aboutsummaryrefslogtreecommitdiffhomepage
path: root/test-suite/success
diff options
context:
space:
mode:
authorGravatar herbelin <herbelin@85f007b7-540e-0410-9357-904b9bb8a0f7>2005-12-21 23:50:17 +0000
committerGravatar herbelin <herbelin@85f007b7-540e-0410-9357-904b9bb8a0f7>2005-12-21 23:50:17 +0000
commit4d4f08acb5e5f56d38289e5629173bc1b8b5fd57 (patch)
treec160d442d54dbd15cbd0ab3500cdf94d0a6da74e /test-suite/success
parent960859c0c10e029f9768d0d70addeca8f6b6d784 (diff)
Abandon tests syntaxe v7; remplacement des .v par des fichiers en syntaxe v8
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@7693 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'test-suite/success')
-rw-r--r--test-suite/success/Abstract.v (renamed from test-suite/success/Abstract.v8)1
-rw-r--r--test-suite/success/Case1.v18
-rw-r--r--test-suite/success/Case10.v34
-rw-r--r--test-suite/success/Case11.v8
-rw-r--r--test-suite/success/Case12.v85
-rw-r--r--test-suite/success/Case13.v51
-rw-r--r--test-suite/success/Case14.v17
-rw-r--r--test-suite/success/Case15.v25
-rw-r--r--test-suite/success/Case16.v11
-rw-r--r--test-suite/success/Case17.v71
-rw-r--r--test-suite/success/Case2.v9
-rw-r--r--test-suite/success/Case5.v21
-rw-r--r--test-suite/success/Case6.v32
-rw-r--r--test-suite/success/Case7.v23
-rw-r--r--test-suite/success/Case8.v12
-rw-r--r--test-suite/success/Case9.v104
-rw-r--r--test-suite/success/CaseAlias.v32
-rw-r--r--test-suite/success/Cases.v2494
-rw-r--r--test-suite/success/CasesDep.v523
-rw-r--r--test-suite/success/Check.v2
-rw-r--r--test-suite/success/Conjecture.v12
-rw-r--r--test-suite/success/DHyp.v13
-rw-r--r--test-suite/success/Decompose.v8
-rw-r--r--test-suite/success/Destruct.v16
-rw-r--r--test-suite/success/DiscrR.v52
-rw-r--r--test-suite/success/Discriminate.v8
-rw-r--r--test-suite/success/Field.v61
-rw-r--r--test-suite/success/Fixpoint.v (renamed from test-suite/success/Fixpoint.v8)1
-rw-r--r--test-suite/success/Fourier.v20
-rw-r--r--test-suite/success/Funind.v595
-rw-r--r--test-suite/success/Generalize.v9
-rw-r--r--test-suite/success/Hints.v56
-rw-r--r--test-suite/success/If.v (renamed from test-suite/success/If.v8)1
-rw-r--r--test-suite/success/ImplicitTactic.v (renamed from test-suite/success/ImplicitTactic.v8)1
-rw-r--r--test-suite/success/Inductive.v52
-rw-r--r--test-suite/success/Injection.v44
-rw-r--r--test-suite/success/Inversion.v119
-rw-r--r--test-suite/success/LetIn.v16
-rw-r--r--test-suite/success/MatchFail.v37
-rw-r--r--test-suite/success/Mod_ltac.v14
-rw-r--r--test-suite/success/Mod_params.v58
-rw-r--r--test-suite/success/Mod_strengthen.v (renamed from test-suite/success/Mod_strengthen.v8)1
-rw-r--r--test-suite/success/NatRing.v14
-rw-r--r--test-suite/success/Omega.v88
-rw-r--r--test-suite/success/Omega2.v (renamed from test-suite/success/Omega2.v8)1
-rw-r--r--test-suite/success/PPFix.v (renamed from test-suite/success/PPFix.v8)1
-rw-r--r--test-suite/success/Print.v9
-rw-r--r--test-suite/success/Projection.v27
-rw-r--r--test-suite/success/RecTutorial.v (renamed from test-suite/success/RecTutorial.v8)1
-rw-r--r--test-suite/success/Record.v2
-rw-r--r--test-suite/success/Reg.v178
-rw-r--r--test-suite/success/Rename.v8
-rw-r--r--test-suite/success/Require.v4
-rw-r--r--test-suite/success/Reset.v2
-rw-r--r--test-suite/success/Simplify_eq.v12
-rw-r--r--test-suite/success/Tauto.v242
-rw-r--r--test-suite/success/TestRefine.v191
-rw-r--r--test-suite/success/Try.v4
-rw-r--r--test-suite/success/autorewritein.v (renamed from test-suite/success/autorewritein.v8)1
-rw-r--r--test-suite/success/cc.v102
-rw-r--r--test-suite/success/coercions.v14
-rw-r--r--test-suite/success/coqbugs0181.v8
-rw-r--r--test-suite/success/destruct.v10
-rw-r--r--test-suite/success/eauto.v79
-rw-r--r--test-suite/success/eqdecide.v26
-rw-r--r--test-suite/success/evars.v65
-rw-r--r--test-suite/success/fix.v63
-rw-r--r--test-suite/success/if.v2
-rw-r--r--test-suite/success/implicit.v25
-rw-r--r--test-suite/success/import_lib.v122
-rw-r--r--test-suite/success/import_mod.v36
-rw-r--r--test-suite/success/inds_type_sec.v3
-rw-r--r--test-suite/success/induct.v10
-rw-r--r--test-suite/success/intros.v (renamed from test-suite/success/intros.v8)1
-rw-r--r--test-suite/success/ltac.v132
-rw-r--r--test-suite/success/mutual_ind.v45
-rw-r--r--test-suite/success/options.v12
-rw-r--r--test-suite/success/params_ind.v6
-rw-r--r--test-suite/success/refine.v59
-rw-r--r--test-suite/success/rewrite.v24
-rw-r--r--test-suite/success/set.v (renamed from test-suite/success/set.v8)1
-rw-r--r--test-suite/success/setoid_test.v (renamed from test-suite/success/setoid_test.v8)1
-rw-r--r--test-suite/success/setoid_test2.v (renamed from test-suite/success/setoid_test2.v8)1
-rw-r--r--test-suite/success/setoid_test_function_space.v (renamed from test-suite/success/setoid_test_function_space.v8)1
-rw-r--r--test-suite/success/simpl.v (renamed from test-suite/success/simpl.v8)1
-rw-r--r--test-suite/success/unfold.v10
-rw-r--r--test-suite/success/univers.v51
87 files changed, 3463 insertions, 2999 deletions
diff --git a/test-suite/success/Abstract.v8 b/test-suite/success/Abstract.v
index 21a985bcd..fc8800a56 100644
--- a/test-suite/success/Abstract.v8
+++ b/test-suite/success/Abstract.v
@@ -24,3 +24,4 @@ induction n.
Defined.
End S.
+
diff --git a/test-suite/success/Case1.v b/test-suite/success/Case1.v
index 2d5a51345..ea9b654de 100644
--- a/test-suite/success/Case1.v
+++ b/test-suite/success/Case1.v
@@ -2,14 +2,14 @@
Section NATIND2.
Variable P : nat -> Type.
-Variable H0 : (P O).
-Variable H1 : (P (S O)).
-Variable H2 : (n:nat)(P n)->(P (S (S n))).
-Fixpoint nat_ind2 [n:nat] : (P n) :=
- <P>Cases n of
- O => H0
- | (S O) => H1
- | (S (S n)) => (H2 n (nat_ind2 n))
- end.
+Variable H0 : P 0.
+Variable H1 : P 1.
+Variable H2 : forall n : nat, P n -> P (S (S n)).
+Fixpoint nat_ind2 (n : nat) : P n :=
+ match n as x return (P x) with
+ | O => H0
+ | S O => H1
+ | S (S n) => H2 n (nat_ind2 n)
+ end.
End NATIND2.
diff --git a/test-suite/success/Case10.v b/test-suite/success/Case10.v
index 73413c475..378859e98 100644
--- a/test-suite/success/Case10.v
+++ b/test-suite/success/Case10.v
@@ -2,25 +2,27 @@
(* To test compilation of dependent case *)
(* Multiple Patterns *)
(* ============================================== *)
-Inductive skel: Type :=
- PROP: skel
- | PROD: skel->skel->skel.
+Inductive skel : Type :=
+ | PROP : skel
+ | PROD : skel -> skel -> skel.
Parameter Can : skel -> Type.
-Parameter default_can : (s:skel) (Can s).
+Parameter default_can : forall s : skel, Can s.
-Type [s1,s2:skel]
- <[s1,_:skel](Can s1)>Cases s1 s2 of
- PROP PROP => (default_can PROP)
- | s1 _ => (default_can s1)
- end.
+Type
+ (fun s1 s2 : skel =>
+ match s1, s2 return (Can s1) with
+ | PROP, PROP => default_can PROP
+ | s1, _ => default_can s1
+ end).
-Type [s1,s2:skel]
-<[s1:skel][_:skel](Can s1)>Cases s1 s2 of
- PROP PROP => (default_can PROP)
-| (PROP as s) _ => (default_can s)
-| ((PROD s1 s2) as s) PROP => (default_can s)
-| ((PROD s1 s2) as s) _ => (default_can s)
-end.
+Type
+ (fun s1 s2 : skel =>
+ match s1, s2 return (Can s1) with
+ | PROP, PROP => default_can PROP
+ | PROP as s, _ => default_can s
+ | PROD s1 s2 as s, PROP => default_can s
+ | PROD s1 s2 as s, _ => default_can s
+ end).
diff --git a/test-suite/success/Case11.v b/test-suite/success/Case11.v
index 580cd87d1..fd5d139c6 100644
--- a/test-suite/success/Case11.v
+++ b/test-suite/success/Case11.v
@@ -3,9 +3,11 @@
Section A.
-Variables Alpha:Set; Beta:Set.
+Variables (Alpha : Set) (Beta : Set).
-Definition nodep_prod_of_dep: (sigS Alpha [a:Alpha]Beta)-> Alpha*Beta:=
-[c] Cases c of (existS a b)=>(a,b) end.
+Definition nodep_prod_of_dep (c : sigS (fun a : Alpha => Beta)) :
+ Alpha * Beta := match c with
+ | existS a b => (a, b)
+ end.
End A.
diff --git a/test-suite/success/Case12.v b/test-suite/success/Case12.v
index 284695f41..20073aa73 100644
--- a/test-suite/success/Case12.v
+++ b/test-suite/success/Case12.v
@@ -1,60 +1,59 @@
(* This example was proposed by Cuihtlauac ALVARADO *)
-Require PolyList.
+Require Import List.
-Fixpoint mult2 [n:nat] : nat :=
-Cases n of
-| O => O
-| (S n) => (S (S (mult2 n)))
-end.
+Fixpoint mult2 (n : nat) : nat :=
+ match n with
+ | O => 0
+ | S n => S (S (mult2 n))
+ end.
Inductive list : nat -> Set :=
-| nil : (list O)
-| cons : (n:nat)(list (mult2 n))->(list (S (S (mult2 n)))).
+ | nil : list 0
+ | cons : forall n : nat, list (mult2 n) -> list (S (S (mult2 n))).
Type
-[P:((n:nat)(list n)->Prop);
- f:(P O nil);
- f0:((n:nat; l:(list (mult2 n)))
- (P (mult2 n) l)->(P (S (S (mult2 n))) (cons n l)))]
- Fix F
- {F [n:nat; l:(list n)] : (P n l) :=
- <P>Cases l of
- nil => f
- | (cons n0 l0) => (f0 n0 l0 (F (mult2 n0) l0))
- end}.
+ (fun (P : forall n : nat, list n -> Prop) (f : P 0 nil)
+ (f0 : forall (n : nat) (l : list (mult2 n)),
+ P (mult2 n) l -> P (S (S (mult2 n))) (cons n l)) =>
+ fix F (n : nat) (l : list n) {struct l} : P n l :=
+ match l as x0 in (list x) return (P x x0) with
+ | nil => f
+ | cons n0 l0 => f0 n0 l0 (F (mult2 n0) l0)
+ end).
Inductive list' : nat -> Set :=
-| nil' : (list' O)
-| cons' : (n:nat)[m:=(mult2 n)](list' m)->(list' (S (S m))).
+ | nil' : list' 0
+ | cons' : forall n : nat, let m := mult2 n in list' m -> list' (S (S m)).
-Fixpoint length [n; l:(list' n)] : nat :=
- Cases l of
- nil' => O
- | (cons' _ m l0) => (S (length m l0))
+Fixpoint length n (l : list' n) {struct l} : nat :=
+ match l with
+ | nil' => 0
+ | cons' _ m l0 => S (length m l0)
end.
Type
-[P:((n:nat)(list' n)->Prop);
- f:(P O nil');
- f0:((n:nat)
- [m:=(mult2 n)](l:(list' m))(P m l)->(P (S (S m)) (cons' n l)))]
- Fix F
- {F [n:nat; l:(list' n)] : (P n l) :=
- <P>
- Cases l of
- nil' => f
- | (cons' n0 m l0) => (f0 n0 l0 (F m l0))
- end}.
+ (fun (P : forall n : nat, list' n -> Prop) (f : P 0 nil')
+ (f0 : forall n : nat,
+ let m := mult2 n in
+ forall l : list' m, P m l -> P (S (S m)) (cons' n l)) =>
+ fix F (n : nat) (l : list' n) {struct l} : P n l :=
+ match l as x0 in (list' x) return (P x x0) with
+ | nil' => f
+ | cons' n0 m l0 => f0 n0 l0 (F m l0)
+ end).
(* Check on-the-fly insertion of let-in patterns for compatibility *)
Inductive list'' : nat -> Set :=
-| nil'' : (list'' O)
-| cons'' : (n:nat)[m:=(mult2 n)](list'' m)->[p:=(S (S m))](list'' p).
-
-Check Fix length { length [n; l:(list'' n)] : nat :=
- Cases l of
- nil'' => O
- | (cons'' n l0) => (S (length (mult2 n) l0))
- end }.
+ | nil'' : list'' 0
+ | cons'' :
+ forall n : nat,
+ let m := mult2 n in list'' m -> let p := S (S m) in list'' p.
+
+Check
+ (fix length n (l : list'' n) {struct l} : nat :=
+ match l with
+ | nil'' => 0
+ | cons'' n l0 => S (length (mult2 n) l0)
+ end).
diff --git a/test-suite/success/Case13.v b/test-suite/success/Case13.v
index 71c9191d6..670d01f76 100644
--- a/test-suite/success/Case13.v
+++ b/test-suite/success/Case13.v
@@ -1,33 +1,56 @@
(* Check coercions in patterns *)
Inductive I : Set :=
- C1 : nat -> I
-| C2 : I -> I.
+ | C1 : nat -> I
+ | C2 : I -> I.
Coercion C1 : nat >-> I.
(* Coercion at the root of pattern *)
-Check [x]Cases x of (C2 n) => O | O => O | (S n) => n end.
+Check (fun x => match x with
+ | C2 n => 0
+ | O => 0
+ | S n => n
+ end).
(* Coercion not at the root of pattern *)
-Check [x]Cases x of (C2 O) => O | _ => O end.
+Check (fun x => match x with
+ | C2 O => 0
+ | _ => 0
+ end).
(* Unification and coercions inside patterns *)
-Check [x:(option nat)]Cases x of None => O | (Some O) => O | _ => O end.
+Check
+ (fun x : option nat => match x with
+ | None => 0
+ | Some O => 0
+ | _ => 0
+ end).
(* Coercion up to delta-conversion, and unification *)
-Coercion somenat := (Some nat).
-Check [x]Cases x of None => O | O => O | (S n) => n end.
+Coercion somenat := Some (A:=nat).
+Check (fun x => match x with
+ | None => 0
+ | O => 0
+ | S n => n
+ end).
(* Coercions with parameters *)
-Inductive listn : nat-> Set :=
- niln : (listn O)
-| consn : (n:nat)nat->(listn n) -> (listn (S n)).
+Inductive listn : nat -> Set :=
+ | niln : listn 0
+ | consn : forall n : nat, nat -> listn n -> listn (S n).
Inductive I' : nat -> Set :=
- C1' : (n:nat) (listn n) -> (I' n)
-| C2' : (n:nat) (I' n) -> (I' n).
+ | C1' : forall n : nat, listn n -> I' n
+ | C2' : forall n : nat, I' n -> I' n.
Coercion C1' : listn >-> I'.
-Check [x:(I' O)]Cases x of (C2' _ _) => O | niln => O | _ => O end.
-Check [x:(I' O)]Cases x of (C2' _ niln) => O | _ => O end.
+Check (fun x : I' 0 => match x with
+ | C2' _ _ => 0
+ | niln => 0
+ | _ => 0
+ end).
+Check (fun x : I' 0 => match x with
+ | C2' _ niln => 0
+ | _ => 0
+ end).
diff --git a/test-suite/success/Case14.v b/test-suite/success/Case14.v
index edecee79e..f106a64cb 100644
--- a/test-suite/success/Case14.v
+++ b/test-suite/success/Case14.v
@@ -4,13 +4,18 @@
Axiom bad : false = true.
Definition try1 : False :=
- <[b:bool][_:false=b](if b then False else True)>
- Cases bad of refl_equal => I end.
+ match bad in (_ = b) return (if b then False else True) with
+ | refl_equal => I
+ end.
Definition try2 : False :=
- <[b:bool][_:false=b]((if b then False else True)::Prop)>
- Cases bad of refl_equal => I end.
+ match bad in (_ = b) return ((if b then False else True):Prop) with
+ | refl_equal => I
+ end.
Definition try3 : False :=
- <[b:bool][_:false=b](([b':bool] if b' then False else True) b)>
- Cases bad of refl_equal => I end.
+ match
+ bad in (_ = b) return ((fun b' : bool => if b' then False else True) b)
+ with
+ | refl_equal => I
+ end.
diff --git a/test-suite/success/Case15.v b/test-suite/success/Case15.v
index 229445200..8431880d1 100644
--- a/test-suite/success/Case15.v
+++ b/test-suite/success/Case15.v
@@ -2,20 +2,23 @@
apparently of inductive type *)
(* Check that the non dependency in y is OK both in V7 and V8 *)
-Check ([x;y:Prop;z]<[x][z]x=x \/ z=z>Cases x y z of
- | O y z' => (or_introl ? (z'=z') (refl_equal ? O))
- | _ y O => (or_intror ?? (refl_equal ? O))
- | x y _ => (or_introl ?? (refl_equal ? x))
- end).
+Check
+ (fun x (y : Prop) z =>
+ match x, y, z return (x = x \/ z = z) with
+ | O, y, z' => or_introl (z' = z') (refl_equal 0)
+ | _, y, O => or_intror _ (refl_equal 0)
+ | x, y, _ => or_introl _ (refl_equal x)
+ end).
(* Suggested by Pierre Letouzey (PR#207) *)
-Inductive Boite : Set :=
- boite : (b:bool)(if b then nat else nat*nat)->Boite.
+Inductive Boite : Set :=
+ boite : forall b : bool, (if b then nat else (nat * nat)%type) -> Boite.
-Definition test := [B:Boite]<nat>Cases B of
- (boite true n) => n
-| (boite false (n,m)) => (plus n m)
-end.
+Definition test (B : Boite) :=
+ match B return nat with
+ | boite true n => n
+ | boite false (n, m) => n + m
+ end.
(* Check lazyness of compilation ... future work
Inductive I : Set := c : (b:bool)(if b then bool else nat)->I.
diff --git a/test-suite/success/Case16.v b/test-suite/success/Case16.v
index 3f142faed..77016bbfe 100644
--- a/test-suite/success/Case16.v
+++ b/test-suite/success/Case16.v
@@ -2,8 +2,9 @@
(* Test dependencies in constructors *)
(**********************************************************************)
-Check [x : {b:bool|if b then True else False}]
- <[x]let (b,_) = x in if b then True else False>Cases x of
- | (exist true y) => y
- | (exist false z) => z
- end.
+Check
+ (fun x : {b : bool | if b then True else False} =>
+ match x return (let (b, _) := x in if b then True else False) with
+ | exist true y => y
+ | exist false z => z
+ end).
diff --git a/test-suite/success/Case17.v b/test-suite/success/Case17.v
index 07d64958b..061e136e0 100644
--- a/test-suite/success/Case17.v
+++ b/test-suite/success/Case17.v
@@ -3,43 +3,48 @@
(Simplification of an example from file parsing2.v of the Coq'Art
exercises) *)
-Require Import PolyList.
+Require Import List.
-Variable parse_rel : (list bool) -> (list bool) -> nat -> Prop.
+Variable parse_rel : list bool -> list bool -> nat -> Prop.
-Variables l0:(list bool); rec:(l' : (list bool))
- (le (length l') (S (length l0))) ->
- {l'' : (list bool) &
- {t : nat | (parse_rel l' l'' t) /\ (le (length l'') (length l'))}} +
- {(l'' : (list bool))(t : nat)~ (parse_rel l' l'' t)}.
+Variables (l0 : list bool)
+ (rec :
+ forall l' : list bool,
+ length l' <= S (length l0) ->
+ {l'' : list bool &
+ {t : nat | parse_rel l' l'' t /\ length l'' <= length l'}} +
+ {(forall (l'' : list bool) (t : nat), ~ parse_rel l' l'' t)}).
-Axiom HHH : (A:Prop)A.
+Axiom HHH : forall A : Prop, A.
-Check (Cases (rec l0 (HHH ?)) of
- | (inleft (existS (cons false l1) _)) => (inright ? ? (HHH ?))
- | (inleft (existS (cons true l1) (exist t1 (conj Hp Hl)))) =>
- (inright ? ? (HHH ?))
- | (inleft (existS _ _)) => (inright ? ? (HHH ?))
- | (inright Hnp) => (inright ? ? (HHH ?))
- end ::
- {l'' : (list bool) &
- {t : nat | (parse_rel (cons true l0) l'' t) /\ (le (length l'') (S (length l0)))}} +
- {(l'' : (list bool)) (t : nat) ~ (parse_rel (cons true l0) l'' t)}).
+Check
+ (match rec l0 (HHH _) with
+ | inleft (existS (false :: l1) _) => inright _ (HHH _)
+ | inleft (existS (true :: l1) (exist t1 (conj Hp Hl))) =>
+ inright _ (HHH _)
+ | inleft (existS _ _) => inright _ (HHH _)
+ | inright Hnp => inright _ (HHH _)
+ end
+ :{l'' : list bool &
+ {t : nat | parse_rel (true :: l0) l'' t /\ length l'' <= S (length l0)}} +
+ {(forall (l'' : list bool) (t : nat), ~ parse_rel (true :: l0) l'' t)}).
