq v (Vnil A).
+Lemma vector0_is_vnil_aux : forall (A:Set)(n:nat)(v:Vector.t A n),
+ n= 0 -> JMeq v (Vector.nil A).
Proof.
destruct v.
auto.
intro; discriminate.
Qed.
-Lemma vector0_is_vnil : forall (A:Set)(v:vector A 0), v = Vnil A.
+Lemma vector0_is_vnil : forall (A:Set)(v:Vector.t A 0), v = Vector.nil A.
Proof.
intros a v;apply JMeq_eq.
apply vector0_is_vnil_aux.
@@ -1004,56 +1004,56 @@ Proof.
Qed.
-Implicit Arguments Vcons [A n].
-Implicit Arguments Vnil [A].
-Implicit Arguments Vhead [A n].
-Implicit Arguments Vtail [A n].
+Implicit Arguments Vector.cons [A n].
+Implicit Arguments Vector.nil [A].
+Implicit Arguments Vector.hd [A n].
+Implicit Arguments Vector.tl [A n].
-Definition Vid : forall (A : Type)(n:nat), vector A n -> vector A n.
+Definition Vid : forall (A : Type)(n:nat), Vector.t A n -> Vector.t A n.
Proof.
destruct n; intro v.
- exact Vnil.
- exact (Vcons (Vhead v) (Vtail v)).
+ exact Vector.nil.
+ exact (Vector.cons (Vector.hd v) (Vector.tl v)).
Defined.
-Eval simpl in (fun (A:Set)(v:vector A 0) => (Vid _ _ v)).
+Eval simpl in (fun (A:Set)(v:Vector.t A 0) => (Vid _ _ v)).
-Eval simpl in (fun (A:Set)(v:vector A 0) => v).
+Eval simpl in (fun (A:Set)(v:Vector.t A 0) => v).
-Lemma Vid_eq : forall (n:nat) (A:Type)(v:vector A n), v=(Vid _ n v).
+Lemma Vid_eq : forall (n:nat) (A:Type)(v:Vector.t A n), v=(Vid _ n v).
Proof.
destruct v.
reflexivity.
reflexivity.
Defined.
-Theorem zero_nil : forall A (v:vector A 0), v = Vnil.
+Theorem zero_nil : forall A (v:Vector.t A 0), v = Vector.nil.
Proof.
intros.
- change (Vnil (A:=A)) with (Vid _ 0 v).
+ change (Vector.nil (A:=A)) with (Vid _ 0 v).
apply Vid_eq.
Defined.
Theorem decomp :
- forall (A : Set) (n : nat) (v : vector A (S n)),
- v = Vcons (Vhead v) (Vtail v).
+ forall (A : Set) (n : nat) (v : Vector.t A (S n)),
+ v = Vector.cons (Vector.hd v) (Vector.tl v).
Proof.
intros.
- change (Vcons (Vhead v) (Vtail v)) with (Vid _ (S n) v).
+ change (Vector.cons (Vector.hd v) (Vector.tl v)) with (Vid _ (S n) v).
apply Vid_eq.
Defined.
Definition vector_double_rect :
- forall (A:Set) (P: forall (n:nat),(vector A n)->(vector A n) -> Type),
- P 0 Vnil Vnil ->
- (forall n (v1 v2 : vector A n) a b, P n v1 v2 ->
- P (S n) (Vcons a v1) (Vcons b v2)) ->
- forall n (v1 v2 : vector A n), P n v1 v2.
+ forall (A:Set) (P: forall (n:nat),(Vector.t A n)->(Vector.t A n) -> Type),
+ P 0 Vector.nil Vector.nil ->
+ (forall n (v1 v2 : Vector.t A n) a b, P n v1 v2 ->
+ P (S n) (Vector.cons a v1) (Vector.cons b v2)) ->
+ forall n (v1 v2 : Vector.t A n), P n v1 v2.
induction n.
intros; rewrite (zero_nil _ v1); rewrite (zero_nil _ v2).
auto.
@@ -1063,24 +1063,24 @@ Defined.
Require Import Bool.
-Definition bitwise_or n v1 v2 : vector bool n :=
- vector_double_rect bool (fun n v1 v2 => vector bool n)
- Vnil
- (fun n v1 v2 a b r => Vcons (orb a b) r) n v1 v2.
+Definition bitwise_or n v1 v2 : Vector.t bool n :=
+ vector_double_rect bool (fun n v1 v2 => Vector.t bool n)
+ Vector.nil
+ (fun n v1 v2 a b r => Vector.cons (orb a b) r) n v1 v2.
-Fixpoint vector_nth (A:Set)(n:nat)(p:nat)(v:vector A p){struct v}
+Fixpoint vector_nth (A:Set)(n:nat)(p:nat)(v:Vector.t A p){struct v}
: option A :=
match n,v with
- _ , Vnil => None
- | 0 , Vcons b _ _ => Some b
- | S n', Vcons _ p' v' => vector_nth A n' p' v'
+ _ , Vector.nil => None
+ | 0 , Vector.cons b _ _ => Some b
+ | S n', Vector.cons _ p' v' => vector_nth A n' p' v'
end.
Implicit Arguments vector_nth [A p].
-Lemma nth_bitwise : forall (n:nat) (v1 v2: vector bool n) i a b,
+Lemma nth_bitwise : forall (n:nat) (v1 v2: Vector.t bool n) i a b,
vector_nth i v1 = Some a ->
vector_nth i v2 = Some b ->
vector_nth i (bitwise_or _ v1 v2) = Some (orb a b).