(* The same but with relative links to l0 and rec *)
-Check [l0:(list bool);rec:(l' : (list bool))
- (le (length l') (S (length l0))) ->
- {l'' : (list bool) &
- {t : nat | (parse_rel l' l'' t) /\ (le (length l'') (length l'))}} +
- {(l'' : (list bool)) (t : nat) ~ (parse_rel l' l'' t)}]
- (Cases (rec l0 (HHH ?)) of
- | (inleft (existS (cons false l1) _)) => (inright ? ? (HHH ?))
- | (inleft (existS (cons true l1) (exist t1 (conj Hp Hl)))) =>
- (inright ? ? (HHH ?))
- | (inleft (existS _ _)) => (inright ? ? (HHH ?))
- | (inright Hnp) => (inright ? ? (HHH ?))
- end ::
- {l'' : (list bool) &
- {t : nat | (parse_rel (cons true l0) l'' t) /\ (le (length l'') (S (length l0)))}} +
- {(l'' : (list bool)) (t : nat) ~ (parse_rel (cons true l0) l'' t)}).
+Check
+ (fun (l0 : list bool)
+ (rec : forall l' : list bool,
+ length l' <= S (length l0) ->
+ {l'' : list bool &
+ {t : nat | parse_rel l' l'' t /\ length l'' <= length l'}} +
+ {(forall (l'' : list bool) (t : nat), ~ parse_rel l' l'' t)}) =>
+ match rec l0 (HHH _) with
+ | inleft (existS (false :: l1) _) => inright _ (HHH _)
+ | inleft (existS (true :: l1) (exist t1 (conj Hp Hl))) =>
+ inright _ (HHH _)
+ | inleft (existS _ _) => inright _ (HHH _)
+ | inright Hnp => inright _ (HHH _)
+ end
+ :{l'' : list bool &
+ {t : nat | parse_rel (true :: l0) l'' t /\ length l'' <= S (length l0)}} +
+ {(forall (l'' : list bool) (t : nat), ~ parse_rel (true :: l0) l'' t)}).
diff --git a/test-suite/success/Case2.v b/test-suite/success/Case2.v
index 0aa7b5bef..db4336950 100644
--- a/test-suite/success/Case2.v
+++ b/test-suite/success/Case2.v
@@ -3,9 +3,10 @@
(* Nested patterns *)
(* ============================================== *)
-Type <[n:nat]n=n>Cases O of
- O => (refl_equal nat O)
- | m => (refl_equal nat m)
-end.
+Type
+ match 0 as n return (n = n) with
+ | O => refl_equal 0
+ | m => refl_equal m
+ end.
diff --git a/test-suite/success/Case5.v b/test-suite/success/Case5.v
index fe49cdf95..833621d2b 100644
--- a/test-suite/success/Case5.v
+++ b/test-suite/success/Case5.v
@@ -1,14 +1,13 @@
-Parameter ff: (n,m:nat)~n=m -> ~(S n)=(S m).
-Parameter discr_r : (n:nat) ~(O=(S n)).
-Parameter discr_l : (n:nat) ~((S n)=O).
+Parameter ff : forall n m : nat, n <> m -> S n <> S m.
+Parameter discr_r : forall n : nat, 0 <> S n.
+Parameter discr_l : forall n : nat, S n <> 0.
-Type
-[n:nat]
- <[n:nat]n=O\/~n=O>Cases n of
- O => (or_introl ? ~O=O (refl_equal ? O))
- | (S O) => (or_intror (S O)=O ? (discr_l O))
- | (S (S x)) => (or_intror (S (S x))=O ? (discr_l (S x)))
-
- end.
+Type
+ (fun n : nat =>
+ match n return (n = 0 \/ n <> 0) with
+ | O => or_introl (0 <> 0) (refl_equal 0)
+ | S O => or_intror (1 = 0) (discr_l 0)
+ | S (S x) => or_intror (S (S x) = 0) (discr_l (S x))
+ end).
diff --git a/test-suite/success/Case6.v b/test-suite/success/Case6.v
index a262251e7..cc1994e7a 100644
--- a/test-suite/success/Case6.v
+++ b/test-suite/success/Case6.v
@@ -1,19 +1,15 @@
-Parameter ff: (n,m:nat)~n=m -> ~(S n)=(S m).
-Parameter discr_r : (n:nat) ~(O=(S n)).
-Parameter discr_l : (n:nat) ~((S n)=O).
-
-Fixpoint eqdec [n:nat] : (m:nat) n=m \/ ~n=m :=
-[m:nat]
- <[n,m:nat] n=m \/ ~n=m>Cases n m of
- O O => (or_introl ? ~O=O (refl_equal ? O))
-
- | O (S x) => (or_intror O=(S x) ? (discr_r x))
-
- | (S x) O => (or_intror ? ~(S x)=O (discr_l x))
-
- | ((S x) as N) ((S y) as M) =>
- <N=M\/~N=M>Cases (eqdec x y) of
- (or_introl h) => (or_introl ? ~N=M (f_equal nat nat S x y h))
- | (or_intror h) => (or_intror N=M ? (ff x y h))
+Parameter ff : forall n m : nat, n <> m -> S n <> S m.
+Parameter discr_r : forall n : nat, 0 <> S n.
+Parameter discr_l : forall n : nat, S n <> 0.
+
+Fixpoint eqdec (n m : nat) {struct n} : n = m \/ n <> m :=
+ match n, m return (n = m \/ n <> m) with
+ | O, O => or_introl (0 <> 0) (refl_equal 0)
+ | O, S x => or_intror (0 = S x) (discr_r x)
+ | S x, O => or_intror _ (discr_l x)
+ | S x as N, S y as M =>
+ match eqdec x y return (N = M \/ N <> M) with
+ | or_introl h => or_introl (N <> M) (f_equal S h)
+ | or_intror h => or_intror (N = M) (ff x y h)
end
- end.
+ end.
diff --git a/test-suite/success/Case7.v b/test-suite/success/Case7.v
index 6e2aea480..6e4b20031 100644
--- a/test-suite/success/Case7.v
+++ b/test-suite/success/Case7.v
@@ -1,16 +1,17 @@
-Inductive List [A:Set] :Set :=
- Nil:(List A) | Cons:A->(List A)->(List A).
+Inductive List (A : Set) : Set :=
+ | Nil : List A
+ | Cons : A -> List A -> List A.
-Inductive Empty [A:Set] : (List A)-> Prop :=
- intro_Empty: (Empty A (Nil A)).
+Inductive Empty (A : Set) : List A -> Prop :=
+ intro_Empty : Empty A (Nil A).
-Parameter inv_Empty : (A:Set)(a:A)(x:(List A)) ~(Empty A (Cons A a x)).
+Parameter
+ inv_Empty : forall (A : Set) (a : A) (x : List A), ~ Empty A (Cons A a x).
Type
-[A:Set]
-[l:(List A)]
- <[l:(List A)](Empty A l) \/ ~(Empty A l)>Cases l of
- Nil => (or_introl ? ~(Empty A (Nil A)) (intro_Empty A))
- | ((Cons a y) as b) => (or_intror (Empty A b) ? (inv_Empty A a y))
- end.
+ (fun (A : Set) (l : List A) =>
+ match l return (Empty A l \/ ~ Empty A l) with
+ | Nil => or_introl (~ Empty A (Nil A)) (intro_Empty A)
+ | Cons a y as b => or_intror (Empty A b) (inv_Empty A a y)
+ end).
diff --git a/test-suite/success/Case8.v b/test-suite/success/Case8.v
index b512b5f82..a6113ab9a 100644
--- a/test-suite/success/Case8.v
+++ b/test-suite/success/Case8.v
@@ -1,7 +1,11 @@
(* Check dependencies in the matching predicate (was failing in V8.0pl1) *)
-Inductive t : (x:O=O) x=x -> Prop :=
- c : (x:0=0) (t x (refl_equal ? x)).
+Inductive t : forall x : 0 = 0, x = x -> Prop :=
+ c : forall x : 0 = 0, t x (refl_equal x).
-Definition a [x:(t ? (refl_equal ? (refl_equal ? O)))] :=
- <[_;_;x]Cases x of (c y) => Prop end>Cases x of (c y) => y=y end.
+Definition a (x : t _ (refl_equal (refl_equal 0))) :=
+ match x return match x with
+ | c y => Prop
+ end with
+ | c y => y = y
+ end.
diff --git a/test-suite/success/Case9.v b/test-suite/success/Case9.v
index a5d07405e..a8534a0b9 100644
--- a/test-suite/success/Case9.v
+++ b/test-suite/success/Case9.v
@@ -1,55 +1,61 @@
-Inductive List [A:Set] :Set :=
- Nil:(List A) | Cons:A->(List A)->(List A).
-
-Inductive eqlong : (List nat)-> (List nat)-> Prop :=
- eql_cons : (n,m:nat)(x,y:(List nat))
- (eqlong x y) -> (eqlong (Cons nat n x) (Cons nat m y))
-| eql_nil : (eqlong (Nil nat) (Nil nat)).
-
-
-Parameter V1 : (eqlong (Nil nat) (Nil nat))\/ ~(eqlong (Nil nat) (Nil nat)).
-Parameter V2 : (a:nat)(x:(List nat))
- (eqlong (Nil nat) (Cons nat a x))\/ ~(eqlong (Nil nat)(Cons nat a x)).
-Parameter V3 : (a:nat)(x:(List nat))
- (eqlong (Cons nat a x) (Nil nat))\/ ~(eqlong (Cons nat a x) (Nil nat)).
-Parameter V4 : (a:nat)(x:(List nat))(b:nat)(y:(List nat))
- (eqlong (Cons nat a x)(Cons nat b y))
- \/ ~(eqlong (Cons nat a x) (Cons nat b y)).
-
-Parameter nff : (n,m:nat)(x,y:(List nat))
- ~(eqlong x y)-> ~(eqlong (Cons nat n x) (Cons nat m y)).
-Parameter inv_r : (n:nat)(x:(List nat)) ~(eqlong (Nil nat) (Cons nat n x)).
-Parameter inv_l : (n:nat)(x:(List nat)) ~(eqlong (Cons nat n x) (Nil nat)).
-
-Fixpoint eqlongdec [x:(List nat)]: (y:(List nat))(eqlong x y)\/~(eqlong x y) :=
-[y:(List nat)]
- <[x,y:(List nat)](eqlong x y)\/~(eqlong x y)>Cases x y of
- Nil Nil => (or_introl ? ~(eqlong (Nil nat) (Nil nat)) eql_nil)
-
- | Nil ((Cons a x) as L) =>(or_intror (eqlong (Nil nat) L) ? (inv_r a x))
-
- | ((Cons a x) as L) Nil => (or_intror (eqlong L (Nil nat)) ? (inv_l a x))
-
- | ((Cons a x) as L1) ((Cons b y) as L2) =>
- <(eqlong L1 L2) \/~(eqlong L1 L2)>Cases (eqlongdec x y) of
- (or_introl h) => (or_introl ? ~(eqlong L1 L2) (eql_cons a b x y h))
- | (or_intror h) => (or_intror (eqlong L1 L2) ? (nff a b x y h))
+Inductive List (A : Set) : Set :=
+ | Nil : List A
+ | Cons : A -> List A -> List A.
+
+Inductive eqlong : List nat -> List nat -> Prop :=
+ | eql_cons :
+ forall (n m : nat) (x y : List nat),
+ eqlong x y -> eqlong (Cons nat n x) (Cons nat m y)
+ | eql_nil : eqlong (Nil nat) (Nil nat).
+
+
+Parameter V1 : eqlong (Nil nat) (Nil nat) \/ ~ eqlong (Nil nat) (Nil nat).
+Parameter
+ V2 :
+ forall (a : nat) (x : List nat),
+ eqlong (Nil nat) (Cons nat a x) \/ ~ eqlong (Nil nat) (Cons nat a x).
+Parameter
+ V3 :
+ forall (a : nat) (x : List nat),
+ eqlong (Cons nat a x) (Nil nat) \/ ~ eqlong (Cons nat a x) (Nil nat).
+Parameter
+ V4 :
+ forall (a : nat) (x : List nat) (b : nat) (y : List nat),
+ eqlong (Cons nat a x) (Cons nat b y) \/
+ ~ eqlong (Cons nat a x) (Cons nat b y).
+
+Parameter
+ nff :
+ forall (n m : nat) (x y : List nat),
+ ~ eqlong x y -> ~ eqlong (Cons nat n x) (Cons nat m y).
+Parameter
+ inv_r : forall (n : nat) (x : List nat), ~ eqlong (Nil nat) (Cons nat n x).
+Parameter
+ inv_l : forall (n : nat) (x : List nat), ~ eqlong (Cons nat n x) (Nil nat).
+
+Fixpoint eqlongdec (x y : List nat) {struct x} :
+ eqlong x y \/ ~ eqlong x y :=
+ match x, y return (eqlong x y \/ ~ eqlong x y) with
+ | Nil, Nil => or_introl (~ eqlong (Nil nat) (Nil nat)) eql_nil
+ | Nil, Cons a x as L => or_intror (eqlong (Nil nat) L) (inv_r a x)
+ | Cons a x as L, Nil => or_intror (eqlong L (Nil nat)) (inv_l a x)
+ | Cons a x as L1, Cons b y as L2 =>
+ match eqlongdec x y return (eqlong L1 L2 \/ ~ eqlong L1 L2) with
+ | or_introl h => or_introl (~ eqlong L1 L2) (eql_cons a b x y h)
+ | or_intror h => or_intror (eqlong L1 L2) (nff a b x y h)
end
- end.
+ end.
Type
- <[x,y:(List nat)](eqlong x y)\/~(eqlong x y)>Cases (Nil nat) (Nil nat) of
- Nil Nil => (or_introl ? ~(eqlong (Nil nat) (Nil nat)) eql_nil)
-
- | Nil ((Cons a x) as L) =>(or_intror (eqlong (Nil nat) L) ? (inv_r a x))
-
- | ((Cons a x) as L) Nil => (or_intror (eqlong L (Nil nat)) ? (inv_l a x))
-
- | ((Cons a x) as L1) ((Cons b y) as L2) =>
- <(eqlong L1 L2) \/~(eqlong L1 L2)>Cases (eqlongdec x y) of
- (or_introl h) => (or_introl ? ~(eqlong L1 L2) (eql_cons a b x y h))
- | (or_intror h) => (or_intror (eqlong L1 L2) ? (nff a b x y h))
+ match Nil nat as x, Nil nat as y return (eqlong x y \/ ~ eqlong x y) with
+ | Nil, Nil => or_introl (~ eqlong (Nil nat) (Nil nat)) eql_nil
+ | Nil, Cons a x as L => or_intror (eqlong (Nil nat) L) (inv_r a x)
+ | Cons a x as L, Nil => or_intror (eqlong L (Nil nat)) (inv_l a x)
+ | Cons a x as L1, Cons b y as L2 =>
+ match eqlongdec x y return (eqlong L1 L2 \/ ~ eqlong L1 L2) with
+ | or_introl h => or_introl (~ eqlong L1 L2) (eql_cons a b x y h)
+ | or_intror h => or_intror (eqlong L1 L2) (nff a b x y h)
end
- end.
+ end.
diff --git a/test-suite/success/CaseAlias.v b/test-suite/success/CaseAlias.v
index b5f0e730e..32d85779f 100644
--- a/test-suite/success/CaseAlias.v
+++ b/test-suite/success/CaseAlias.v
@@ -1,21 +1,21 @@
(* This has been a bug reported by Y. Bertot *)
Inductive expr : Set :=
- b: expr -> expr -> expr
- | u: expr -> expr
- | a: expr
- | var: nat -> expr .
+ | b : expr -> expr -> expr
+ | u : expr -> expr
+ | a : expr
+ | var : nat -> expr.
-Fixpoint f [t : expr] : expr :=
- Cases t of
- | (b t1 t2) => (b (f t1) (f t2))
- | a => a
- | x => (b t a)
- end.
+Fixpoint f (t : expr) : expr :=
+ match t with
+ | b t1 t2 => b (f t1) (f t2)
+ | a => a
+ | x => b t a
+ end.
-Fixpoint f2 [t : expr] : expr :=
- Cases t of
- | (b t1 t2) => (b (f2 t1) (f2 t2))
- | a => a
- | x => (b x a)
- end.
+Fixpoint f2 (t : expr) : expr :=
+ match t with
+ | b t1 t2 => b (f2 t1) (f2 t2)
+ | a => a
+ | x => b x a
+ end.
diff --git a/test-suite/success/Cases.v b/test-suite/success/Cases.v
index 6ccd669af..7c2b7c0bb 100644
--- a/test-suite/success/Cases.v
+++ b/test-suite/success/Cases.v
@@ -2,89 +2,118 @@
(* Pattern-matching when non inductive terms occur *)
(* Dependent form of annotation *)
-Type <[n:nat]nat>Cases O eq of O x => O | (S x) y => x end.
-Type <[_,_:nat]nat>Cases O eq O of O x y => O | (S x) y z => x end.
+Type match 0 as n, eq return nat with
+ | O, x => 0
+ | S x, y => x
+ end.
+Type match 0, eq, 0 return nat with
+ | O, x, y => 0
+ | S x, y, z => x
+ end.
(* Non dependent form of annotation *)
-Type <nat>Cases O eq of O x => O | (S x) y => x end.
+Type match 0, eq return nat with
+ | O, x => 0
+ | S x, y => x
+ end.
(* Combining dependencies and non inductive arguments *)
-Type [A:Set][a:A][H:O=O]<[x][H]H==H>Cases H a of _ _ => (refl_eqT ? H) end.
+Type
+ (fun (A : Set) (a : A) (H : 0 = 0) =>
+ match H in (_ = x), a return (H = H) with
+ | _, _ => refl_equal H
+ end).
(* Interaction with coercions *)
Parameter bool2nat : bool -> nat.
Coercion bool2nat : bool >-> nat.
-Check [x](Cases x of O => true | (S _) => O end :: nat).
+Check (fun x => match x with
+ | O => true
+ | S _ => 0
+ end:nat).
(****************************************************************************)
(* All remaining examples come from Cristina Cornes' V6 TESTS/MultCases.v *)
-Inductive IFExpr : Set :=
- Var : nat -> IFExpr
- | Tr : IFExpr
- | Fa : IFExpr
- | IfE : IFExpr -> IFExpr -> IFExpr -> IFExpr.
+Inductive IFExpr : Set :=
+ | Var : nat -> IFExpr
+ | Tr : IFExpr
+ | Fa : IFExpr
+ | IfE : IFExpr -> IFExpr -> IFExpr -> IFExpr.
-Inductive List [A:Set] :Set :=
- Nil:(List A) | Cons:A->(List A)->(List A).
+Inductive List (A : Set) : Set :=
+ | Nil : List A
+ | Cons : A -> List A -> List A.
-Inductive listn : nat-> Set :=
- niln : (listn O)
-| consn : (n:nat)nat->(listn n) -> (listn (S n)).
+Inductive listn : nat -> Set :=
+ | niln : listn 0
+ | consn : forall n : nat, nat -> listn n -> listn (S n).
-Inductive Listn [A:Set] : nat-> Set :=
- Niln : (Listn A O)
-| Consn : (n:nat)nat->(Listn A n) -> (Listn A (S n)).
+Inductive Listn (A : Set) : nat -> Set :=
+ | Niln : Listn A 0
+ | Consn : forall n : nat, nat -> Listn A n -> Listn A (S n).
-Inductive Le : nat->nat->Set :=
- LeO: (n:nat)(Le O n)
-| LeS: (n,m:nat)(Le n m) -> (Le (S n) (S m)).
+Inductive Le : nat -> nat -> Set :=
+ | LeO : forall n : nat, Le 0 n
+ | LeS : forall n m : nat, Le n m -> Le (S n) (S m).
-Inductive LE [n:nat] : nat->Set :=
- LE_n : (LE n n) | LE_S : (m:nat)(LE n m)->(LE n (S m)).
+Inductive LE (n : nat) : nat -> Set :=
+ | LE_n : LE n n
+ | LE_S : forall m : nat, LE n m -> LE n (S m).
-Require Bool.
+Require Import Bool.
-Inductive PropForm : Set :=
- Fvar : nat -> PropForm
- | Or : PropForm -> PropForm -> PropForm .
+Inductive PropForm : Set :=
+ | Fvar : nat -> PropForm
+ | Or : PropForm -> PropForm -> PropForm.
Section testIFExpr.
-Definition Assign:= nat->bool.
+Definition Assign := nat -> bool.
Parameter Prop_sem : Assign -> PropForm -> bool.
-Type [A:Assign][F:PropForm]
- <bool>Cases F of
- (Fvar n) => (A n)
- | (Or F G) => (orb (Prop_sem A F) (Prop_sem A G))
- end.
-
-Type [A:Assign][H:PropForm]
- <bool>Cases H of
- (Fvar n) => (A n)
- | (Or F G) => (orb (Prop_sem A F) (Prop_sem A G))
- end.
+Type
+ (fun (A : Assign) (F : PropForm) =>
+ match F return bool with
+ | Fvar n => A n
+ | Or F G => Prop_sem A F || Prop_sem A G
+ end).
+
+Type
+ (fun (A : Assign) (H : PropForm) =>
+ match H return bool with
+ | Fvar n => A n
+ | Or F G => Prop_sem A F || Prop_sem A G
+ end).
End testIFExpr.
-Type [x:nat]<nat>Cases x of O => O | x => x end.
+Type (fun x : nat => match x return nat with
+ | O => 0
+ | x => x
+ end).
Section testlist.
-Parameter A:Set.
-Inductive list : Set := nil : list | cons : A->list->list.
-Parameter inf: A->A->Prop.
+Parameter A : Set.
+Inductive list : Set :=
+ | nil : list
+ | cons : A -> list -> list.
+Parameter inf : A -> A -> Prop.
-Definition list_Lowert2 :=
- [a:A][l:list](<Prop>Cases l of nil => True
- | (cons b l) =>(inf a b) end).
+Definition list_Lowert2 (a : A) (l : list) :=
+ match l return Prop with
+ | nil => True
+ | cons b l => inf a b
+ end.
-Definition titi :=
- [a:A][l:list](<list>Cases l of nil => l
- | (cons b l) => l end).
+Definition titi (a : A) (l : list) :=
+ match l return list with
+ | nil => l
+ | cons b l => l
+ end.
Reset list.
End testlist.
@@ -93,444 +122,490 @@ End testlist.
(* ------------------- *)
-Type <nat>Cases O of O => O | _ => O end.
-
-Type <nat>Cases O of
- (O as b) => b
- | (S O) => O
- | (S (S x)) => x end.
+Type match 0 return nat with
+ | O => 0
+ | _ => 0
+ end.
-Type Cases O of
- (O as b) => b
- | (S O) => O
- | (S (S x)) => x end.
+Type match 0 return nat with
+ | O as b => b
+ | S O => 0
+ | S (S x) => x
+ end.
+Type match 0 with
+ | O as b => b
+ | S O => 0
+ | S (S x) => x
+ end.
-Type [x:nat]<nat>Cases x of
- (O as b) => b
- | (S x) => x end.
-Type [x:nat]Cases x of
- (O as b) => b
- | (S x) => x end.
+Type (fun x : nat => match x return nat with
+ | O as b => b
+ | S x => x
+ end).
-Type <nat>Cases O of
- (O as b) => b
- | (S x) => x end.
+Type (fun x : nat => match x with
+ | O as b => b
+ | S x => x
+ end).
-Type <nat>Cases O of
- x => x
- end.
+Type match 0 return nat with
+ | O as b => b
+ | S x => x
+ end.
-Type Cases O of
- x => x
- end.
+Type match 0 return nat with
+ | x => x
+ end.
-Type <nat>Cases O of
- O => O
- | ((S x) as b) => b
- end.
+Type match 0 with
+ | x => x
+ end.
-Type [x:nat]<nat>Cases x of
- O => O
- | ((S x) as b) => b
- end.
+Type match 0 return nat with
+ | O => 0
+ | S x as b => b
+ end.
-Type [x:nat] Cases x of
- O => O
- | ((S x) as b) => b
- end.
+Type (fun x : nat => match x return nat with
+ | O => 0
+ | S x as b => b
+ end).
+Type (fun x : nat => match x with
+ | O => 0
+ | S x as b => b
+ end).
-Type <nat>Cases O of
- O => O
- | (S x) => O
- end.
+Type match 0 return nat with
+ | O => 0
+ | S x => 0
+ end.
-Type <nat*nat>Cases O of
- O => (O,O)
- | (S x) => (x,O)
- end.
-Type Cases O of
- O => (O,O)
- | (S x) => (x,O)
- end.
+Type match 0 return (nat * nat) with
+ | O => (0, 0)
+ | S x => (x, 0)
+ end.
-Type <nat->nat>Cases O of
- O => [n:nat]O
- | (S x) => [n:nat]O
- end.
+Type match 0 with
+ | O => (0, 0)
+ | S x => (x, 0)
+ end.
-Type Cases O of
- O => [n:nat]O
- | (S x) => [n:nat]O
- end.
+Type
+ match 0 return (nat -> nat) with
+ | O => fun n : nat => 0
+ | S x => fun n : nat => 0
+ end.
+Type match 0 with
+ | O => fun n : nat => 0
+ | S x => fun n : nat => 0
+ end.
-Type <nat->nat>Cases O of
- O => [n:nat]O
- | (S x) => [n:nat](plus x n)
- end.
-Type Cases O of
- O => [n:nat]O
- | (S x) => [n:nat](plus x n)
- end.
+Type
+ match 0 return (nat -> nat) with
+ | O => fun n : nat => 0
+ | S x => fun n : nat => x + n
+ end.
+Type match 0 with
+ | O => fun n : nat => 0
+ | S x => fun n : nat => x + n
+ end.
-Type <nat>Cases O of
- O => O
- | ((S x) as b) => (plus b x)
- end.
-Type <nat>Cases O of
- O => O
- | ((S (x as a)) as b) => (plus b a)
- end.
-Type Cases O of
- O => O
- | ((S (x as a)) as b) => (plus b a)
- end.
+Type match 0 return nat with
+ | O => 0
+ | S x as b => b + x
+ end.
+Type match 0 return nat with
+ | O => 0
+ | S a as b => b + a
+ end.
+Type match 0 with
+ | O => 0
+ | S a as b => b + a
+ end.
-Type Cases O of
- O => O
- | _ => O
- end.
-Type <nat>Cases O of
- O => O
- | x => x
- end.
+Type match 0 with
+ | O => 0
+ | _ => 0
+ end.
-Type <nat>Cases O (S O) of
- x y => (plus x y)
- end.
-
-Type Cases O (S O) of
- x y => (plus x y)
- end.
-
-Type <nat>Cases O (S O) of
- O y => y
- | (S x) y => (plus x y)
- end.
+Type match 0 return nat with
+ | O => 0
+ | x => x
+ end.
-Type Cases O (S O) of
- O y => y
- | (S x) y => (plus x y)
- end.
+Type match 0, 1 return nat with
+ | x, y => x + y
+ end.
+Type match 0, 1 with
+ | x, y => x + y
+ end.
+
+Type match 0, 1 return nat with
+ | O, y => y
+ | S x, y => x + y
+ end.
-Type <nat>Cases O (S O) of
- O x => x
- | (S y) O => y
- | x y => (plus x y)
- end.
+Type match 0, 1 with
+ | O, y => y
+ | S x, y => x + y
+ end.
+Type match 0, 1 return nat with
+ | O, x => x
+ | S y, O => y
+ | x, y => x + y
+ end.
-Type Cases O (S O) of
- O x => (plus x O)
- | (S y) O => (plus y O)
- | x y => (plus x y)
- end.
-Type
- <nat>Cases O (S O) of
- O x => (plus x O)
- | (S y) O => (plus y O)
- | x y => (plus x y)
- end.
+Type match 0, 1 with
+ | O, x => x + 0
+ | S y, O => y + 0
+ | x, y => x + y
+ end.
-Type
- <nat>Cases O (S O) of
- O x => x
- | ((S x) as b) (S y) => (plus (plus b x) y)
- | x y => (plus x y)
- end.
+Type
+ match 0, 1 return nat with
+ | O, x => x + 0
+ | S y, O => y + 0
+ | x, y => x + y
+ end.
-Type Cases O (S O) of
- O x => x
- | ((S x) as b) (S y) => (plus (plus b x) y)
- | x y => (plus x y)
- end.
+Type
+ match 0, 1 return nat with
+ | O, x => x
+ | S x as b, S y => b + x + y
+ | x, y => x + y
+ end.
-Type [l:(List nat)]<(List nat)>Cases l of
- Nil => (Nil nat)
- | (Cons a l) => l
- end.
+Type
+ match 0, 1 with
+ | O, x => x
+ | S x as b, S y => b + x + y
+ | x, y => x + y
+ end.
-Type [l:(List nat)] Cases l of
- Nil => (Nil nat)
- | (Cons a l) => l
- end.
-Type <nat>Cases (Nil nat) of
- Nil =>O
- | (Cons a l) => (S a)
- end.
-Type Cases (Nil nat) of
- Nil =>O
- | (Cons a l) => (S a)
- end.
+Type
+ (fun l : List nat =>
+ match l return (List nat) with
+ | Nil => Nil nat
+ | Cons a l => l
+ end).
+
+Type (fun l : List nat => match l with
+ | Nil => Nil nat
+ | Cons a l => l
+ end).
+
+Type match Nil nat return nat with
+ | Nil => 0
+ | Cons a l => S a
+ end.
+Type match Nil nat with
+ | Nil => 0
+ | Cons a l => S a
+ end.
-Type <(List nat)>Cases (Nil nat) of
- (Cons a l) => l
- | x => x
- end.
+Type match Nil nat return (List nat) with
+ | Cons a l => l
+ | x => x
+ end.
-Type Cases (Nil nat) of
- (Cons a l) => l
- | x => x
- end.
+Type match Nil nat with
+ | Cons a l => l
+ | x => x
+ end.
-Type <(List nat)>Cases (Nil nat) of
- Nil => (Nil nat)
- | (Cons a l) => l
- end.
+Type
+ match Nil nat return (List nat) with
+ | Nil => Nil nat
+ | Cons a l => l
+ end.
-Type Cases (Nil nat) of
- Nil => (Nil nat)
- | (Cons a l) => l
- end.
+Type match Nil nat with
+ | Nil => Nil nat
+ | Cons a l => l
+ end.
-Type
- <nat>Cases O of
- O => O
- | (S x) => <nat>Cases (Nil nat) of
- Nil => x
- | (Cons a l) => (plus x a)
- end
- end.
+Type
+ match 0 return nat with
+ | O => 0
+ | S x => match Nil nat return nat with
+ | Nil => x
+ | Cons a l => x + a
+ end
+ end.
-Type
- Cases O of
- O => O
- | (S x) => Cases (Nil nat) of
- Nil => x
- | (Cons a l) => (plus x a)
- end
- end.
+Type
+ match 0 with
+ | O => 0
+ | S x => match Nil nat with
+ | Nil => x
+ | Cons a l => x + a
+ end
+ end.
-Type
- [y:nat]Cases y of
- O => O
- | (S x) => Cases (Nil nat) of
- Nil => x
- | (Cons a l) => (plus x a)
- end
- end.
+Type
+ (fun y : nat =>
+ match y with
+ | O => 0
+ | S x => match Nil nat with
+ | Nil => x
+ | Cons a l => x + a
+ end
+ end).
-Type
- <nat>Cases O (Nil nat) of
- O x => O
- | (S x) Nil => x
- | (S x) (Cons a l) => (plus x a)
- end.
+Type
+ match 0, Nil nat return nat with
+ | O, x => 0
+ | S x, Nil => x
+ | S x, Cons a l => x + a
+ end.
-Type [n:nat][l:(listn n)]<[_:nat]nat>Cases l of
- niln => O
- | x => O
- end.
+Type
+ (fun (n : nat) (l : listn n) =>
+ match l return nat with
+ | niln => 0
+ | x => 0
+ end).
-Type [n:nat][l:(listn n)]
- Cases l of
- niln => O
- | x => O
- end.
+Type (fun (n : nat) (l : listn n) => match l with
+ | niln => 0
+ | x => 0
+ end).
-Type <[_:nat]nat>Cases niln of
- niln => O
- | x => O
- end.
+Type match niln return nat with
+ | niln => 0
+ | x => 0
+ end.
-Type Cases niln of
- niln => O
- | x => O
- end.
+Type match niln with
+ | niln => 0
+ | x => 0
+ end.
-Type <[_:nat]nat>Cases niln of
- niln => O
- | (consn n a l) => a
- end.
-Type Cases niln of niln => O
- | (consn n a l) => a
+Type match niln return nat with
+ | niln => 0
+ | consn n a l => a
+ end.
+Type match niln with
+ | niln => 0
+ | consn n a l => a
end.
-Type <[n:nat][_:(listn n)]nat>Cases niln of
- (consn m _ niln) => m
- | _ => (S O) end.
+Type
+ match niln in (listn n) return nat with
+ | consn m _ niln => m
+ | _ => 1
+ end.
-Type [n:nat][x:nat][l:(listn n)]<[_:nat]nat>Cases x l of
- O niln => O
- | y x => O
- end.
+Type
+ (fun (n x : nat) (l : listn n) =>
+ match x, l return nat with
+ | O, niln => 0
+ | y, x => 0
+ end).
+
+Type match 0, niln return nat with
+ | O, niln => 0
+ | y, x => 0
+ end.
-Type <[_:nat]nat>Cases O niln of
- O niln => O
- | y x => O
- end.
+Type match niln, 0 return nat with
+ | niln, O => 0
+ | y, x => 0
+ end.
-Type <[_:nat]nat>Cases niln O of
- niln O => O
- | y x => O
- end.
+Type match niln, 0 with
+ | niln, O => 0
+ | y, x => 0
+ end.
-Type Cases niln O of
- niln O => O
- | y x => O
- end.
+Type match niln, niln return nat with
+ | niln, niln => 0
+ | x, y => 0
+ end.
-Type <[_:nat][_:nat]nat>Cases niln niln of
- niln niln => O
- | x y => O
- end.
+Type match niln, niln with
+ | niln, niln => 0
+ | x, y => 0
+ end.
-Type Cases niln niln of
- niln niln => O
- | x y => O
- end.
+Type
+ match niln, niln, niln return nat with
+ | niln, niln, niln => 0
+ | x, y, z => 0
+ end.
-Type <[_,_,_:nat]nat>Cases niln niln niln of
- niln niln niln => O
- | x y z => O
- end.
+Type match niln, niln, niln with
+ | niln, niln, niln => 0
+ | x, y, z => 0
+ end.
-Type Cases niln niln niln of
- niln niln niln => O
- | x y z => O
- end.
+Type match niln return nat with
+ | niln => 0
+ | consn n a l => 0
+ end.
-Type <[_:nat]nat>Cases (niln) of
- niln => O
- | (consn n a l) => O
- end.
+Type match niln with
+ | niln => 0
+ | consn n a l => 0
+ end.
-Type Cases (niln) of
- niln => O
- | (consn n a l) => O
- end.
+Type
+ match niln, niln return nat with
+ | niln, niln => 0
+ | niln, consn n a l => n
+ | consn n a l, x => a
+ end.
-Type <[_:nat][_:nat]nat>Cases niln niln of
- niln niln => O
- | niln (consn n a l) => n
- | (consn n a l) x => a
- end.
+Type
+ match niln, niln with
+ | niln, niln => 0
+ | niln, consn n a l => n
+ | consn n a l, x => a
+ end.
-Type Cases niln niln of
- niln niln => O
- | niln (consn n a l) => n
- | (consn n a l) x => a
- end.
+Type
+ (fun (n : nat) (l : listn n) =>
+ match l return nat with
+ | niln => 0
+ | x => 0
+ end).
-Type [n:nat][l:(listn n)]<[_:nat]nat>Cases l of
- niln => O
- | x => O
- end.
+Type
+ (fun (c : nat) (s : bool) =>
+ match c, s return nat with
+ | O, _ => 0
+ | _, _ => c
+ end).
-Type [c:nat;s:bool]
- <[_:nat;_:bool]nat>Cases c s of
- | O _ => O
- | _ _ => c
- end.
-
-Type [c:nat;s:bool]
- <[_:nat;_:bool]nat>Cases c s of
- | O _ => O
- | (S _) _ => c
- end.
+Type
+ (fun (c : nat) (s : bool) =>
+ match c, s return nat with
+ | O, _ => 0
+ | S _, _ => c
+ end).
(* Rows of pattern variables: some tricky cases *)
-Axiom P:nat->Prop; f:(n:nat)(P n).
+Axioms (P : nat -> Prop) (f : forall n : nat, P n).
-Type [i:nat]
- <[_:bool;n:nat](P n)>Cases true i of
- | true k => (f k)
- | _ k => (f k)
- end.
+Type
+ (fun i : nat =>
+ match true, i as n return (P n) with
+ | true, k => f k
+ | _, k => f k
+ end).
-Type [i:nat]
- <[n:nat;_:bool](P n)>Cases i true of
- | k true => (f k)
- | k _ => (f k)
- end.
+Type
+ (fun i : nat =>
+ match i as n, true return (P n) with
+ | k, true => f k
+ | k, _ => f k
+ end).
(* Nested Cases: the SYNTH of the Cases on n used to make Multcase believe
* it has to synthtize the predicate on O (which he can't)
*)
-Type <[n]Cases n of O => bool | (S _) => nat end>Cases O of
- O => true
- | (S _) => O
+Type
+ match 0 as n return match n with
+ | O => bool
+ | S _ => nat
+ end with
+ | O => true
+ | S _ => 0
end.
-Type [n:nat][l:(listn n)]Cases l of
- niln => O
- | x => O
- end.
+Type (fun (n : nat) (l : listn n) => match l with
+ | niln => 0
+ | x => 0
+ end).
-Type [n:nat][l:(listn n)]<[_:nat]nat>Cases l of
- niln => O
- | (consn n a niln) => O
- | (consn n a (consn m b l)) => (plus n m)
- end.
+Type
+ (fun (n : nat) (l : listn n) =>
+ match l return nat with
+ | niln => 0
+ | consn n a niln => 0
+ | consn n a (consn m b l) => n + m
+ end).
-Type [n:nat][l:(listn n)]Cases l of
- niln => O
- | (consn n a niln) => O
- | (consn n a (consn m b l)) => (plus n m)
- end.
+Type
+ (fun (n : nat) (l : listn n) =>
+ match l with
+ | niln => 0
+ | consn n a niln => 0
+ | consn n a (consn m b l) => n + m
+ end).
-Type [n:nat][l:(listn n)]<[_:nat]nat>Cases l of
- niln => O
- | (consn n a niln) => O
- | (consn n a (consn m b l)) => (plus n m)
- end.
+Type
+ (fun (n : nat) (l : listn n) =>
+ match l return nat with
+ | niln => 0
+ | consn n a niln => 0
+ | consn n a (consn m b l) => n + m
+ end).
-Type [n:nat][l:(listn n)]Cases l of
- niln => O
- | (consn n a niln) => O
- | (consn n a (consn m b l)) => (plus n m)
- end.
+Type
+ (fun (n : nat) (l : listn n) =>
+ match l with
+ | niln => 0
+ | consn n a niln => 0
+ | consn n a (consn m b l) => n + m
+ end).
-Type [A:Set][n:nat][l:(Listn A n)]<[_:nat]nat>Cases l of
- Niln => O
- | (Consn n a Niln) => O
- | (Consn n a (Consn m b l)) => (plus n m)
- end.
+Type
+ (fun (A : Set) (n : nat) (l : Listn A n) =>
+ match l return nat with
+ | Niln => 0
+ | Consn n a Niln => 0
+ | Consn n a (Consn m b l) => n + m
+ end).
-Type [A:Set][n:nat][l:(Listn A n)]Cases l of
- Niln => O
- | (Consn n a Niln) => O
- | (Consn n a (Consn m b l)) => (plus n m)
- end.
+Type
+ (fun (A : Set) (n : nat) (l : Listn A n) =>
+ match l with
+ | Niln => 0
+ | Consn n a Niln => 0
+ | Consn n a (Consn m b l) => n + m
+ end).
(*
Type [A:Set][n:nat][l:(Listn A n)]
@@ -557,401 +632,441 @@ Type [A:Set][n:nat][l:(Listn A n)]
**********)
(* To test tratement of as-patterns in depth *)
-Type [A:Set] [l:(List A)]
- Cases l of
- (Nil as b) => (Nil A)
- | ((Cons a Nil) as L) => L
- | ((Cons a (Cons b m)) as L) => L
- end.
+Type
+ (fun (A : Set) (l : List A) =>
+ match l with
+ | Nil as b => Nil A
+ | Cons a Nil as L => L
+ | Cons a (Cons b m) as L => L
+ end).
-Type [n:nat][l:(listn n)]
- <[_:nat](listn n)>Cases l of
- niln => l
- | (consn n a c) => l
- end.
-Type [n:nat][l:(listn n)]
- Cases l of
- niln => l
- | (consn n a c) => l
- end.
+Type
+ (fun (n : nat) (l : listn n) =>
+ match l return (listn n) with
+ | niln => l
+ | consn n a c => l
+ end).
+Type
+ (fun (n : nat) (l : listn n) =>
+ match l with
+ | niln => l
+ | consn n a c => l
+ end).
-Type [n:nat][l:(listn n)]
- <[_:nat](listn n)>Cases l of
- (niln as b) => l
- | _ => l
- end.
+Type
+ (fun (n : nat) (l : listn n) =>
+ match l return (listn n) with
+ | niln as b => l
+ | _ => l
+ end).
-Type [n:nat][l:(listn n)]
- Cases l of
- (niln as b) => l
- | _ => l
- end.
+Type
+ (fun (n : nat) (l : listn n) => match l with
+ | niln as b => l
+ | _ => l
+ end).
-Type [n:nat][l:(listn n)]
- <[_:nat](listn n)>Cases l of
- (niln as b) => l
- | x => l
- end.
+Type
+ (fun (n : nat) (l : listn n) =>
+ match l return (listn n) with
+ | niln as b => l
+ | x => l
+ end).
-Type [A:Set][n:nat][l:(Listn A n)]
- Cases l of
- (Niln as b) => l
- | _ => l
- end.
+Type
+ (fun (A : Set) (n : nat) (l : Listn A n) =>
+ match l with
+ | Niln as b => l
+ | _ => l
+ end).
-Type [A:Set][n:nat][l:(Listn A n)]
- <[_:nat](Listn A n)>Cases l of
- Niln => l
- | (Consn n a Niln) => l
- | (Consn n a (Consn m b c)) => l
- end.
+Type
+ (fun (A : Set) (n : nat) (l : Listn A n) =>
+ match l return (Listn A n) with
+ | Niln => l
+ | Consn n a Niln => l
+ | Consn n a (Consn m b c) => l
+ end).
-Type [A:Set][n:nat][l:(Listn A n)]
- Cases l of
- Niln => l
- | (Consn n a Niln) => l
- | (Consn n a (Consn m b c)) => l
- end.
+Type
+ (fun (A : Set) (n : nat) (l : Listn A n) =>
+ match l with
+ | Niln => l
+ | Consn n a Niln => l
+ | Consn n a (Consn m b c) => l
+ end).
-Type [A:Set][n:nat][l:(Listn A n)]
- <[_:nat](Listn A n)>Cases l of
- (Niln as b) => l
- | (Consn n a (Niln as b)) => l
- | (Consn n a (Consn m b _)) => l
- end.
+Type
+ (fun (A : Set) (n : nat) (l : Listn A n) =>
+ match l return (Listn A n) with
+ | Niln as b => l
+ | Consn n a (Niln as b) => l
+ | Consn n a (Consn m b _) => l
+ end).
-Type [A:Set][n:nat][l:(Listn A n)]
- Cases l of
- (Niln as b) => l
- | (Consn n a (Niln as b)) => l
- | (Consn n a (Consn m b _)) => l
- end.
+Type
+ (fun (A : Set) (n : nat) (l : Listn A n) =>
+ match l with
+ | Niln as b => l
+ | Consn n a (Niln as b) => l
+ | Consn n a (Consn m b _) => l
+ end).
-Type <[_:nat]nat>Cases (niln) of
- niln => O
- | (consn n a niln) => O
- | (consn n a (consn m b l)) => (plus n m)
- end.
+Type
+ match niln return nat with
+ | niln => 0
+ | consn n a niln => 0
+ | consn n a (consn m b l) => n + m
+ end.
-Type Cases (niln) of
- niln => O
- | (consn n a niln) => O
- | (consn n a (consn m b l)) => (plus n m)
- end.
+Type
+ match niln with
+ | niln => 0
+ | consn n a niln => 0
+ | consn n a (consn m b l) => n + m
+ end.
-Type <[_,_:nat]nat>Cases (LeO O) of
- (LeO x) => x
- | (LeS n m h) => (plus n m)
- end.
+Type match LeO 0 return nat with
+ | LeO x => x
+ | LeS n m h => n + m
+ end.
-Type Cases (LeO O) of
- (LeO x) => x
- | (LeS n m h) => (plus n m)
- end.
+Type match LeO 0 with
+ | LeO x => x
+ | LeS n m h => n + m
+ end.
-Type [n:nat][l:(Listn nat n)]
- <[_:nat]nat>Cases l of
- Niln => O
- | (Consn n a l) => O
- end.
+Type
+ (fun (n : nat) (l : Listn nat n) =>
+ match l return nat with
+ | Niln => 0
+ | Consn n a l => 0
+ end).
-Type [n:nat][l:(Listn nat n)]
- Cases l of
- Niln => O
- | (Consn n a l) => O
- end.
+Type
+ (fun (n : nat) (l : Listn nat n) =>
+ match l with
+ | Niln => 0
+ | Consn n a l => 0
+ end).
-Type Cases (Niln nat) of
- Niln => O
- | (Consn n a l) => O
- end.
+Type match Niln nat with
+ | Niln => 0
+ | Consn n a l => 0
+ end.
-Type <[_:nat]nat>Cases (LE_n O) of
- LE_n => O
- | (LE_S m h) => O
- end.
+Type match LE_n 0 return nat with
+ | LE_n => 0
+ | LE_S m h => 0
+ end.
-Type Cases (LE_n O) of
- LE_n => O
- | (LE_S m h) => O
- end.
+Type match LE_n 0 with
+ | LE_n => 0
+ | LE_S m h => 0
+ end.
-Type Cases (LE_n O) of
- LE_n => O
- | (LE_S m h) => O
- end.
+Type match LE_n 0 with
+ | LE_n => 0
+ | LE_S m h => 0
+ end.
-Type <[_:nat]nat>Cases (niln ) of
- niln => O
- | (consn n a niln) => n
- | (consn n a (consn m b l)) => (plus n m)
- end.
+Type
+ match niln return nat with
+ | niln => 0
+ | consn n a niln => n
+ | consn n a (consn m b l) => n + m
+ end.
-Type Cases (niln ) of
- niln => O
- | (consn n a niln) => n
- | (consn n a (consn m b l)) => (plus n m)
- end.
+Type
+ match niln with
+ | niln => 0
+ | consn n a niln => n
+ | consn n a (consn m b l) => n + m
+ end.
-Type <[_:nat]nat>Cases (Niln nat) of
- Niln => O
- | (Consn n a Niln) => n
- | (Consn n a (Consn m b l)) => (plus n m)
- end.
+Type
+ match Niln nat return nat with
+ | Niln => 0
+ | Consn n a Niln => n
+ | Consn n a (Consn m b l) => n + m
+ end.
-Type Cases (Niln nat) of
- Niln => O
- | (Consn n a Niln) => n
- | (Consn n a (Consn m b l)) => (plus n m)
- end.
+Type
+ match Niln nat with
+ | Niln => 0
+ | Consn n a Niln => n
+ | Consn n a (Consn m b l) => n + m
+ end.
-Type <[_,_:nat]nat>Cases (LeO O) of
- (LeO x) => x
- | (LeS n m (LeO x)) => (plus x m)
- | (LeS n m (LeS x y h)) => (plus n x)
- end.
+Type
+ match LeO 0 return nat with
+ | LeO x => x
+ | LeS n m (LeO x) => x + m
+ | LeS n m (LeS x y h) => n + x
+ end.
-Type Cases (LeO O) of
- (LeO x) => x
- | (LeS n m (LeO x)) => (plus x m)
- | (LeS n m (LeS x y h)) => (plus n x)
- end.
+Type
+ match LeO 0 with
+ | LeO x => x
+ | LeS n m (LeO x) => x + m
+ | LeS n m (LeS x y h) => n + x
+ end.
-Type <[_,_:nat]nat>Cases (LeO O) of
- (LeO x) => x
- | (LeS n m (LeO x)) => (plus x m)
- | (LeS n m (LeS x y h)) => m
- end.
+Type
+ match LeO 0 return nat with
+ | LeO x => x
+ | LeS n m (LeO x) => x + m
+ | LeS n m (LeS x y h) => m
+ end.
-Type Cases (LeO O) of
- (LeO x) => x
- | (LeS n m (LeO x)) => (plus x m)
- | (LeS n m (LeS x y h)) => m
- end.
+Type
+ match LeO 0 with
+ | LeO x => x
+ | LeS n m (LeO x) => x + m
+ | LeS n m (LeS x y h) => m
+ end.
-Type [n,m:nat][h:(Le n m)]
- <[_,_:nat]nat>Cases h of
- (LeO x) => x
- | x => O
- end.
+Type
+ (fun (n m : nat) (h : Le n m) =>
+ match h return nat with
+ | LeO x => x
+ | x => 0
+ end).
-Type [n,m:nat][h:(Le n m)]
- Cases h of
- (LeO x) => x
- | x => O
- end.
+Type (fun (n m : nat) (h : Le n m) => match h with
+ | LeO x => x
+ | x => 0
+ end).
-Type [n,m:nat][h:(Le n m)]
- <[_,_:nat]nat>Cases h of
- (LeS n m h) => n
- | x => O
- end.
+Type
+ (fun (n m : nat) (h : Le n m) =>
+ match h return nat with
+ | LeS n m h => n
+ | x => 0
+ end).
-Type [n,m:nat][h:(Le n m)]
- Cases h of
- (LeS n m h) => n
- | x => O
- end.
+Type
+ (fun (n m : nat) (h : Le n m) => match h with
+ | LeS n m h => n
+ | x => 0
+ end).
-Type [n,m:nat][h:(Le n m)]
- <[_,_:nat]nat*nat>Cases h of
- (LeO n) => (O,n)
- |(LeS n m _) => ((S n),(S m))
- end.
+Type
+ (fun (n m : nat) (h : Le n m) =>
+ match h return (nat * nat) with
+ | LeO n => (0, n)
+ | LeS n m _ => (S n, S m)
+ end).
-Type [n,m:nat][h:(Le n m)]
- Cases h of
- (LeO n) => (O,n)
- |(LeS n m _) => ((S n),(S m))
- end.
+Type
+ (fun (n m : nat) (h : Le n m) =>
+ match h with
+ | LeO n => (0, n)
+ | LeS n m _ => (S n, S m)
+ end).
-Fixpoint F [n,m:nat; h:(Le n m)] : (Le n (S m)) :=
- <[n,m:nat](Le n (S m))>Cases h of
- (LeO m') => (LeO (S m'))
- | (LeS n' m' h') => (LeS n' (S m') (F n' m' h'))
- end.
+Fixpoint F (n m : nat) (h : Le n m) {struct h} : Le n (S m) :=
+ match h in (Le n m) return (Le n (S m)) with
+ | LeO m' => LeO (S m')
+ | LeS n' m' h' => LeS n' (S m') (F n' m' h')
+ end.
Reset F.
-Fixpoint F [n,m:nat; h:(Le n m)] :(Le n (S m)) :=
- <[n,m:nat](Le n (S m))>Cases h of
- (LeS n m h) => (LeS n (S m) (F n m h))
- | (LeO m) => (LeO (S m))
- end.
+Fixpoint F (n m : nat) (h : Le n m) {struct h} : Le n (S m) :=
+ match h in (Le n m) return (Le n (S m)) with
+ | LeS n m h => LeS n (S m) (F n m h)
+ | LeO m => LeO (S m)
+ end.
(* Rend la longueur de la liste *)
-Definition length1:= [n:nat] [l:(listn n)]
- <[_:nat]nat>Cases l of
- (consn n _ (consn m _ _)) => (S (S m))
- |(consn n _ _) => (S O)
- | _ => O
- end.
+Definition length1 (n : nat) (l : listn n) :=
+ match l return nat with
+ | consn n _ (consn m _ _) => S (S m)
+ | consn n _ _ => 1
+ | _ => 0
+ end.
Reset length1.
-Definition length1:= [n:nat] [l:(listn n)]
- Cases l of
- (consn n _ (consn m _ _)) => (S (S m))
- |(consn n _ _) => (S O)
- | _ => O
- end.
+Definition length1 (n : nat) (l : listn n) :=
+ match l with
+ | consn n _ (consn m _ _) => S (S m)
+ | consn n _ _ => 1
+ | _ => 0
+ end.
-Definition length2:= [n:nat] [l:(listn n)]
- <[_:nat]nat>Cases l of
- (consn n _ (consn m _ _)) => (S (S m))
- |(consn n _ _) => (S n)
- | _ => O
- end.
+Definition length2 (n : nat) (l : listn n) :=
+ match l return nat with
+ | consn n _ (consn m _ _) => S (S m)
+ | consn n _ _ => S n
+ | _ => 0
+ end.
Reset length2.
-Definition length2:= [n:nat] [l:(listn n)]
- Cases l of
- (consn n _ (consn m _ _)) => (S (S m))
- |(consn n _ _) => (S n)
- | _ => O
- end.
+Definition length2 (n : nat) (l : listn n) :=
+ match l with
+ | consn n _ (consn m _ _) => S (S m)
+ | consn n _ _ => S n
+ | _ => 0
+ end.
-Definition length3 :=
-[n:nat][l:(listn n)]
- <[_:nat]nat>Cases l of
- (consn n _ (consn m _ l)) => (S n)
- |(consn n _ _) => (S O)
- | _ => O
- end.
+Definition length3 (n : nat) (l : listn n) :=
+ match l return nat with
+ | consn n _ (consn m _ l) => S n
+ | consn n _ _ => 1
+ | _ => 0
+ end.
Reset length3.
-Definition length3 :=
-[n:nat][l:(listn n)]
- Cases l of
- (consn n _ (consn m _ l)) => (S n)
- |(consn n _ _) => (S O)
- | _ => O
- end.
+Definition length3 (n : nat) (l : listn n) :=
+ match l with
+ | consn n _ (consn m _ l) => S n
+ | consn n _ _ => 1
+ | _ => 0
+ end.
-Type <[_,_:nat]nat>Cases (LeO O) of
- (LeS n m h) =>(plus n m)
- | x => O
- end.
-Type Cases (LeO O) of
- (LeS n m h) =>(plus n m)
- | x => O
- end.
+Type match LeO 0 return nat with
+ | LeS n m h => n + m
+ | x => 0
+ end.
+Type match LeO 0 with
+ | LeS n m h => n + m
+ | x => 0
+ end.
-Type [n,m:nat][h:(Le n m)]<[_,_:nat]nat>Cases h of
- (LeO x) => x
- | (LeS n m (LeO x)) => (plus x m)
- | (LeS n m (LeS x y h)) =>(plus n (plus m (plus x y)))
- end.
+Type
+ (fun (n m : nat) (h : Le n m) =>
+ match h return nat with
+ | LeO x => x
+ | LeS n m (LeO x) => x + m
+ | LeS n m (LeS x y h) => n + (m + (x + y))
+ end).
-Type [n,m:nat][h:(Le n m)]Cases h of
- (LeO x) => x
- | (LeS n m (LeO x)) => (plus x m)
- | (LeS n m (LeS x y h)) =>(plus n (plus m (plus x y)))
- end.
+Type
+ (fun (n m : nat) (h : Le n m) =>
+ match h with
+ | LeO x => x
+ | LeS n m (LeO x) => x + m
+ | LeS n m (LeS x y h) => n + (m + (x + y))
+ end).
-Type <[_,_:nat]nat>Cases (LeO O) of
- (LeO x) => x
- | (LeS n m (LeO x)) => (plus x m)
- | (LeS n m (LeS x y h)) =>(plus n (plus m (plus x y)))
- end.
+Type
+ match LeO 0 return nat with
+ | LeO x => x
+ | LeS n m (LeO x) => x + m
+ | LeS n m (LeS x y h) => n + (m + (x + y))
+ end.
-Type Cases (LeO O) of
- (LeO x) => x
- | (LeS n m (LeO x)) => (plus x m)
- | (LeS n m (LeS x y h)) =>(plus n (plus m (plus x y)))
- end.
+Type
+ match LeO 0 with
+ | LeO x => x
+ | LeS n m (LeO x) => x + m
+ | LeS n m (LeS x y h) => n + (m + (x + y))
+ end.
-Type <[_:nat]nat>Cases (LE_n O) of
- LE_n => O
- | (LE_S m LE_n) => (plus O m)
- | (LE_S m (LE_S y h)) => (plus O m)
- end.
+Type
+ match LE_n 0 return nat with
+ | LE_n => 0
+ | LE_S m LE_n => 0 + m
+ | LE_S m (LE_S y h) => 0 + m
+ end.
-Type Cases (LE_n O) of
- LE_n => O
- | (LE_S m LE_n) => (plus O m)
- | (LE_S m (LE_S y h)) => (plus O m)
- end.
+Type
+ match LE_n 0 with
+ | LE_n => 0
+ | LE_S m LE_n => 0 + m
+ | LE_S m (LE_S y h) => 0 + m
+ end.
-Type [n,m:nat][h:(Le n m)] Cases h of
- x => x
- end.
+Type (fun (n m : nat) (h : Le n m) => match h with
+ | x => x
+ end).
-Type [n,m:nat][h:(Le n m)]<[_,_:nat]nat>Cases h of
- (LeO n) => n
- | x => O
- end.
-Type [n,m:nat][h:(Le n m)] Cases h of
- (LeO n) => n
- | x => O
- end.
+Type
+ (fun (n m : nat) (h : Le n m) =>
+ match h return nat with
+ | LeO n => n
+ | x => 0
+ end).
+Type (fun (n m : nat) (h : Le n m) => match h with
+ | LeO n => n
+ | x => 0
+ end).
-Type [n:nat]<[_:nat]nat->nat>Cases niln of
- niln => [_:nat]O
- | (consn n a niln) => [_:nat]O
- | (consn n a (consn m b l)) => [_:nat](plus n m)
- end.
+Type
+ (fun n : nat =>
+ match niln return (nat -> nat) with
+ | niln => fun _ : nat => 0
+ | consn n a niln => fun _ : nat => 0
+ | consn n a (consn m b l) => fun _ : nat => n + m
+ end).
-Type [n:nat] Cases niln of
- niln => [_:nat]O
- | (consn n a niln) => [_:nat]O
- | (consn n a (consn m b l)) => [_:nat](plus n m)
- end.
+Type
+ (fun n : nat =>
+ match niln with
+ | niln => fun _ : nat => 0
+ | consn n a niln => fun _ : nat => 0
+ | consn n a (consn m b l) => fun _ : nat => n + m
+ end).
-Type [A:Set][n:nat][l:(Listn A n)]
- <[_:nat]nat->nat>Cases l of
- Niln => [_:nat]O
- | (Consn n a Niln) => [_:nat] n
- | (Consn n a (Consn m b l)) => [_:nat](plus n m)
- end.
+Type
+ (fun (A : Set) (n : nat) (l : Listn A n) =>
+ match l return (nat -> nat) with
+ | Niln => fun _ : nat => 0
+ | Consn n a Niln => fun _ : nat => n
+ | Consn n a (Consn m b l) => fun _ : nat => n + m
+ end).
-Type [A:Set][n:nat][l:(Listn A n)]
- Cases l of
- Niln => [_:nat]O
- | (Consn n a Niln) => [_:nat] n
- | (Consn n a (Consn m b l)) => [_:nat](plus n m)
- end.
+Type
+ (fun (A : Set) (n : nat) (l : Listn A n) =>
+ match l with
+ | Niln => fun _ : nat => 0
+ | Consn n a Niln => fun _ : nat => n
+ | Consn n a (Consn m b l) => fun _ : nat => n + m
+ end).
(* Alsos tests for multiple _ patterns *)
-Type [A:Set][n:nat][l:(Listn A n)]
- <[n:nat](Listn A n)>Cases l of
- (Niln as b) => b
- | ((Consn _ _ _ ) as b)=> b
- end.
+Type
+ (fun (A : Set) (n : nat) (l : Listn A n) =>
+ match l in (Listn _ n) return (Listn A n) with
+ | Niln as b => b
+ | Consn _ _ _ as b => b
+ end).
(** Horrible error message!
@@ -962,215 +1077,278 @@ Type [A:Set][n:nat][l:(Listn A n)]
end.
******)
-Type <[n:nat](listn n)>Cases niln of
- (niln as b) => b
- | ((consn _ _ _ ) as b)=> b
- end.
-
+Type
+ match niln in (listn n) return (listn n) with
+ | niln as b => b
+ | consn _ _ _ as b => b
+ end.
-Type <[n:nat](listn n)>Cases niln of
- (niln as b) => b
- | x => x
- end.
-Type [n,m:nat][h:(LE n m)]<[_:nat]nat->nat>Cases h of
- LE_n => [_:nat]n
- | (LE_S m LE_n) => [_:nat](plus n m)
- | (LE_S m (LE_S y h)) => [_:nat](plus m y )
- end.
-Type [n,m:nat][h:(LE n m)]Cases h of
- LE_n => [_:nat]n
- | (LE_S m LE_n) => [_:nat](plus n m)
- | (LE_S m (LE_S y h)) => [_:nat](plus m y )
- end.
+Type
+ match niln in (listn n) return (listn n) with
+ | niln as b => b
+ | x => x
+ end.
+Type
+ (fun (n m : nat) (h : LE n m) =>
+ match h return (nat -> nat) with
+ | LE_n => fun _ : nat => n
+ | LE_S m LE_n => fun _ : nat => n + m
+ | LE_S m (LE_S y h) => fun _ : nat => m + y
+ end).
+Type
+ (fun (n m : nat) (h : LE n m) =>
+ match h with
+ | LE_n => fun _ : nat => n
+ | LE_S m LE_n => fun _ : nat => n + m
+ | LE_S m (LE_S y h) => fun _ : nat => m + y
+ end).
-Type [n,m:nat][h:(LE n m)]
- <[_:nat]nat>Cases h of
- LE_n => n
- | (LE_S m LE_n ) => (plus n m)
- | (LE_S m (LE_S y LE_n )) => (plus (plus n m) y)
- | (LE_S m (LE_S y (LE_S y' h))) => (plus (plus n m) (plus y y'))
- end.
+Type
+ (fun (n m : nat) (h : LE n m) =>
+ match h return nat with
+ | LE_n => n
+ | LE_S m LE_n => n + m
+ | LE_S m (LE_S y LE_n) => n + m + y
+ | LE_S m (LE_S y (LE_S y' h)) => n + m + (y + y')
+ end).
-Type [n,m:nat][h:(LE n m)]
- Cases h of
- LE_n => n
- | (LE_S m LE_n ) => (plus n m)
- | (LE_S m (LE_S y LE_n )) => (plus (plus n m) y)
- | (LE_S m (LE_S y (LE_S y' h))) => (plus (plus n m) (plus y y'))
- end.
+Type
+ (fun (n m : nat) (h : LE n m) =>
+ match h with
+ | LE_n => n
+ | LE_S m LE_n => n + m
+ | LE_S m (LE_S y LE_n) => n + m + y
+ | LE_S m (LE_S y (LE_S y' h)) => n + m + (y + y')
+ end).
-Type [n,m:nat][h:(LE n m)]<[_:nat]nat>Cases h of
- LE_n => n
- | (LE_S m LE_n) => (plus n m)
- | (LE_S m (LE_S y h)) => (plus (plus n m) y)
- end.
+Type
+ (fun (n m : nat) (h : LE n m) =>
+ match h return nat with
+ | LE_n => n
+ | LE_S m LE_n => n + m
+ | LE_S m (LE_S y h) => n + m + y
+ end).
-Type [n,m:nat][h:(LE n m)]Cases h of
- LE_n => n
- | (LE_S m LE_n) => (plus n m)
- | (LE_S m (LE_S y h)) => (plus (plus n m) y)
- end.
-Type [n,m:nat]
- <[_,_:nat]nat>Cases (LeO O) of
- (LeS n m h) =>(plus n m)
- | x => O
- end.
+Type
+ (fun (n m : nat) (h : LE n m) =>
+ match h with
+ | LE_n => n
+ | LE_S m LE_n => n + m
+ | LE_S m (LE_S y h) => n + m + y
+ end).
-Type [n,m:nat]
- Cases (LeO O) of
- (LeS n m h) =>(plus n m)
- | x => O
- end.
+Type
+ (fun n m : nat =>
+ match LeO 0 return nat with
+ | LeS n m h => n + m
+ | x => 0
+ end).
+
+Type (fun n m : nat => match LeO 0 with
+ | LeS n m h => n + m
+ | x => 0
+ end).
-Parameter test : (n:nat){(le O n)}+{False}.
-Type [n:nat]<nat>Cases (test n) of
- (left _) => O
- | _ => O end.
+Parameter test : forall n : nat, {0 <= n} + {False}.
+Type (fun n : nat => match test n return nat with
+ | left _ => 0
+ | _ => 0
+ end).
-Type [n:nat] <nat> Cases (test n) of
- (left _) => O
- | _ => O end.
+Type (fun n : nat => match test n return nat with
+ | left _ => 0
+ | _ => 0
+ end).
-Type [n:nat]Cases (test n) of
- (left _) => O
- | _ => O end.
+Type (fun n : nat => match test n with
+ | left _ => 0
+ | _ => 0
+ end).
-Parameter compare : (n,m:nat)({(lt n m)}+{n=m})+{(gt n m)}.
-Type <nat>Cases (compare O O) of
- (* k<i *) (inleft (left _)) => O
- | (* k=i *) (inleft _) => O
- | (* k>i *) (inright _) => O end.
+Parameter compare : forall n m : nat, {n < m} + {n = m} + {n > m}.
+Type
+ match compare 0 0 return nat with
+
+ (* k<i *) | inleft (left _) => 0
+ (* k=i *) | inleft _ => 0
+ (* k>i *) | inright _ => 0
+ end.
-Type Cases (compare O O) of
- (* k<i *) (inleft (left _)) => O
- | (* k=i *) (inleft _) => O
- | (* k>i *) (inright _) => O end.
+Type
+ match compare 0 0 with
+
+ (* k<i *) | inleft (left _) => 0
+ (* k=i *) | inleft _ => 0
+ (* k>i *) | inright _ => 0
+ end.
-CoInductive SStream [A:Set] : (nat->A->Prop)->Type :=
-scons :
- (P:nat->A->Prop)(a:A)(P O a)->(SStream A [n:nat](P (S n)))->(SStream A P).
+CoInductive SStream (A : Set) : (nat -> A -> Prop) -> Type :=
+ scons :
+ forall (P : nat -> A -> Prop) (a : A),
+ P 0 a -> SStream A (fun n : nat => P (S n)) -> SStream A P.
Parameter B : Set.
-Type
- [P:nat->B->Prop][x:(SStream B P)]<[_:nat->B->Prop]B>Cases x of
- (scons _ a _ _) => a end.
+Type
+ (fun (P : nat -> B -> Prop) (x : SStream B P) =>
+ match x return B with
+ | scons _ a _ _ => a
+ end).
-Type
- [P:nat->B->Prop][x:(SStream B P)] Cases x of
- (scons _ a _ _) => a end.
+Type
+ (fun (P : nat -> B -> Prop) (x : SStream B P) =>
+ match x with
+ | scons _ a _ _ => a
+ end).
-Type <nat*nat>Cases (O,O) of (x,y) => ((S x),(S y)) end.
-Type <nat*nat>Cases (O,O) of ((x as b), y) => ((S x),(S y)) end.
-Type <nat*nat>Cases (O,O) of (pair x y) => ((S x),(S y)) end.
+Type match (0, 0) return (nat * nat) with
+ | (x, y) => (S x, S y)
+ end.
+Type match (0, 0) return (nat * nat) with
+ | (b, y) => (S b, S y)
+ end.
+Type match (0, 0) return (nat * nat) with
+ | (x, y) => (S x, S y)
+ end.
-Type Cases (O,O) of (x,y) => ((S x),(S y)) end.
-Type Cases (O,O) of ((x as b), y) => ((S x),(S y)) end.
-Type Cases (O,O) of (pair x y) => ((S x),(S y)) end.
+Type match (0, 0) with
+ | (x, y) => (S x, S y)
+ end.
+Type match (0, 0) with
+ | (b, y) => (S b, S y)
+ end.
+Type match (0, 0) with
+ | (x, y) => (S x, S y)
+ end.
-Parameter concat : (A:Set)(List A) ->(List A) ->(List A).
+Parameter concat : forall A : Set, List A -> List A -> List A.
-Type <(List nat)>Cases (Nil nat) (Nil nat) of
- (Nil as b) x => (concat nat b x)
- | ((Cons _ _) as d) (Nil as c) => (concat nat d c)
- | _ _ => (Nil nat)
- end.
-Type Cases (Nil nat) (Nil nat) of
- (Nil as b) x => (concat nat b x)
- | ((Cons _ _) as d) (Nil as c) => (concat nat d c)
- | _ _ => (Nil nat)
- end.
+Type
+ match Nil nat, Nil nat return (List nat) with
+ | Nil as b, x => concat nat b x
+ | Cons _ _ as d, Nil as c => concat nat d c
+ | _, _ => Nil nat
+ end.
+Type
+ match Nil nat, Nil nat with
+ | Nil as b, x => concat nat b x
+ | Cons _ _ as d, Nil as c => concat nat d c
+ | _, _ => Nil nat
+ end.
Inductive redexes : Set :=
- VAR : nat -> redexes
+ | VAR : nat -> redexes
| Fun : redexes -> redexes
- | Ap : bool -> redexes -> redexes -> redexes.
-
-Fixpoint regular [U:redexes] : Prop := <Prop>Cases U of
- (VAR n) => True
-| (Fun V) => (regular V)
-| (Ap true ((Fun _) as V) W) => (regular V) /\ (regular W)
-| (Ap true _ W) => False
-| (Ap false V W) => (regular V) /\ (regular W)
-end.
+ | Ap : bool -> redexes -> redexes -> redexes.
+
+Fixpoint regular (U : redexes) : Prop :=
+ match U return Prop with
+ | VAR n => True
+ | Fun V => regular V
+ | Ap true (Fun _ as V) W => regular V /\ regular W
+ | Ap true _ W => False
+ | Ap false V W => regular V /\ regular W
+ end.
-Type [n:nat]Cases n of O => O | (S ((S n) as V)) => V | _ => O end.
+Type (fun n : nat => match n with
+ | O => 0
+ | S (S n as V) => V
+ | _ => 0
+ end).
Reset concat.
-Parameter concat :(n:nat) (listn n) -> (m:nat) (listn m)-> (listn (plus n m)).
-Type [n:nat][l:(listn n)][m:nat][l':(listn m)]
- <[n,_:nat](listn (plus n m))>Cases l l' of
- niln x => x
- | (consn n a l'') x =>(consn (plus n m) a (concat n l'' m x))
- end.
-
-Type [x,y,z:nat]
- [H:x=y]
- [H0:y=z]<[_:nat]x=z>Cases H of refl_equal =>
- <[n:nat]x=n>Cases H0 of refl_equal => H
- end
- end.
-
-Type [h:False]<False>Cases h of end.
+Parameter
+ concat :
+ forall n : nat, listn n -> forall m : nat, listn m -> listn (n + m).
+Type
+ (fun (n : nat) (l : listn n) (m : nat) (l' : listn m) =>
+ match l in (listn n), l' return (listn (n + m)) with
+ | niln, x => x
+ | consn n a l'', x => consn (n + m) a (concat n l'' m x)
+ end).
-Type [h:False]<True>Cases h of end.
+Type
+ (fun (x y z : nat) (H : x = y) (H0 : y = z) =>
+ match H return (x = z) with
+ | refl_equal =>
+ match H0 in (_ = n) return (x = n) with
+ | refl_equal => H
+ end
+ end).
+
+Type (fun h : False => match h return False with
+ end).
-Definition is_zero := [n:nat]Cases n of O => True | _ => False end.
+Type (fun h : False => match h return True with
+ end).
-Type [n:nat][h:O=(S n)]<[n:nat](is_zero n)>Cases h of refl_equal => I end.
+Definition is_zero (n : nat) := match n with
+ | O => True
+ | _ => False
+ end.
-Definition disc : (n:nat)O=(S n)->False :=
- [n:nat][h:O=(S n)]
- <[n:nat](is_zero n)>Cases h of refl_equal => I end.
+Type
+ (fun (n : nat) (h : 0 = S n) =>
+ match h in (_ = n) return (is_zero n) with
+ | refl_equal => I
+ end).
+
+Definition disc (n : nat) (h : 0 = S n) : False :=
+ match h in (_ = n) return (is_zero n) with
+ | refl_equal => I
+ end.
-Definition nlength3 := [n:nat] [l: (listn n)]
- Cases l of
- niln => O
- | (consn O _ _) => (S O)
- | (consn (S n) _ _) => (S (S n))
- end.
+Definition nlength3 (n : nat) (l : listn n) :=
+ match l with
+ | niln => 0
+ | consn O _ _ => 1
+ | consn (S n) _ _ => S (S n)
+ end.
(* == Testing strategy elimintation predicate synthesis == *)
Section titi.
-Variable h:False.
-Type Cases O of
- O => O
- | _ => (Except h)
- end.
+Variable h : False.
+Type match 0 with
+ | O => 0
+ | _ => except h
+ end.
End titi.
-Type Cases niln of
- (consn _ a niln) => a
- | (consn n _ x) => O
- | niln => O
- end.
+Type match niln with
+ | consn _ a niln => a
+ | consn n _ x => 0
+ | niln => 0
+ end.
-Inductive wsort : Set := ws : wsort | wt : wsort.
-Inductive TS : wsort->Set :=
- id :(TS ws)
-| lift:(TS ws)->(TS ws).
+Inductive wsort : Set :=
+ | ws : wsort
+ | wt : wsort.
+Inductive TS : wsort -> Set :=
+ | id : TS ws
+ | lift : TS ws -> TS ws.
-Type [b:wsort][M:(TS b)][N:(TS b)]
- Cases M N of
- (lift M1) id => False
- | _ _ => True
- end.
+Type
+ (fun (b : wsort) (M N : TS b) =>
+ match M, N with
+ | lift M1, id => False
+ | _, _ => True
+ end).
@@ -1182,51 +1360,56 @@ Type [b:wsort][M:(TS b)][N:(TS b)]
Parameter LTERM : nat -> Set.
-Mutual Inductive TERM : Type :=
- var : TERM
- | oper : (op:nat) (LTERM op) -> TERM.
-
-Parameter t1, t2:TERM.
+Inductive TERM : Type :=
+ | var : TERM
+ | oper : forall op : nat, LTERM op -> TERM.
-Type Cases t1 t2 of
- var var => True
+Parameter t1 t2 : TERM.
- | (oper op1 l1) (oper op2 l2) => False
- | _ _ => False
- end.
+Type
+ match t1, t2 with
+ | var, var => True
+ | oper op1 l1, oper op2 l2 => False
+ | _, _ => False
+ end.
Reset LTERM.
-Require Peano_dec.
-Parameter n:nat.
-Definition eq_prf := (EXT m | n=m).
-Parameter p:eq_prf .
+Require Import Peano_dec.
+Parameter n : nat.
+Definition eq_prf := exists m : _, n = m.
+Parameter p : eq_prf.
-Type Cases p of
- (exT_intro c eqc) =>
- Cases (eq_nat_dec c n) of
- (right _) => (refl_equal ? n)
- |(left y) (* c=n*) => (refl_equal ? n)
- end
- end.
+Type
+ match p with
+ | ex_intro c eqc =>
+ match eq_nat_dec c n with
+ | right _ => refl_equal n
+ | left y => (* c=n*) refl_equal n
+ end
+ end.
-Parameter ordre_total : nat->nat->Prop.
+Parameter ordre_total : nat -> nat -> Prop.
-Parameter N_cla:(N:nat){N=O}+{N=(S O)}+{(ge N (S (S O)))}.
+Parameter N_cla : forall N : nat, {N = 0} + {N = 1} + {N >= 2}.
-Parameter exist_U2:(N:nat)(ge N (S (S O)))->
- {n:nat|(m:nat)(lt O m)/\(le m N)
- /\(ordre_total n m)
- /\(lt O n)/\(lt n N)}.
+Parameter
+ exist_U2 :
+ forall N : nat,
+ N >= 2 ->
+ {n : nat |
+ forall m : nat, 0 < m /\ m <= N /\ ordre_total n m /\ 0 < n /\ n < N}.
-Type [N:nat](Cases (N_cla N) of
- (inright H)=>(Cases (exist_U2 N H) of
- (exist a b)=>a
- end)
- | _ => O
- end).
+Type
+ (fun N : nat =>
+ match N_cla N with
+ | inright H => match exist_U2 N H with
+ | exist a b => a
+ end
+ | _ => 0
+ end).
@@ -1238,148 +1421,159 @@ Type [N:nat](Cases (N_cla N) of
(* == To test that terms named with AS are correctly absolutized before
substitution in rhs == *)
-Type [n:nat]<[n:nat]nat>Cases (n) of
- O => O
- | (S O) => O
- | ((S (S n1)) as N) => N
- end.
+Type
+ (fun n : nat =>
+ match n return nat with
+ | O => 0
+ | S O => 0
+ | S (S n1) as N => N
+ end).
(* ========= *)
-Type <[n:nat][_:(listn n)]Prop>Cases niln of
- niln => True
- | (consn (S O) _ _) => False
- | _ => True end.
-
-Type <[n:nat][_:(listn n)]Prop>Cases niln of
- niln => True
- | (consn (S (S O)) _ _) => False
- | _ => True end.
-
-
-Type <[n,m:nat][h:(Le n m)]nat>Cases (LeO O) of
- (LeO _) => O
- | (LeS (S x) _ _) => x
- | _ => (S O) end.
-
-Type <[n,m:nat][h:(Le n m)]nat>Cases (LeO O) of
- (LeO _) => O
- | (LeS (S x) (S y) _) => x
- | _ => (S O) end.
-
-Type <[n,m:nat][h:(Le n m)]nat>Cases (LeO O) of
- (LeO _) => O
- | (LeS ((S x) as b) (S y) _) => b
- | _ => (S O) end.
+Type
+ match niln in (listn n) return Prop with
+ | niln => True
+ | consn (S O) _ _ => False
+ | _ => True
+ end.
+Type
+ match niln in (listn n) return Prop with
+ | niln => True
+ | consn (S (S O)) _ _ => False
+ | _ => True
+ end.
-Parameter ff: (n,m:nat)~n=m -> ~(S n)=(S m).
-Parameter discr_r : (n:nat) ~(O=(S n)).
-Parameter discr_l : (n:nat) ~((S n)=O).
+Type
+ match LeO 0 as h in (Le n m) return nat with
+ | LeO _ => 0
+ | LeS (S x) _ _ => x
+ | _ => 1
+ end.
-Type
-[n:nat]
- <[n:nat]n=O\/~n=O>Cases n of
- O => (or_introl ? ~O=O (refl_equal ? O))
- | (S x) => (or_intror (S x)=O ? (discr_l x))
+Type
+ match LeO 0 as h in (Le n m) return nat with
+ | LeO _ => 0
+ | LeS (S x) (S y) _ => x
+ | _ => 1
end.
+Type
+ match LeO 0 as h in (Le n m) return nat with
+ | LeO _ => 0
+ | LeS (S x as b) (S y) _ => b
+ | _ => 1
+ end.
-Fixpoint eqdec [n:nat] : (m:nat) n=m \/ ~n=m :=
-[m:nat]
- <[n,m:nat] n=m \/ ~n=m>Cases n m of
- O O => (or_introl ? ~O=O (refl_equal ? O))
- | O (S x) => (or_intror O=(S x) ? (discr_r x))
- | (S x) O => (or_intror ? ~(S x)=O (discr_l x))
+Parameter ff : forall n m : nat, n <> m -> S n <> S m.
+Parameter discr_r : forall n : nat, 0 <> S n.
+Parameter discr_l : forall n : nat, S n <> 0.
- | (S x) (S y) =>
- <(S x)=(S y)\/~(S x)=(S y)>Cases (eqdec x y) of
- (or_introl h) => (or_introl ? ~(S x)=(S y) (f_equal nat nat S x y h))
- | (or_intror h) => (or_intror (S x)=(S y) ? (ff x y h))
+Type
+ (fun n : nat =>
+ match n return (n = 0 \/ n <> 0) with
+ | O => or_introl (0 <> 0) (refl_equal 0)
+ | S x => or_intror (S x = 0) (discr_l x)
+ end).
+
+
+Fixpoint eqdec (n m : nat) {struct n} : n = m \/ n <> m :=
+ match n, m return (n = m \/ n <> m) with
+ | O, O => or_introl (0 <> 0) (refl_equal 0)
+ | O, S x => or_intror (0 = S x) (discr_r x)
+ | S x, O => or_intror _ (discr_l x)
+ | S x, S y =>
+ match eqdec x y return (S x = S y \/ S x <> S y) with
+ | or_introl h => or_introl (S x <> S y) (f_equal S h)
+ | or_intror h => or_intror (S x = S y) (ff x y h)
end
- end.
+ end.
Reset eqdec.
-Fixpoint eqdec [n:nat] : (m:nat) n=m \/ ~n=m :=
-<[n:nat] (m:nat)n=m \/ ~n=m>Cases n of
- O => [m:nat] <[m:nat]O=m\/~O=m>Cases m of
- O => (or_introl ? ~O=O (refl_equal nat O))
- |(S x) => (or_intror O=(S x) ? (discr_r x))
- end
- | (S x) => [m:nat]
- <[m:nat](S x)=m\/~(S x)=m>Cases m of
- O => (or_intror (S x)=O ? (discr_l x))
- | (S y) =>
- <(S x)=(S y)\/~(S x)=(S y)>Cases (eqdec x y) of
- (or_introl h) => (or_introl ? ~(S x)=(S y) (f_equal ? ? S x y h))
- | (or_intror h) => (or_intror (S x)=(S y) ? (ff x y h))
- end
- end
- end.
-
-
-Inductive empty : (n:nat)(listn n)-> Prop :=
- intro_empty: (empty O niln).
-
-Parameter inv_empty : (n,a:nat)(l:(listn n)) ~(empty (S n) (consn n a l)).
-
-Type
-[n:nat] [l:(listn n)]
- <[n:nat] [l:(listn n)](empty n l) \/ ~(empty n l)>Cases l of
- niln => (or_introl ? ~(empty O niln) intro_empty)
- | ((consn n a y) as b) => (or_intror (empty (S n) b) ? (inv_empty n a y))
+Fixpoint eqdec (n : nat) : forall m : nat, n = m \/ n <> m :=
+ match n return (forall m : nat, n = m \/ n <> m) with
+ | O =>
+ fun m : nat =>
+ match m return (0 = m \/ 0 <> m) with
+ | O => or_introl (0 <> 0) (refl_equal 0)
+ | S x => or_intror (0 = S x) (discr_r x)
+ end
+ | S x =>
+ fun m : nat =>
+ match m return (S x = m \/ S x <> m) with
+ | O => or_intror (S x = 0) (discr_l x)
+ | S y =>
+ match eqdec x y return (S x = S y \/ S x <> S y) with
+ | or_introl h => or_introl (S x <> S y) (f_equal S h)
+ | or_intror h => or_intror (S x = S y) (ff x y h)
+ end
+ end
end.
-Reset ff.
-Parameter ff: (n,m:nat)~n=m -> ~(S n)=(S m).
-Parameter discr_r : (n:nat) ~(O=(S n)).
-Parameter discr_l : (n:nat) ~((S n)=O).
-
-Type
-[n:nat]
- <[n:nat]n=O\/~n=O>Cases n of
- O => (or_introl ? ~O=O (refl_equal ? O))
- | (S x) => (or_intror (S x)=O ? (discr_l x))
- end.
+Inductive empty : forall n : nat, listn n -> Prop :=
+ intro_empty : empty 0 niln.
-Fixpoint eqdec [n:nat] : (m:nat) n=m \/ ~n=m :=
-[m:nat]
- <[n,m:nat] n=m \/ ~n=m>Cases n m of
- O O => (or_introl ? ~O=O (refl_equal ? O))
+Parameter
+ inv_empty : forall (n a : nat) (l : listn n), ~ empty (S n) (consn n a l).
- | O (S x) => (or_intror O=(S x) ? (discr_r x))
+Type
+ (fun (n : nat) (l : listn n) =>
+ match l in (listn n) return (empty n l \/ ~ empty n l) with
+ | niln => or_introl (~ empty 0 niln) intro_empty
+ | consn n a y as b => or_intror (empty (S n) b) (inv_empty n a y)
+ end).
- | (S x) O => (or_intror ? ~(S x)=O (discr_l x))
+Reset ff.
+Parameter ff : forall n m : nat, n <> m -> S n <> S m.
+Parameter discr_r : forall n : nat, 0 <> S n.
+Parameter discr_l : forall n : nat, S n <> 0.
- | (S x) (S y) =>
- <(S x)=(S y)\/~(S x)=(S y)>Cases (eqdec x y) of
- (or_introl h) => (or_introl ? ~(S x)=(S y) (f_equal nat nat S x y h))
- | (or_intror h) => (or_intror (S x)=(S y) ? (ff x y h))
+Type
+ (fun n : nat =>
+ match n return (n = 0 \/ n <> 0) with
+ | O => or_introl (0 <> 0) (refl_equal 0)
+ | S x => or_intror (S x = 0) (discr_l x)
+ end).
+
+
+Fixpoint eqdec (n m : nat) {struct n} : n = m \/ n <> m :=
+ match n, m return (n = m \/ n <> m) with
+ | O, O => or_introl (0 <> 0) (refl_equal 0)
+ | O, S x => or_intror (0 = S x) (discr_r x)
+ | S x, O => or_intror _ (discr_l x)
+ | S x, S y =>
+ match eqdec x y return (S x = S y \/ S x <> S y) with
+ | or_introl h => or_introl (S x <> S y) (f_equal S h)
+ | or_intror h => or_intror (S x = S y) (ff x y h)
end
- end.
+ end.
Reset eqdec.
-Fixpoint eqdec [n:nat] : (m:nat) n=m \/ ~n=m :=
-<[n:nat] (m:nat)n=m \/ ~n=m>Cases n of
- O => [m:nat] <[m:nat]O=m\/~O=m>Cases m of
- O => (or_introl ? ~O=O (refl_equal nat O))
- |(S x) => (or_intror O=(S x) ? (discr_r x))
- end
- | (S x) => [m:nat]
- <[m:nat](S x)=m\/~(S x)=m>Cases m of
- O => (or_intror (S x)=O ? (discr_l x))
- | (S y) =>
- <(S x)=(S y)\/~(S x)=(S y)>Cases (eqdec x y) of
- (or_introl h) => (or_introl ? ~(S x)=(S y) (f_equal ? ? S x y h))
- | (or_intror h) => (or_intror (S x)=(S y) ? (ff x y h))
- end
- end
- end.
+Fixpoint eqdec (n : nat) : forall m : nat, n = m \/ n <> m :=
+ match n return (forall m : nat, n = m \/ n <> m) with
+ | O =>
+ fun m : nat =>
+ match m return (0 = m \/ 0 <> m) with
+ | O => or_introl (0 <> 0) (refl_equal 0)
+ | S x => or_intror (0 = S x) (discr_r x)
+ end
+ | S x =>
+ fun m : nat =>
+ match m return (S x = m \/ S x <> m) with
+ | O => or_intror (S x = 0) (discr_l x)
+ | S y =>
+ match eqdec x y return (S x = S y \/ S x <> S y) with
+ | or_introl h => or_introl (S x <> S y) (f_equal S h)
+ | or_intror h => or_intror (S x = S y) (ff x y h)
+ end
+ end
+ end.
(* ================================================== *)
@@ -1387,17 +1581,17 @@ Fixpoint eqdec [n:nat] : (m:nat) n=m \/ ~n=m :=
(* ================================================== *)
-Inductive Empty [A:Set] : (List A)-> Prop :=
- intro_Empty: (Empty A (Nil A)).
+Inductive Empty (A : Set) : List A -> Prop :=
+ intro_Empty : Empty A (Nil A).
-Parameter inv_Empty : (A:Set)(a:A)(x:(List A)) ~(Empty A (Cons A a x)).
+Parameter
+ inv_Empty : forall (A : Set) (a : A) (x : List A), ~ Empty A (Cons A a x).
Type
- <[l:(List nat)](Empty nat l) \/ ~(Empty nat l)>Cases (Nil nat) of
- Nil => (or_introl ? ~(Empty nat (Nil nat)) (intro_Empty nat))
- | (Cons a y) => (or_intror (Empty nat (Cons nat a y)) ?
- (inv_Empty nat a y))
+ match Nil nat as l return (Empty nat l \/ ~ Empty nat l) with
+ | Nil => or_introl (~ Empty nat (Nil nat)) (intro_Empty nat)
+ | Cons a y => or_intror (Empty nat (Cons nat a y)) (inv_Empty nat a y)
end.
@@ -1406,192 +1600,222 @@ Type
(* ================================================== *)
-Inductive empty : (n:nat)(listn n)-> Prop :=
- intro_empty: (empty O niln).
+Inductive empty : forall n : nat, listn n -> Prop :=
+ intro_empty : empty 0 niln.
-Parameter inv_empty : (n,a:nat)(l:(listn n)) ~(empty (S n) (consn n a l)).
+Parameter
+ inv_empty : forall (n a : nat) (l : listn n), ~ empty (S n) (consn n a l).
-Type
-[n:nat] [l:(listn n)]
- <[n:nat] [l:(listn n)](empty n l) \/ ~(empty n l)>Cases l of
- niln => (or_introl ? ~(empty O niln) intro_empty)
- | ((consn n a y) as b) => (or_intror (empty (S n) b) ? (inv_empty n a y))
- end.
+Type
+ (fun (n : nat) (l : listn n) =>
+ match l in (listn n) return (empty n l \/ ~ empty n l) with
+ | niln => or_introl (~ empty 0 niln) intro_empty
+ | consn n a y as b => or_intror (empty (S n) b) (inv_empty n a y)
+ end).
(* ===================================== *)
(* Test parametros: *)
(* ===================================== *)
-Inductive eqlong : (List nat)-> (List nat)-> Prop :=
- eql_cons : (n,m:nat)(x,y:(List nat))
- (eqlong x y) -> (eqlong (Cons nat n x) (Cons nat m y))
-| eql_nil : (eqlong (Nil nat) (Nil nat)).
-
-
-Parameter V1 : (eqlong (Nil nat) (Nil nat))\/ ~(eqlong (Nil nat) (Nil nat)).
-Parameter V2 : (a:nat)(x:(List nat))
- (eqlong (Nil nat) (Cons nat a x))\/ ~(eqlong (Nil nat)(Cons nat a x)).
-Parameter V3 : (a:nat)(x:(List nat))
- (eqlong (Cons nat a x) (Nil nat))\/ ~(eqlong (Cons nat a x) (Nil nat)).
-Parameter V4 : (a:nat)(x:(List nat))(b:nat)(y:(List nat))
- (eqlong (Cons nat a x)(Cons nat b y))
- \/ ~(eqlong (Cons nat a x) (Cons nat b y)).
+Inductive eqlong : List nat -> List nat -> Prop :=
+ | eql_cons :
+ forall (n m : nat) (x y : List nat),
+ eqlong x y -> eqlong (Cons nat n x) (Cons nat m y)
+ | eql_nil : eqlong (Nil nat) (Nil nat).
+
+
+Parameter V1 : eqlong (Nil nat) (Nil nat) \/ ~ eqlong (Nil nat) (Nil nat).
+Parameter
+ V2 :
+ forall (a : nat) (x : List nat),
+ eqlong (Nil nat) (Cons nat a x) \/ ~ eqlong (Nil nat) (Cons nat a x).
+Parameter
+ V3 :
+ forall (a : nat) (x : List nat),
+ eqlong (Cons nat a x) (Nil nat) \/ ~ eqlong (Cons nat a x) (Nil nat).
+Parameter
+ V4 :
+ forall (a : nat) (x : List nat) (b : nat) (y : List nat),
+ eqlong (Cons nat a x) (Cons nat b y) \/
+ ~ eqlong (Cons nat a x) (Cons nat b y).
Type
- <[x,y:(List nat)](eqlong x y)\/~(eqlong x y)>Cases (Nil nat) (Nil nat) of
- Nil Nil => V1
- | Nil (Cons a x) => (V2 a x)
- | (Cons a x) Nil => (V3 a x)
- | (Cons a x) (Cons b y) => (V4 a x b y)
- end.
+ match Nil nat as x, Nil nat as y return (eqlong x y \/ ~ eqlong x y) with
+ | Nil, Nil => V1
+ | Nil, Cons a x => V2 a x
+ | Cons a x, Nil => V3 a x
+ | Cons a x, Cons b y => V4 a x b y
+ end.
Type
-[x,y:(List nat)]
- <[x,y:(List nat)](eqlong x y)\/~(eqlong x y)>Cases x y of
- Nil Nil => V1
- | Nil (Cons a x) => (V2 a x)
- | (Cons a x) Nil => (V3 a x)
- | (Cons a x) (Cons b y) => (V4 a x b y)
- end.
+ (fun x y : List nat =>
+ match x, y return (eqlong x y \/ ~ eqlong x y) with
+ | Nil, Nil => V1
+ | Nil, Cons a x => V2 a x
+ | Cons a x, Nil => V3 a x
+ | Cons a x, Cons b y => V4 a x b y
+ end).
(* ===================================== *)
-Inductive Eqlong : (n:nat) (listn n)-> (m:nat) (listn m)-> Prop :=
- Eql_cons : (n,m:nat )(x:(listn n))(y:(listn m)) (a,b:nat)
- (Eqlong n x m y)
- ->(Eqlong (S n) (consn n a x) (S m) (consn m b y))
-| Eql_niln : (Eqlong O niln O niln).
-
-
-Parameter W1 : (Eqlong O niln O niln)\/ ~(Eqlong O niln O niln).
-Parameter W2 : (n,a:nat)(x:(listn n))
- (Eqlong O niln (S n)(consn n a x)) \/ ~(Eqlong O niln (S n) (consn n a x)).
-Parameter W3 : (n,a:nat)(x:(listn n))
- (Eqlong (S n) (consn n a x) O niln) \/ ~(Eqlong (S n) (consn n a x) O niln).
-Parameter W4 : (n,a:nat)(x:(listn n)) (m,b:nat)(y:(listn m))
- (Eqlong (S n)(consn n a x) (S m) (consn m b y))
- \/ ~(Eqlong (S n)(consn n a x) (S m) (consn m b y)).
+Inductive Eqlong :
+forall n : nat, listn n -> forall m : nat, listn m -> Prop :=
+ | Eql_cons :
+ forall (n m : nat) (x : listn n) (y : listn m) (a b : nat),
+ Eqlong n x m y -> Eqlong (S n) (consn n a x) (S m) (consn m b y)
+ | Eql_niln : Eqlong 0 niln 0 niln.
+
+
+Parameter W1 : Eqlong 0 niln 0 niln \/ ~ Eqlong 0 niln 0 niln.
+Parameter
+ W2 :
+ forall (n a : nat) (x : listn n),
+ Eqlong 0 niln (S n) (consn n a x) \/ ~ Eqlong 0 niln (S n) (consn n a x).
+Parameter
+ W3 :
+ forall (n a : nat) (x : listn n),
+ Eqlong (S n) (consn n a x) 0 niln \/ ~ Eqlong (S n) (consn n a x) 0 niln.
+Parameter
+ W4 :
+ forall (n a : nat) (x : listn n) (m b : nat) (y : listn m),
+ Eqlong (S n) (consn n a x) (S m) (consn m b y) \/
+ ~ Eqlong (S n) (consn n a x) (S m) (consn m b y).
Type
- <[n:nat][x:(listn n)][m:nat][y:(listn m)]
- (Eqlong n x m y)\/~(Eqlong n x m y)>Cases niln niln of
- niln niln => W1
- | niln (consn n a x) => (W2 n a x)
- | (consn n a x) niln => (W3 n a x)
- | (consn n a x) (consn m b y) => (W4 n a x m b y)
- end.
-
-
-Type
-[n,m:nat][x:(listn n)][y:(listn m)]
- <[n:nat][x:(listn n)][m:nat][y:(listn m)]
- (Eqlong n x m y)\/~(Eqlong n x m y)>Cases x y of
- niln niln => W1
- | niln (consn n a x) => (W2 n a x)
- | (consn n a x) niln => (W3 n a x)
- | (consn n a x) (consn m b y) => (W4 n a x m b y)
- end.
-
-
-Parameter Inv_r : (n,a:nat)(x:(listn n)) ~(Eqlong O niln (S n) (consn n a x)).
-Parameter Inv_l : (n,a:nat)(x:(listn n)) ~(Eqlong (S n) (consn n a x) O niln).
-Parameter Nff : (n,a:nat)(x:(listn n)) (m,b:nat)(y:(listn m))
- ~(Eqlong n x m y)
- -> ~(Eqlong (S n) (consn n a x) (S m) (consn m b y)).
-
-
-
-Fixpoint Eqlongdec [n:nat; x:(listn n)] : (m:nat)(y:(listn m))
- (Eqlong n x m y)\/~(Eqlong n x m y)
-:= [m:nat][y:(listn m)]
- <[n:nat][x:(listn n)][m:nat][y:(listn m)]
- (Eqlong n x m y)\/~(Eqlong n x m y)>Cases x y of
- niln niln => (or_introl ? ~(Eqlong O niln O niln) Eql_niln)
-
- | niln ((consn n a x) as L) =>
- (or_intror (Eqlong O niln (S n) L) ? (Inv_r n a x))
-
- | ((consn n a x) as L) niln =>
- (or_intror (Eqlong (S n) L O niln) ? (Inv_l n a x))
+ match
+ niln as x in (listn n), niln as y in (listn m)
+ return (Eqlong n x m y \/ ~ Eqlong n x m y)
+ with
+ | niln, niln => W1
+ | niln, consn n a x => W2 n a x
+ | consn n a x, niln => W3 n a x
+ | consn n a x, consn m b y => W4 n a x m b y
+ end.
- | ((consn n a x) as L1) ((consn m b y) as L2) =>
- <(Eqlong (S n) L1 (S m) L2) \/~(Eqlong (S n) L1 (S m) L2)>
- Cases (Eqlongdec n x m y) of
- (or_introl h) =>
- (or_introl ? ~(Eqlong (S n) L1 (S m) L2)(Eql_cons n m x y a b h))
- | (or_intror h) =>
- (or_intror (Eqlong (S n) L1 (S m) L2) ? (Nff n a x m b y h))
+Type
+ (fun (n m : nat) (x : listn n) (y : listn m) =>
+ match
+ x in (listn n), y in (listn m)
+ return (Eqlong n x m y \/ ~ Eqlong n x m y)
+ with
+ | niln, niln => W1
+ | niln, consn n a x => W2 n a x
+ | consn n a x, niln => W3 n a x
+ | consn n a x, consn m b y => W4 n a x m b y
+ end).
+
+
+Parameter
+ Inv_r :
+ forall (n a : nat) (x : listn n), ~ Eqlong 0 niln (S n) (consn n a x).
+Parameter
+ Inv_l :
+ forall (n a : nat) (x : listn n), ~ Eqlong (S n) (consn n a x) 0 niln.
+Parameter
+ Nff :
+ forall (n a : nat) (x : listn n) (m b : nat) (y : listn m),
+ ~ Eqlong n x m y -> ~ Eqlong (S n) (consn n a x) (S m) (consn m b y).
+
+
+
+Fixpoint Eqlongdec (n : nat) (x : listn n) (m : nat)
+ (y : listn m) {struct x} : Eqlong n x m y \/ ~ Eqlong n x m y :=
+ match
+ x in (listn n), y in (listn m)
+ return (Eqlong n x m y \/ ~ Eqlong n x m y)
+ with
+ | niln, niln => or_introl (~ Eqlong 0 niln 0 niln) Eql_niln
+ | niln, consn n a x as L => or_intror (Eqlong 0 niln (S n) L) (Inv_r n a x)
+ | consn n a x as L, niln => or_intror (Eqlong (S n) L 0 niln) (Inv_l n a x)
+ | consn n a x as L1, consn m b y as L2 =>
+ match
+ Eqlongdec n x m y
+ return (Eqlong (S n) L1 (S m) L2 \/ ~ Eqlong (S n) L1 (S m) L2)
+ with
+ | or_introl h =>
+ or_introl (~ Eqlong (S n) L1 (S m) L2) (Eql_cons n m x y a b h)
+ | or_intror h =>
+ or_intror (Eqlong (S n) L1 (S m) L2) (Nff n a x m b y h)
end
- end.
+ end.
(* ============================================== *)
(* To test compilation of dependent case *)
(* Multiple Patterns *)
(* ============================================== *)
-Inductive skel: Type :=
- PROP: skel
- | PROD: skel->skel->skel.
+Inductive skel : Type :=
+ | PROP : skel
+ | PROD : skel -> skel -> skel.
Parameter Can : skel -> Type.
-Parameter default_can : (s:skel) (Can s).
+Parameter default_can : forall s : skel, Can s.
-Type [s1,s2:skel]
-[s1,s2:skel]<[s1:skel][_:skel](Can s1)>Cases s1 s2 of
- PROP PROP => (default_can PROP)
-| (PROD x y) PROP => (default_can (PROD x y))
-| (PROD x y) _ => (default_can (PROD x y))
-| PROP _ => (default_can PROP)
-end.
+Type
+ (fun s1 s2 s1 s2 : skel =>
+ match s1, s2 return (Can s1) with
+ | PROP, PROP => default_can PROP
+ | PROD x y, PROP => default_can (PROD x y)
+ | PROD x y, _ => default_can (PROD x y)
+ | PROP, _ => default_can PROP
+ end).
(* to test bindings in nested Cases *)
(* ================================ *)
Inductive Pair : Set :=
- pnil : Pair |
- pcons : Pair -> Pair -> Pair.
-
-Type [p,q:Pair]Cases p of
- (pcons _ x) =>
- Cases q of
- (pcons _ (pcons _ x)) => True
- | _ => False
- end
-| _ => False
-end.
-
-
-Type [p,q:Pair]Cases p of
- (pcons _ x) =>
- Cases q of
- (pcons _ (pcons _ x)) =>
- Cases q of
- (pcons _ (pcons _ (pcons _ x))) => x
+ | pnil : Pair
+ | pcons : Pair -> Pair -> Pair.
+
+Type
+ (fun p q : Pair =>
+ match p with
+ | pcons _ x => match q with
+ | pcons _ (pcons _ x) => True
+ | _ => False
+ end
+ | _ => False
+ end).
+
+
+Type
+ (fun p q : Pair =>
+ match p with
+ | pcons _ x =>
+ match q with
+ | pcons _ (pcons _ x) =>
+ match q with
+ | pcons _ (pcons _ (pcons _ x)) => x
| _ => pnil
end
- | _ => pnil
- end
-| _ => pnil
-end.
+ | _ => pnil
+ end
+ | _ => pnil
+ end).
-Type
- [n:nat]
- [l:(listn (S n))]
- <[z:nat](listn (pred z))>Cases l of
- niln => niln
- | (consn n _ l) =>
- <[m:nat](listn m)>Cases l of
- niln => niln
- | b => b
- end
- end.
+Type
+ (fun (n : nat) (l : listn (S n)) =>
+ match l in (listn z) return (listn (pred z)) with
+ | niln => niln
+ | consn n _ l =>
+ match l in (listn m) return (listn m) with
+ | niln => niln
+ | b => b
+ end
+ end).
(* Test de la syntaxe avec nombres *)
-Require Arith.
-Type [n]Cases n of (2) => true | _ => false end.
-
-Require ZArith.
-Type [n]Cases n of `0` => true | _ => false end.
+Require Import Arith.
+Type (fun n => match n with
+ | S (S O) => true
+ | _ => false
+ end).
+
+Require Import ZArith.
+Type (fun n => match n with
+ | Z0 => true
+ | _ => false
+ end).
diff --git a/test-suite/success/CasesDep.v b/test-suite/success/CasesDep.v
index 0256280ce..0477377e4 100644
--- a/test-suite/success/CasesDep.v
+++ b/test-suite/success/CasesDep.v
@@ -1,25 +1,28 @@
(* Check forward dependencies *)
-Check [P:nat->Prop][Q][A:(P O)->Q][B:(n:nat)(P (S n))->Q][x]
- <[_]Q>Cases x of
- | (exist O H) => (A H)
- | (exist (S n) H) => (B n H)
- end.
+Check
+ (fun (P : nat -> Prop) Q (A : P 0 -> Q) (B : forall n : nat, P (S n) -> Q)
+ x =>
+ match x return Q with
+ | exist O H => A H
+ | exist (S n) H => B n H
+ end).
(* Check dependencies in anonymous arguments (from FTA/listn.v) *)
-Inductive listn [A:Set] : nat->Set :=
- niln: (listn A O)
-| consn: (a:A)(n:nat)(listn A n)->(listn A (S n)).
+Inductive listn (A : Set) : nat -> Set :=
+ | niln : listn A 0
+ | consn : forall (a : A) (n : nat), listn A n -> listn A (S n).
Section Folding.
-Variables B, C : Set.
+Variable B C : Set.
Variable g : B -> C -> C.
Variable c : C.
-Fixpoint foldrn [n:nat; bs:(listn B n)] : C :=
- Cases bs of niln => c
- | (consn b _ tl) => (g b (foldrn ? tl))
+Fixpoint foldrn (n : nat) (bs : listn B n) {struct bs} : C :=
+ match bs with
+ | niln => c
+ | consn b _ tl => g b (foldrn _ tl)
end.
End Folding.
@@ -30,149 +33,154 @@ End Folding.
(* -------------------------------------------------------------------- *)
-Require Prelude.
-Require Logic_Type.
+Require Import Prelude.
+Require Import Logic_Type.
Section Orderings.
- Variable U: Type.
+ Variable U : Type.
- Definition Relation := U -> U -> Prop.
+ Definition Relation := U -> U -> Prop.
- Variable R: Relation.
+ Variable R : Relation.
- Definition Reflexive : Prop := (x: U) (R x x).
+ Definition Reflexive : Prop := forall x : U, R x x.
- Definition Transitive : Prop := (x,y,z: U) (R x y) -> (R y z) -> (R x z).
+ Definition Transitive : Prop := forall x y z : U, R x y -> R y z -> R x z.
- Definition Symmetric : Prop := (x,y: U) (R x y) -> (R y x).
+ Definition Symmetric : Prop := forall x y : U, R x y -> R y x.
- Definition Antisymmetric : Prop :=
- (x,y: U) (R x y) -> (R y x) -> x==y.
+ Definition Antisymmetric : Prop := forall x y : U, R x y -> R y x -> x = y.
- Definition contains : Relation -> Relation -> Prop :=
- [R,R': Relation] (x,y: U) (R' x y) -> (R x y).
- Definition same_relation : Relation -> Relation -> Prop :=
- [R,R': Relation] (contains R R') /\ (contains R' R).
+ Definition contains (R R' : Relation) : Prop :=
+ forall x y : U, R' x y -> R x y.
+ Definition same_relation (R R' : Relation) : Prop :=
+ contains R R' /\ contains R' R.
Inductive Equivalence : Prop :=
- Build_Equivalence:
- Reflexive -> Transitive -> Symmetric -> Equivalence.
+ Build_Equivalence : Reflexive -> Transitive -> Symmetric -> Equivalence.
Inductive PER : Prop :=
- Build_PER: Symmetric -> Transitive -> PER.
+ Build_PER : Symmetric -> Transitive -> PER.
End Orderings.
(***** Setoid *******)
-Inductive Setoid : Type
- := Build_Setoid : (S:Type)(R:(Relation S))(Equivalence ? R) -> Setoid.
+Inductive Setoid : Type :=
+ Build_Setoid :
+ forall (S : Type) (R : Relation S), Equivalence _ R -> Setoid.
-Definition elem := [A:Setoid] let (S,R,e)=A in S.
+Definition elem (A : Setoid) := let (S, R, e) := A in S.
-Grammar constr constr1 :=
- elem [ "|" constr0($s) "|"] -> [ (elem $s) ].
+(* <Warning> : Grammar is replaced by Notation *)
-Definition equal := [A:Setoid]
- <[s:Setoid](Relation |s|)>let (S,R,e)=A in R.
+Definition equal (A : Setoid) :=
+ let (S, R, e) as s return (Relation (elem s)) := A in R.
-Grammar constr constr1 :=
- equal [ constr0($c) "=" "%" "S" constr0($c2) ] ->
- [ (equal ? $c $c2) ].
+(* <Warning> : Grammar is replaced by Notation *)
-Axiom prf_equiv : (A:Setoid)(Equivalence |A| (equal A)).
-Axiom prf_refl : (A:Setoid)(Reflexive |A| (equal A)).
-Axiom prf_sym : (A:Setoid)(Symmetric |A| (equal A)).
-Axiom prf_trans : (A:Setoid)(Transitive |A| (equal A)).
+Axiom prf_equiv : forall A : Setoid, Equivalence (elem A) (equal A).
+Axiom prf_refl : forall A : Setoid, Reflexive (elem A) (equal A).
+Axiom prf_sym : forall A : Setoid, Symmetric (elem A) (equal A).
+Axiom prf_trans : forall A : Setoid, Transitive (elem A) (equal A).
Section Maps.
-Variables A,B: Setoid.
+Variable A B : Setoid.
-Definition Map_law := [f:|A| -> |B|]
- (x,y:|A|) x =%S y -> (f x) =%S (f y).
+Definition Map_law (f : elem A -> elem B) :=
+ forall x y : elem A, equal _ x y -> equal _ (f x) (f y).
Inductive Map : Type :=
- Build_Map : (f:|A| -> |B|)(p:(Map_law f))Map.
+ Build_Map : forall (f : elem A -> elem B) (p : Map_law f), Map.
-Definition explicit_ap := [m:Map] <|A| -> |B|>Match m with
- [f:?][p:?]f end.
+Definition explicit_ap (m : Map) :=
+ match m return (elem A -> elem B) with
+ | Build_Map f p => f
+ end.
-Axiom pres : (m:Map)(Map_law (explicit_ap m)).
+Axiom pres : forall m : Map, Map_law (explicit_ap m).
-Definition ext := [f,g:Map]
- (x:|A|) (explicit_ap f x) =%S (explicit_ap g x).
+Definition ext (f g : Map) :=
+ forall x : elem A, equal _ (explicit_ap f x) (explicit_ap g x).
-Axiom Equiv_map_eq : (Equivalence Map ext).
+Axiom Equiv_map_eq : Equivalence Map ext.
-Definition Map_setoid := (Build_Setoid Map ext Equiv_map_eq).
+Definition Map_setoid := Build_Setoid Map ext Equiv_map_eq.
End Maps.
-Notation ap := (explicit_ap ? ?).
+Notation ap := (explicit_ap _ _).
-Grammar constr constr8 :=
- map_setoid [ constr7($c1) "=>" constr8($c2) ]
- -> [ (Map_setoid $c1 $c2) ].
+(* <Warning> : Grammar is replaced by Notation *)
-Definition ap2 := [A,B,C:Setoid][f:|(A=>(B=>C))|][a:|A|] (ap (ap f a)).
+Definition ap2 (A B C : Setoid) (f : elem (Map_setoid A (Map_setoid B C)))
+ (a : elem A) := ap (ap f a).
(***** posint ******)
-Inductive posint : Type
- := Z : posint | Suc : posint -> posint.
+Inductive posint : Type :=
+ | Z : posint
+ | Suc : posint -> posint.
-Axiom f_equal : (A,B:Type)(f:A->B)(x,y:A) x==y -> (f x)==(f y).
-Axiom eq_Suc : (n,m:posint) n==m -> (Suc n)==(Suc m).
+Axiom
+ f_equal : forall (A B : Type) (f : A -> B) (x y : A), x = y -> f x = f y.
+Axiom eq_Suc : forall n m : posint, n = m -> Suc n = Suc m.
(* The predecessor function *)
-Definition pred : posint->posint
- := [n:posint](<posint>Case n of (* Z *) Z
- (* Suc u *) [u:posint]u end).
+Definition pred (n : posint) : posint :=
+ match n return posint with
+ | Z => (* Z *) Z
+ (* Suc u *)
+ | Suc u => u
+ end.
-Axiom pred_Sucn : (m:posint) m==(pred (Suc m)).
-Axiom eq_add_Suc : (n,m:posint) (Suc n)==(Suc m) -> n==m.
-Axiom not_eq_Suc : (n,m:posint) ~(n==m) -> ~((Suc n)==(Suc m)).
+Axiom pred_Sucn : forall m : posint, m = pred (Suc m).
+Axiom eq_add_Suc : forall n m : posint, Suc n = Suc m -> n = m.
+Axiom not_eq_Suc : forall n m : posint, n <> m -> Suc n <> Suc m.
-Definition IsSuc : posint->Prop
- := [n:posint](<Prop>Case n of (* Z *) False
- (* Suc p *) [p:posint]True end).
-Definition IsZero :posint->Prop :=
- [n:posint]<Prop>Match n with
- True
- [p:posint][H:Prop]False end.
+Definition IsSuc (n : posint) : Prop :=
+ match n return Prop with
+ | Z => (* Z *) False
+ (* Suc p *)
+ | Suc p => True
+ end.
+Definition IsZero (n : posint) : Prop :=
+ match n with
+ | Z => True
+ | Suc _ => False
+ end.
-Axiom Z_Suc : (n:posint) ~(Z==(Suc n)).
-Axiom Suc_Z: (n:posint) ~(Suc n)==Z.
-Axiom n_Sucn : (n:posint) ~(n==(Suc n)).
-Axiom Sucn_n : (n:posint) ~(Suc n)==n.
-Axiom eqT_symt : (a,b:posint) ~(a==b)->~(b==a).
+Axiom Z_Suc : forall n : posint, Z <> Suc n.
+Axiom Suc_Z : forall n : posint, Suc n <> Z.
+Axiom n_Sucn : forall n : posint, n <> Suc n.
+Axiom Sucn_n : forall n : posint, Suc n <> n.
+Axiom eqT_symt : forall a b : posint, a <> b -> b <> a.
(******* Dsetoid *****)
-Definition Decidable :=[A:Type][R:(Relation A)]
- (x,y:A)(R x y) \/ ~(R x y).
+Definition Decidable (A : Type) (R : Relation A) :=
+ forall x y : A, R x y \/ ~ R x y.
-Record DSetoid : Type :=
-{Set_of : Setoid;
- prf_decid : (Decidable |Set_of| (equal Set_of))}.
+Record DSetoid : Type :=
+ {Set_of : Setoid; prf_decid : Decidable (elem Set_of) (equal Set_of)}.
(* example de Dsetoide d'entiers *)
-Axiom eqT_equiv : (Equivalence posint (eqT posint)).
-Axiom Eq_posint_deci : (Decidable posint (eqT posint)).
+Axiom eqT_equiv : Equivalence posint (eq (A:=posint)).
+Axiom Eq_posint_deci : Decidable posint (eq (A:=posint)).
(* Dsetoide des posint*)
-Definition Set_of_posint := (Build_Setoid posint (eqT posint) eqT_equiv).
+Definition Set_of_posint := Build_Setoid posint (eq (A:=posint)) eqT_equiv.
-Definition Dposint := (Build_DSetoid Set_of_posint Eq_posint_deci).
+Definition Dposint := Build_DSetoid Set_of_posint Eq_posint_deci.
@@ -186,23 +194,22 @@ Definition Dposint := (Build_DSetoid Set_of_posint Eq_posint_deci).
Section Sig.
-Record Signature :Type :=
-{Sigma : DSetoid;
- Arity : (Map (Set_of Sigma) (Set_of Dposint))}.
+Record Signature : Type :=
+ {Sigma : DSetoid; Arity : Map (Set_of Sigma) (Set_of Dposint)}.
-Variable S:Signature.
+Variable S : Signature.
Variable Var : DSetoid.
-Mutual Inductive TERM : Type :=
- var : |(Set_of Var)| -> TERM
- | oper : (op: |(Set_of (Sigma S))| ) (LTERM (ap (Arity S) op)) -> TERM
-with
- LTERM : posint -> Type :=
- nil : (LTERM Z)
- | cons : TERM -> (n:posint)(LTERM n) -> (LTERM (Suc n)).
+Inductive TERM : Type :=
+ | var : elem (Set_of Var) -> TERM
+ | oper :
+ forall op : elem (Set_of (Sigma S)), LTERM (ap (Arity S) op) -> TERM
+with LTERM : posint -> Type :=
+ | nil : LTERM Z
+ | cons : TERM -> forall n : posint, LTERM n -> LTERM (Suc n).
@@ -211,51 +218,51 @@ with
(* -------------------------------------------------------------------- *)
-Parameter t1,t2: TERM.
+Parameter t1 t2 : TERM.
-Type
- Cases t1 t2 of
- | (var v1) (var v2) => True
- | (oper op1 l1) (oper op2 l2) => False
- | _ _ => False
- end.
+Type
+ match t1, t2 with
+ | var v1, var v2 => True
+ | oper op1 l1, oper op2 l2 => False
+ | _, _ => False
+ end.
-Parameter n2:posint.
-Parameter l1, l2:(LTERM n2).
+Parameter n2 : posint.
+Parameter l1 l2 : LTERM n2.
-Type
- Cases l1 l2 of
- nil nil => True
- | (cons v m y) nil => False
- | _ _ => False
-end.
+Type
+ match l1, l2 with
+ | nil, nil => True
+ | cons v m y, nil => False
+ | _, _ => False
+ end.
-Type Cases l1 l2 of
- nil nil => True
- | (cons u n x) (cons v m y) =>False
- | _ _ => False
-end.
+Type
+ match l1, l2 with
+ | nil, nil => True
+ | cons u n x, cons v m y => False
+ | _, _ => False
+ end.
-Definition equalT [t1:TERM]:TERM->Prop :=
-[t2:TERM]
- Cases t1 t2 of
- (var v1) (var v2) => True
- | (oper op1 l1) (oper op2 l2) => False
- | _ _ => False
- end.
+Definition equalT (t1 t2 : TERM) : Prop :=
+ match t1, t2 with
+ | var v1, var v2 => True
+ | oper op1 l1, oper op2 l2 => False
+ | _, _ => False
+ end.
-Definition EqListT [n1:posint;l1:(LTERM n1)]: (n2:posint)(LTERM n2)->Prop :=
-[n2:posint][l2:(LTERM n2)]
- Cases l1 l2 of
- nil nil => True
- | (cons t1 n1' l1') (cons t2 n2' l2') => False
- | _ _ => False
-end.
+Definition EqListT (n1 : posint) (l1 : LTERM n1) (n2 : posint)
+ (l2 : LTERM n2) : Prop :=
+ match l1, l2 with
+ | nil, nil => True
+ | cons t1 n1' l1', cons t2 n2' l2' => False
+ | _, _ => False
+ end.
Reset equalT.
@@ -263,37 +270,52 @@ Reset equalT.
(* Initial exemple (without patterns) *)
(*-------------------------------------------------------------------*)
-Fixpoint equalT [t1:TERM]:TERM->Prop :=
-<TERM->Prop>Case t1 of
- (*var*) [v1:|(Set_of Var)|][t2:TERM]
- <Prop>Case t2 of
- (*var*)[v2:|(Set_of Var)|] (v1 =%S v2)
- (*oper*)[op2:|(Set_of (Sigma S))|][_:(LTERM (ap (Arity S) op2))]False
- end
- (*oper*)[op1:|(Set_of (Sigma S))|]
- [l1:(LTERM (ap (Arity S) op1))][t2:TERM]
- <Prop>Case t2 of
- (*var*)[v2:|(Set_of Var)|]False
- (*oper*)[op2:|(Set_of (Sigma S))|]
- [l2:(LTERM (ap (Arity S) op2))]
- ((op1=%S op2)/\ (EqListT (ap (Arity S) op1) l1 (ap (Arity S) op2) l2))
- end
-end
-with EqListT [n1:posint;l1:(LTERM n1)]: (n2:posint)(LTERM n2)->Prop :=
-<[_:posint](n2:posint)(LTERM n2)->Prop>Case l1 of
- (*nil*) [n2:posint][l2:(LTERM n2)]
- <[_:posint]Prop>Case l2 of
- (*nil*)True
- (*cons*)[t2:TERM][n2':posint][l2':(LTERM n2')]False
- end
- (*cons*)[t1:TERM][n1':posint][l1':(LTERM n1')]
- [n2:posint][l2:(LTERM n2)]
- <[_:posint]Prop>Case l2 of
- (*nil*) False
- (*cons*)[t2:TERM][n2':posint][l2':(LTERM n2')]
- ((equalT t1 t2) /\ (EqListT n1' l1' n2' l2'))
- end
-end.
+Fixpoint equalT (t1 : TERM) : TERM -> Prop :=
+ match t1 return (TERM -> Prop) with
+ | var v1 =>
+ (*var*)
+ fun t2 : TERM =>
+ match t2 return Prop with
+ | var v2 =>
+ (*var*) equal _ v1 v2
+ (*oper*)
+ | oper op2 _ => False
+ end
+ (*oper*)
+ | oper op1 l1 =>
+ fun t2 : TERM =>
+ match t2 return Prop with
+ | var v2 =>
+ (*var*) False
+ (*oper*)
+ | oper op2 l2 =>
+ equal _ op1 op2 /\
+ EqListT (ap (Arity S) op1) l1 (ap (Arity S) op2) l2
+ end
+ end
+
+ with EqListT (n1 : posint) (l1 : LTERM n1) {struct l1} :
+ forall n2 : posint, LTERM n2 -> Prop :=
+ match l1 in (LTERM _) return (forall n2 : posint, LTERM n2 -> Prop) with
+ | nil =>
+ (*nil*)
+ fun (n2 : posint) (l2 : LTERM n2) =>
+ match l2 in (LTERM _) return Prop with
+ | nil =>
+ (*nil*) True
+ (*cons*)
+ | cons t2 n2' l2' => False
+ end
+ (*cons*)
+ | cons t1 n1' l1' =>
+ fun (n2 : posint) (l2 : LTERM n2) =>
+ match l2 in (LTERM _) return Prop with
+ | nil =>
+ (*nil*) False
+ (*cons*)
+ | cons t2 n2' l2' => equalT t1 t2 /\ EqListT n1' l1' n2' l2'
+ end
+ end.
(* ---------------------------------------------------------------- *)
@@ -301,91 +323,97 @@ end.
(* ---------------------------------------------------------------- *)
Reset equalT.
-Fixpoint equalT [t1:TERM]:TERM->Prop :=
-Cases t1 of
- (var v1) => [t2:TERM]
- Cases t2 of
- (var v2) => (v1 =%S v2)
- | (oper op2 _) =>False
- end
-| (oper op1 l1) => [t2:TERM]
- Cases t2 of
- (var _) => False
- | (oper op2 l2) => (op1=%S op2)
- /\ (EqListT (ap (Arity S) op1) l1 (ap (Arity S) op2) l2)
- end
-end
-with EqListT [n1:posint;l1:(LTERM n1)]: (n2:posint)(LTERM n2)->Prop :=
-<[_:posint](n2:posint)(LTERM n2)->Prop>Cases l1 of
- nil => [n2:posint][l2:(LTERM n2)]
- Cases l2 of
- nil => True
- | _ => False
- end
-| (cons t1 n1' l1') => [n2:posint][l2:(LTERM n2)]
- Cases l2 of
- nil =>False
- | (cons t2 n2' l2') => (equalT t1 t2)
- /\ (EqListT n1' l1' n2' l2')
- end
-end.
+Fixpoint equalT (t1 : TERM) : TERM -> Prop :=
+ match t1 with
+ | var v1 =>
+ fun t2 : TERM =>
+ match t2 with
+ | var v2 => equal _ v1 v2
+ | oper op2 _ => False
+ end
+ | oper op1 l1 =>
+ fun t2 : TERM =>
+ match t2 with
+ | var _ => False
+ | oper op2 l2 =>
+ equal _ op1 op2 /\
+ EqListT (ap (Arity S) op1) l1 (ap (Arity S) op2) l2
+ end
+ end
+
+ with EqListT (n1 : posint) (l1 : LTERM n1) {struct l1} :
+ forall n2 : posint, LTERM n2 -> Prop :=
+ match l1 return (forall n2 : posint, LTERM n2 -> Prop) with
+ | nil =>
+ fun (n2 : posint) (l2 : LTERM n2) =>
+ match l2 with
+ | nil => True
+ | _ => False
+ end
+ | cons t1 n1' l1' =>
+ fun (n2 : posint) (l2 : LTERM n2) =>
+ match l2 with
+ | nil => False
+ | cons t2 n2' l2' => equalT t1 t2 /\ EqListT n1' l1' n2' l2'
+ end
+ end.
Reset equalT.
-Fixpoint equalT [t1:TERM]:TERM->Prop :=
-Cases t1 of
- (var v1) => [t2:TERM]
- Cases t2 of
- (var v2) => (v1 =%S v2)
- | (oper op2 _) =>False
- end
-| (oper op1 l1) => [t2:TERM]
- Cases t2 of
- (var _) => False
- | (oper op2 l2) => (op1=%S op2)
- /\ (EqListT (ap (Arity S) op1) l1 (ap (Arity S) op2) l2)
- end
-end
-with EqListT [n1:posint;l1:(LTERM n1)]: (n2:posint)(LTERM n2)->Prop :=
-[n2:posint][l2:(LTERM n2)]
-Cases l1 of
- nil =>
- Cases l2 of
- nil => True
- | _ => False
- end
-| (cons t1 n1' l1') => Cases l2 of
- nil =>False
- | (cons t2 n2' l2') => (equalT t1 t2)
- /\ (EqListT n1' l1' n2' l2')
- end
-end.
+Fixpoint equalT (t1 : TERM) : TERM -> Prop :=
+ match t1 with
+ | var v1 =>
+ fun t2 : TERM =>
+ match t2 with
+ | var v2 => equal _ v1 v2
+ | oper op2 _ => False
+ end
+ | oper op1 l1 =>
+ fun t2 : TERM =>
+ match t2 with
+ | var _ => False
+ | oper op2 l2 =>
+ equal _ op1 op2 /\
+ EqListT (ap (Arity S) op1) l1 (ap (Arity S) op2) l2
+ end
+ end
+
+ with EqListT (n1 : posint) (l1 : LTERM n1) (n2 : posint)
+ (l2 : LTERM n2) {struct l1} : Prop :=
+ match l1 with
+ | nil => match l2 with
+ | nil => True
+ | _ => False
+ end
+ | cons t1 n1' l1' =>
+ match l2 with
+ | nil => False
+ | cons t2 n2' l2' => equalT t1 t2 /\ EqListT n1' l1' n2' l2'
+ end
+ end.
(* ---------------------------------------------------------------- *)
(* Version with multiple patterns *)
(* ---------------------------------------------------------------- *)
Reset equalT.
-Fixpoint equalT [t1:TERM]:TERM->Prop :=
-[t2:TERM]
- Cases t1 t2 of
- (var v1) (var v2) => (v1 =%S v2)
-
- | (oper op1 l1) (oper op2 l2) =>
- (op1=%S op2) /\ (EqListT (ap (Arity S) op1) l1 (ap (Arity S) op2) l2)
-
- | _ _ => False
- end
-
-with EqListT [n1:posint;l1:(LTERM n1)]: (n2:posint)(LTERM n2)->Prop :=
-[n2:posint][l2:(LTERM n2)]
- Cases l1 l2 of
- nil nil => True
- | (cons t1 n1' l1') (cons t2 n2' l2') => (equalT t1 t2)
- /\ (EqListT n1' l1' n2' l2')
- | _ _ => False
-end.
+Fixpoint equalT (t1 t2 : TERM) {struct t1} : Prop :=
+ match t1, t2 with
+ | var v1, var v2 => equal _ v1 v2
+ | oper op1 l1, oper op2 l2 =>
+ equal _ op1 op2 /\ EqListT (ap (Arity S) op1) l1 (ap (Arity S) op2) l2
+ | _, _ => False
+ end
+
+ with EqListT (n1 : posint) (l1 : LTERM n1) (n2 : posint)
+ (l2 : LTERM n2) {struct l1} : Prop :=
+ match l1, l2 with
+ | nil, nil => True
+ | cons t1 n1' l1', cons t2 n2' l2' =>
+ equalT t1 t2 /\ EqListT n1' l1' n2' l2'
+ | _, _ => False
+ end.
(* ------------------------------------------------------------------ *)
@@ -394,12 +422,11 @@ End Sig.
(* Exemple soumis par Bruno *)
-Definition bProp [b:bool] : Prop :=
- if b then True else False.
+Definition bProp (b : bool) : Prop := if b then True else False.
-Definition f0 [F:False;ty:bool]: (bProp ty) :=
- <[_:bool][ty:bool](bProp ty)>Cases ty ty of
- true true => I
- | _ false => F
- | _ true => I
+Definition f0 (F : False) (ty : bool) : bProp ty :=
+ match ty as _, ty return (bProp ty) with
+ | true, true => I
+ | _, false => F
+ | _, true => I
end.
diff --git a/test-suite/success/Check.v b/test-suite/success/Check.v
index 5d183528b..a20490ccf 100644
--- a/test-suite/success/Check.v
+++ b/test-suite/success/Check.v
@@ -9,6 +9,6 @@
(* This file tests that pretty-printing does not fail *)
(* Test of exact output is not specified *)
-Check O.
+Check 0.
Check S.
Check nat.
diff --git a/test-suite/success/Conjecture.v b/test-suite/success/Conjecture.v
index 6db5859b3..ea4b5ff76 100644
--- a/test-suite/success/Conjecture.v
+++ b/test-suite/success/Conjecture.v
@@ -1,13 +1,13 @@
(* Check keywords Conjecture and Admitted are recognized *)
-Conjecture c : (n:nat)n=O.
+Conjecture c : forall n : nat, n = 0.
Check c.
-Theorem d : (n:nat)n=O.
+Theorem d : forall n : nat, n = 0.
Proof.
- NewInduction n.
- Reflexivity.
- Assert H:False.
- 2:NewDestruct H.
+ induction n.
+ reflexivity.
+ assert (H : False).
+ 2: destruct H.
Admitted.
diff --git a/test-suite/success/DHyp.v b/test-suite/success/DHyp.v
index 73907bc4a..8b1378917 100644
--- a/test-suite/success/DHyp.v
+++ b/test-suite/success/DHyp.v
@@ -1,14 +1 @@
-V7only [
-HintDestruct Hypothesis h1 (le ? O) 3 [Fun I -> Inversion I ].
-Lemma lem1 : ~(le (S O) O).
-Intro H.
-DHyp H.
-Qed.
-
-HintDestruct Conclusion h2 (le O ?) 3 [Constructor].
-
-Lemma lem2 : (le O O).
-DConcl.
-Qed.
-].
diff --git a/test-suite/success/Decompose.v b/test-suite/success/Decompose.v
index 21a3ab5d1..1316cbf95 100644
--- a/test-suite/success/Decompose.v
+++ b/test-suite/success/Decompose.v
@@ -1,7 +1,9 @@
(* This was a Decompose bug reported by Randy Pollack (29 Mar 2000) *)
-Goal (O=O/\((x:nat)(x=x)->(x=x)/\((y:nat)y=y->y=y)))-> True.
-Intro H.
-Decompose [and] H. (* Was failing *)
+Goal
+0 = 0 /\ (forall x : nat, x = x -> x = x /\ (forall y : nat, y = y -> y = y)) ->
+True.
+intro H.
+decompose [and] H. (* Was failing *)
Abort.
diff --git a/test-suite/success/Destruct.v b/test-suite/success/Destruct.v
index fdd929bbc..b909e45e7 100644
--- a/test-suite/success/Destruct.v
+++ b/test-suite/success/Destruct.v
@@ -1,13 +1,13 @@
(* Submitted by Robert Schneck *)
-Parameter A,B,C,D : Prop.
-Axiom X : A->B->C/\D.
+Parameter A B C D : Prop.
+Axiom X : A -> B -> C /\ D.
-Lemma foo : A->B->C.
+Lemma foo : A -> B -> C.
Proof.
-Intros.
-NewDestruct X. (* Should find axiom X and should handle arguments of X *)
-Assumption.
-Assumption.
-Assumption.
+intros.
+destruct X. (* Should find axiom X and should handle arguments of X *)
+assumption.
+assumption.
+assumption.
Qed.
diff --git a/test-suite/success/DiscrR.v b/test-suite/success/DiscrR.v
index 5d12098f2..54528fb56 100644
--- a/test-suite/success/DiscrR.v
+++ b/test-suite/success/DiscrR.v
@@ -1,41 +1,41 @@
-Require Reals.
-Require DiscrR.
+Require Import Reals.
+Require Import DiscrR.
-Lemma ex0: ``1<>0``.
+Lemma ex0 : 1%R <> 0%R.
Proof.
- DiscrR.
-Save.
+ discrR.
+Qed.
-Lemma ex1: ``0<>2``.
+Lemma ex1 : 0%R <> 2%R.
Proof.
- DiscrR.
-Save.
-Lemma ex2: ``4<>3``.
+ discrR.
+Qed.
+Lemma ex2 : 4%R <> 3%R.
Proof.
- DiscrR.
-Save.
+ discrR.
+Qed.
-Lemma ex3: ``3<>5``.
+Lemma ex3 : 3%R <> 5%R.
Proof.
- DiscrR.
-Save.
+ discrR.
+Qed.
-Lemma ex4: ``-1<>0``.
+Lemma ex4 : (-1)%R <> 0%R.
Proof.
- DiscrR.
-Save.
+ discrR.
+Qed.
-Lemma ex5: ``-2<>-3``.
+Lemma ex5 : (-2)%R <> (-3)%R.
Proof.
- DiscrR.
-Save.
+ discrR.
+Qed.
-Lemma ex6: ``8<>-3``.
+Lemma ex6 : 8%R <> (-3)%R.
Proof.
- DiscrR.
-Save.
+ discrR.
+Qed.
-Lemma ex7: ``-8<>3``.
+Lemma ex7 : (-8)%R <> 3%R.
Proof.
- DiscrR.
-Save.
+ discrR.
+Qed.
diff --git a/test-suite/success/Discriminate.v b/test-suite/success/Discriminate.v
index 39d2f4bb2..f28c83deb 100644
--- a/test-suite/success/Discriminate.v
+++ b/test-suite/success/Discriminate.v
@@ -2,10 +2,10 @@
(* Check that Discriminate tries Intro until *)
-Lemma l1 : O=(S O)->False.
-Discriminate 1.
+Lemma l1 : 0 = 1 -> False.
+ discriminate 1.
Qed.
-Lemma l2 : (H:O=(S O))H==H.
-Discriminate H.
+Lemma l2 : forall H : 0 = 1, H = H.
+ discriminate H.
Qed.
diff --git a/test-suite/success/Field.v b/test-suite/success/Field.v
index aa51e0577..310dfb620 100644
--- a/test-suite/success/Field.v
+++ b/test-suite/success/Field.v
@@ -10,62 +10,69 @@
(**** Tests of Field with real numbers ****)
-Require Reals.
+Require Import Reals.
(* Example 1 *)
-Goal (eps:R)``eps*1/(2+2)+eps*1/(2+2) == eps*1/2``.
+Goal
+forall eps : R,
+(eps * (1 / (2 + 2)) + eps * (1 / (2 + 2)))%R = (eps * (1 / 2))%R.
Proof.
- Intros.
- Field.
+ intros.
+ field.
Abort.
(* Example 2 *)
-Goal (f,g:(R->R); x0,x1:R)
- ``((f x1)-(f x0))*1/(x1-x0)+((g x1)-(g x0))*1/(x1-x0) == ((f x1)+
- (g x1)-((f x0)+(g x0)))*1/(x1-x0)``.
+Goal
+forall (f g : R -> R) (x0 x1 : R),
+((f x1 - f x0) * (1 / (x1 - x0)) + (g x1 - g x0) * (1 / (x1 - x0)))%R =
+((f x1 + g x1 - (f x0 + g x0)) * (1 / (x1 - x0)))%R.
Proof.
- Intros.
- Field.
+ intros.
+ field.
Abort.
(* Example 3 *)
-Goal (a,b:R)``1/(a*b)*1/1/b == 1/a``.
+Goal forall a b : R, (1 / (a * b) * (1 / 1 / b))%R = (1 / a)%R.
Proof.
- Intros.
- Field.
+ intros.
+ field.
Abort.
(* Example 4 *)
-Goal (a,b:R)``a <> 0``->``b <> 0``->``1/(a*b)/1/b == 1/a``.
+Goal
+forall a b : R, a <> 0%R -> b <> 0%R -> (1 / (a * b) / 1 / b)%R = (1 / a)%R.
Proof.
- Intros.
- Field.
+ intros.
+ field.
Abort.
(* Example 5 *)
-Goal (a:R)``1 == 1*1/a*a``.
+Goal forall a : R, 1%R = (1 * (1 / a) * a)%R.
Proof.
- Intros.
- Field.
+ intros.
+ field.
Abort.
(* Example 6 *)
-Goal (a,b:R)``b == b*/a*a``.
+Goal forall a b : R, b = (b * / a * a)%R.
Proof.
- Intros.
- Field.
+ intros.
+ field.
Abort.
(* Example 7 *)
-Goal (a,b:R)``b == b*1/a*a``.
+Goal forall a b : R, b = (b * (1 / a) * a)%R.
Proof.
- Intros.
- Field.
+ intros.
+ field.
Abort.
(* Example 8 *)
-Goal (x,y:R)``x*((1/x)+x/(x+y)) == -(1/y)*y*(-(x*x/(x+y))-1)``.
+Goal
+forall x y : R,
+(x * (1 / x + x / (x + y)))%R =
+(- (1 / y) * y * (- (x * (x / (x + y))) - 1))%R.
Proof.
- Intros.
- Field.
+ intros.
+ field.
Abort.
diff --git a/test-suite/success/Fixpoint.v8 b/test-suite/success/Fixpoint.v
index 292366242..680046da4 100644
--- a/test-suite/success/Fixpoint.v8
+++ b/test-suite/success/Fixpoint.v
@@ -28,3 +28,4 @@ CoFixpoint g (n:nat) (m:=pred n) (l:Stream m) (p:=S n) : Stream p :=
end l.
Eval compute in (fun l => match g 2 (Consn 0 6 l) with Consn _ a _ => a end).
+
diff --git a/test-suite/success/Fourier.v b/test-suite/success/Fourier.v
index f1f7ae080..2d184fef1 100644
--- a/test-suite/success/Fourier.v
+++ b/test-suite/success/Fourier.v
@@ -1,16 +1,12 @@
-Require Rfunctions.
-Require Fourier.
+Require Import Rfunctions.
+Require Import Fourier.
-Lemma l1:
- (x, y, z : R)
- ``(Rabsolu x-z) <= (Rabsolu x-y)+(Rabsolu y-z)``.
-Intros; SplitAbsolu; Fourier.
+Lemma l1 : forall x y z : R, Rabs (x - z) <= Rabs (x - y) + Rabs (y - z).
+intros; split_Rabs; fourier.
Qed.
-Lemma l2:
- (x, y : R)
- ``x < (Rabsolu y)`` ->
- ``y < 1`` -> ``x >= 0`` -> ``-y <= 1`` -> ``(Rabsolu x) <= 1``.
-Intros.
-SplitAbsolu; Fourier.
+Lemma l2 :
+ forall x y : R, x < Rabs y -> y < 1 -> x >= 0 -> - y <= 1 -> Rabs x <= 1.
+intros.
+split_Rabs; fourier.
Qed.
diff --git a/test-suite/success/Funind.v b/test-suite/success/Funind.v
index 819da2595..84a58a3ad 100644
--- a/test-suite/success/Funind.v
+++ b/test-suite/success/Funind.v
@@ -1,80 +1,80 @@
-Definition iszero [n:nat] : bool := Cases n of
- | O => true
- | _ => false
- end.
-
-Functional Scheme iszer_ind := Induction for iszero.
-
-Lemma toto : (n:nat) n = 0 -> (iszero n) = true.
-Intros x eg.
-Functional Induction iszero x; Simpl.
-Trivial.
-Subst x.
-Inversion H_eq_.
+Definition iszero (n : nat) : bool :=
+ match n with
+ | O => true
+ | _ => false
+ end.
+
+ Functional Scheme iszer_ind := Induction for iszero.
+
+Lemma toto : forall n : nat, n = 0 -> iszero n = true.
+intros x eg.
+ functional induction iszero x; simpl in |- *.
+trivial.
+ subst x.
+inversion H_eq_.
Qed.
(* We can even reuse the proof as a scheme: *)
-Functional Scheme toto_ind := Induction for iszero.
+ Functional Scheme toto_ind := Induction for iszero.
-Definition ftest [n, m:nat] : nat :=
- Cases n of
- | O => Cases m of
+Definition ftest (n m : nat) : nat :=
+ match n with
+ | O => match m with
| O => 0
| _ => 1
end
- | (S p) => 0
+ | S p => 0
end.
-Functional Scheme ftest_ind := Induction for ftest.
+ Functional Scheme ftest_ind := Induction for ftest.
-Lemma test1 : (n,m:nat) (le (ftest n m) 2).
-Intros n m.
-Functional Induction ftest n m;Auto.
-Save.
+Lemma test1 : forall n m : nat, ftest n m <= 2.
+intros n m.
+ functional induction ftest n m; auto.
+Qed.
-Lemma test11 : (m:nat) (le (ftest 0 m) 2).
-Intros m.
-Functional Induction ftest 0 m.
-Auto.
-Auto.
+Lemma test11 : forall m : nat, ftest 0 m <= 2.
+intros m.
+ functional induction ftest 0 m.
+auto.
+auto.
Qed.
-Definition lamfix :=
-[m:nat ]
-(Fix trivfun {trivfun [n:nat] : nat := Cases n of
- | O => m
- | (S p) => (trivfun p)
- end}).
+Definition lamfix (m : nat) :=
+ fix trivfun (n : nat) : nat := match n with
+ | O => m
+ | S p => trivfun p
+ end.
(* Parameter v1 v2 : nat. *)
-Lemma lamfix_lem : (v1,v2:nat) (lamfix v1 v2) = v1.
-Intros v1 v2.
-Functional Induction lamfix v1 v2.
-Trivial.
-Assumption.
+Lemma lamfix_lem : forall v1 v2 : nat, lamfix v1 v2 = v1.
+intros v1 v2.
+ functional induction lamfix v1 v2.
+trivial.
+assumption.
Defined.
(* polymorphic function *)
-Require PolyList.
+Require Import List.
-Functional Scheme app_ind := Induction for app.
+ Functional Scheme app_ind := Induction for app.
-Lemma appnil : (A:Set)(l,l':(list A)) l'=(nil A) -> l = (app l l').
-Intros A l l'.
-Functional Induction app A l l';Intuition.
-Rewrite <- H1;Trivial.
-Save.
+Lemma appnil : forall (A : Set) (l l' : list A), l' = nil -> l = l ++ l'.
+intros A l l'.
+ functional induction app A l l'; intuition.
+ rewrite <- H1; trivial.
+Qed.
@@ -83,10 +83,10 @@ Save.
Require Export Arith.
-Fixpoint trivfun [n:nat] : nat :=
- Cases n of
+Fixpoint trivfun (n : nat) : nat :=
+ match n with
| O => 0
- | (S m) => (trivfun m)
+ | S m => trivfun m
end.
@@ -94,22 +94,22 @@ Fixpoint trivfun [n:nat] : nat :=
Parameter varessai : nat.
-Lemma first_try : (trivfun varessai) = 0.
-Functional Induction trivfun varessai.
-Trivial.
-Simpl.
-Assumption.
+Lemma first_try : trivfun varessai = 0.
+ functional induction trivfun varessai.
+trivial.
+simpl in |- *.
+assumption.
Defined.
-Functional Scheme triv_ind := Induction for trivfun.
+ Functional Scheme triv_ind := Induction for trivfun.
-Lemma bisrepetita : (n':nat) (trivfun n') = 0.
-Intros n'.
-Functional Induction trivfun n'.
-Trivial.
-Simpl .
-Assumption.
+Lemma bisrepetita : forall n' : nat, trivfun n' = 0.
+intros n'.
+ functional induction trivfun n'.
+trivial.
+simpl in |- *.
+assumption.
Qed.
@@ -118,312 +118,335 @@ Qed.
-Fixpoint iseven [n:nat] : bool :=
- Cases n of
+Fixpoint iseven (n : nat) : bool :=
+ match n with
| O => true
- | (S (S m)) => (iseven m)
+ | S (S m) => iseven m
| _ => false
end.
-Fixpoint funex [n:nat] : nat :=
- Cases (iseven n) of
+Fixpoint funex (n : nat) : nat :=
+ match iseven n with
| true => n
- | false => Cases n of
+ | false => match n with
| O => 0
- | (S r) => (funex r)
+ | S r => funex r
end
end.
-Fixpoint nat_equal_bool [n:nat] : nat -> bool :=
-[m:nat]
- Cases n of
- | O => Cases m of
+Fixpoint nat_equal_bool (n m : nat) {struct n} : bool :=
+ match n with
+ | O => match m with
| O => true
| _ => false
end
- | (S p) => Cases m of
+ | S p => match m with
| O => false
- | (S q) => (nat_equal_bool p q)
+ | S q => nat_equal_bool p q
end
end.
Require Export Div2.
-Lemma div2_inf : (n:nat) (le (div2 n) n).
-Intros n.
-Functional Induction div2 n.
-Auto.
-Auto.
+Lemma div2_inf : forall n : nat, div2 n <= n.
+intros n.
+ functional induction div2 n.
+auto.
+auto.
-Apply le_S.
-Apply le_n_S.
-Exact H.
+apply le_S.
+apply le_n_S.
+exact H.
Qed.
(* reuse this lemma as a scheme:*)
-Functional Scheme div2_ind := Induction for div2_inf.
+ Functional Scheme div2_ind := Induction for div2_inf.
-Fixpoint nested_lam [n:nat] : nat -> nat :=
- Cases n of
- | O => [m:nat ] 0
- | (S n') => [m:nat ] (plus m (nested_lam n' m))
+Fixpoint nested_lam (n : nat) : nat -> nat :=
+ match n with
+ | O => fun m : nat => 0
+ | S n' => fun m : nat => m + nested_lam n' m
end.
-Functional Scheme nested_lam_ind := Induction for nested_lam.
+ Functional Scheme nested_lam_ind := Induction for nested_lam.
-Lemma nest : (n, m:nat) (nested_lam n m) = (mult n m).
-Intros n m.
-Functional Induction nested_lam n m; Auto.
+Lemma nest : forall n m : nat, nested_lam n m = n * m.
+intros n m.
+ functional induction nested_lam n m; auto.
Qed.
-Lemma nest2 : (n, m:nat) (nested_lam n m) = (mult n m).
-Intros n m. Pattern n m .
-Apply nested_lam_ind; Simpl ; Intros; Auto.
+Lemma nest2 : forall n m : nat, nested_lam n m = n * m.
+intros n m. pattern n, m in |- *.
+apply nested_lam_ind; simpl in |- *; intros; auto.
Qed.
-Fixpoint essai [x : nat] : nat * nat -> nat :=
- [p : nat * nat] ( Case p of [n, m : ?] Cases n of
- O => O
- | (S q) =>
- Cases x of
- O => (S O)
- | (S r) => (S (essai r (q, m)))
- end
- end end ).
-
-Lemma essai_essai:
- (x : nat)
- (p : nat * nat) ( Case p of [n, m : ?] (lt O n) -> (lt O (essai x p)) end ).
-Intros x p.
-(Functional Induction essai x p); Intros.
-Inversion H.
-Simpl; Try Abstract ( Auto with arith ).
-Simpl; Try Abstract ( Auto with arith ).
+Fixpoint essai (x : nat) (p : nat * nat) {struct x} : nat :=
+ let (n, m) := p in
+ match n with
+ | O => 0
+ | S q => match x with
+ | O => 1
+ | S r => S (essai r (q, m))
+ end
+ end.
+
+Lemma essai_essai :
+ forall (x : nat) (p : nat * nat), let (n, m) := p in 0 < n -> 0 < essai x p.
+intros x p.
+ functional induction essai x p; intros.
+inversion H.
+simpl in |- *; try abstract auto with arith.
+simpl in |- *; try abstract auto with arith.
Qed.
-Fixpoint plus_x_not_five'' [n : nat] : nat -> nat :=
- [m : nat] let x = (nat_equal_bool m (S (S (S (S (S O)))))) in
- let y = O in
- Cases n of
- O => y
- | (S q) =>
- let recapp = (plus_x_not_five'' q m) in
- Cases x of true => (S recapp) | false => (S recapp) end
- end.
-
-Lemma notplusfive'':
- (x, y : nat) y = (S (S (S (S (S O))))) -> (plus_x_not_five'' x y) = x.
-Intros a b.
-Unfold plus_x_not_five''.
-(Functional Induction plus_x_not_five'' a b); Intros hyp; Simpl; Auto.
+Fixpoint plus_x_not_five'' (n m : nat) {struct n} : nat :=
+ let x := nat_equal_bool m 5 in
+ let y := 0 in
+ match n with
+ | O => y
+ | S q =>
+ let recapp := plus_x_not_five'' q m in
+ match x with
+ | true => S recapp
+ | false => S recapp
+ end
+ end.
+
+Lemma notplusfive'' : forall x y : nat, y = 5 -> plus_x_not_five'' x y = x.
+intros a b.
+unfold plus_x_not_five'' in |- *.
+ functional induction plus_x_not_five'' a b; intros hyp; simpl in |- *; auto.
Qed.
-Lemma iseq_eq: (n, m : nat) n = m -> (nat_equal_bool n m) = true.
-Intros n m.
-Unfold nat_equal_bool.
-(Functional Induction nat_equal_bool n m); Simpl; Intros hyp; Auto.
-Inversion hyp.
-Inversion hyp.
+Lemma iseq_eq : forall n m : nat, n = m -> nat_equal_bool n m = true.
+intros n m.
+unfold nat_equal_bool in |- *.
+ functional induction nat_equal_bool n m; simpl in |- *; intros hyp; auto.
+inversion hyp.
+inversion hyp.
Qed.
-Lemma iseq_eq': (n, m : nat) (nat_equal_bool n m) = true -> n = m.
-Intros n m.
-Unfold nat_equal_bool.
-(Functional Induction nat_equal_bool n m); Simpl; Intros eg; Auto.
-Inversion eg.
-Inversion eg.
+Lemma iseq_eq' : forall n m : nat, nat_equal_bool n m = true -> n = m.
+intros n m.
+unfold nat_equal_bool in |- *.
+ functional induction nat_equal_bool n m; simpl in |- *; intros eg; auto.
+inversion eg.
+inversion eg.
Qed.
-Inductive istrue : bool -> Prop :=
- istrue0: (istrue true) .
+Inductive istrue : bool -> Prop :=
+ istrue0 : istrue true.
-Lemma inf_x_plusxy': (x, y : nat) (le x (plus x y)).
-Intros n m.
-(Functional Induction plus n m); Intros.
-Auto with arith.
-Auto with arith.
+Lemma inf_x_plusxy' : forall x y : nat, x <= x + y.
+intros n m.
+ functional induction plus n m; intros.
+auto with arith.
+auto with arith.
Qed.
-Lemma inf_x_plusxy'': (x : nat) (le x (plus x O)).
-Intros n.
-Unfold plus.
-(Functional Induction plus n O); Intros.
-Auto with arith.
-Apply le_n_S.
-Assumption.
+Lemma inf_x_plusxy'' : forall x : nat, x <= x + 0.
+intros n.
+unfold plus in |- *.
+ functional induction plus n 0; intros.
+auto with arith.
+apply le_n_S.
+assumption.
Qed.
-Lemma inf_x_plusxy''': (x : nat) (le x (plus O x)).
-Intros n.
-(Functional Induction plus O n); Intros;Auto with arith.
+Lemma inf_x_plusxy''' : forall x : nat, x <= 0 + x.
+intros n.
+ functional induction plus 0 n; intros; auto with arith.
Qed.
-Fixpoint mod2 [n : nat] : nat :=
- Cases n of O => O
- | (S (S m)) => (S (mod2 m))
- | _ => O end.
+Fixpoint mod2 (n : nat) : nat :=
+ match n with
+ | O => 0
+ | S (S m) => S (mod2 m)
+ | _ => 0
+ end.
-Lemma princ_mod2: (n : nat) (le (mod2 n) n).
-Intros n.
-(Functional Induction mod2 n); Simpl; Auto with arith.
+Lemma princ_mod2 : forall n : nat, mod2 n <= n.
+intros n.
+ functional induction mod2 n; simpl in |- *; auto with arith.
Qed.
-Definition isfour : nat -> bool :=
- [n : nat] Cases n of (S (S (S (S O)))) => true | _ => false end.
+Definition isfour (n : nat) : bool :=
+ match n with
+ | S (S (S (S O))) => true
+ | _ => false
+ end.
-Definition isononeorfour : nat -> bool :=
- [n : nat] Cases n of (S O) => true
- | (S (S (S (S O)))) => true
- | _ => false end.
+Definition isononeorfour (n : nat) : bool :=
+ match n with
+ | S O => true
+ | S (S (S (S O))) => true
+ | _ => false
+ end.
-Lemma toto'': (n : nat) (istrue (isfour n)) -> (istrue (isononeorfour n)).
-Intros n.
-(Functional Induction isononeorfour n); Intros istr; Simpl; Inversion istr.
-Apply istrue0.
+Lemma toto'' : forall n : nat, istrue (isfour n) -> istrue (isononeorfour n).
+intros n.
+ functional induction isononeorfour n; intros istr; simpl in |- *;
+ inversion istr.
+apply istrue0.
Qed.
-Lemma toto': (n, m : nat) n = (S (S (S (S O)))) -> (istrue (isononeorfour n)).
-Intros n.
-(Functional Induction isononeorfour n); Intros m istr; Inversion istr.
-Apply istrue0.
+Lemma toto' : forall n m : nat, n = 4 -> istrue (isononeorfour n).
+intros n.
+ functional induction isononeorfour n; intros m istr; inversion istr.
+apply istrue0.
Qed.
-Definition ftest4 : nat -> nat -> nat :=
- [n, m : nat] Cases n of
- O =>
- Cases m of O => O | (S q) => (S O) end
- | (S p) =>
- Cases m of O => O | (S r) => (S O) end
- end.
-
-Lemma test4: (n, m : nat) (le (ftest n m) (S (S O))).
-Intros n m.
-(Functional Induction ftest n m); Auto with arith.
+Definition ftest4 (n m : nat) : nat :=
+ match n with
+ | O => match m with
+ | O => 0
+ | S q => 1
+ end
+ | S p => match m with
+ | O => 0
+ | S r => 1
+ end
+ end.
+
+Lemma test4 : forall n m : nat, ftest n m <= 2.
+intros n m.
+ functional induction ftest n m; auto with arith.
Qed.
-Lemma test4': (n, m : nat) (le (ftest4 (S n) m) (S (S O))).
-Intros n m.
-(Functional Induction ftest4 (S n) m).
-Auto with arith.
-Auto with arith.
+Lemma test4' : forall n m : nat, ftest4 (S n) m <= 2.
+intros n m.
+ functional induction ftest4 (S n) m.
+auto with arith.
+auto with arith.
Qed.
-Definition ftest44 : nat * nat -> nat -> nat -> nat :=
- [x : nat * nat]
- [n, m : nat]
- ( Case x of [p, q : ?] Cases n of
- O =>
- Cases m of O => O | (S q) => (S O) end
- | (S p) =>
- Cases m of O => O | (S r) => (S O) end
- end end ).
-
-Lemma test44:
- (pq : nat * nat) (n, m, o, r, s : nat) (le (ftest44 pq n (S m)) (S (S O))).
-Intros pq n m o r s.
-(Functional Induction ftest44 pq n (S m)).
-Auto with arith.
-Auto with arith.
-Auto with arith.
-Auto with arith.
+Definition ftest44 (x : nat * nat) (n m : nat) : nat :=
+ let (p, q) := x in
+ match n with
+ | O => match m with
+ | O => 0
+ | S q => 1
+ end
+ | S p => match m with
+ | O => 0
+ | S r => 1
+ end
+ end.
+
+Lemma test44 :
+ forall (pq : nat * nat) (n m o r s : nat), ftest44 pq n (S m) <= 2.
+intros pq n m o r s.
+ functional induction ftest44 pq n (S m).
+auto with arith.
+auto with arith.
+auto with arith.
+auto with arith.
Qed.
-Fixpoint ftest2 [n : nat] : nat -> nat :=
- [m : nat] Cases n of
- O =>
- Cases m of O => O | (S q) => O end
- | (S p) => (ftest2 p m)
- end.
+Fixpoint ftest2 (n m : nat) {struct n} : nat :=
+ match n with
+ | O => match m with
+ | O => 0
+ | S q => 0
+ end
+ | S p => ftest2 p m
+ end.
-Lemma test2: (n, m : nat) (le (ftest2 n m) (S (S O))).
-Intros n m.
-(Functional Induction ftest2 n m) ; Simpl; Intros; Auto.
+Lemma test2 : forall n m : nat, ftest2 n m <= 2.
+intros n m.
+ functional induction ftest2 n m; simpl in |- *; intros; auto.
Qed.
-Fixpoint ftest3 [n : nat] : nat -> nat :=
- [m : nat] Cases n of
- O => O
- | (S p) =>
- Cases m of O => (ftest3 p O) | (S r) => O end
- end.
-
-Lemma test3: (n, m : nat) (le (ftest3 n m) (S (S O))).
-Intros n m.
-(Functional Induction ftest3 n m).
-Intros.
-Auto.
-Intros.
-Auto.
-Intros.
-Simpl.
-Auto.
+Fixpoint ftest3 (n m : nat) {struct n} : nat :=
+ match n with
+ | O => 0
+ | S p => match m with
+ | O => ftest3 p 0
+ | S r => 0
+ end
+ end.
+
+Lemma test3 : forall n m : nat, ftest3 n m <= 2.
+intros n m.
+ functional induction ftest3 n m.
+intros.
+auto.
+intros.
+auto.
+intros.
+simpl in |- *.
+auto.
Qed.
-Fixpoint ftest5 [n : nat] : nat -> nat :=
- [m : nat] Cases n of
- O => O
- | (S p) =>
- Cases m of O => (ftest5 p O) | (S r) => (ftest5 p r) end
- end.
-
-Lemma test5: (n, m : nat) (le (ftest5 n m) (S (S O))).
-Intros n m.
-(Functional Induction ftest5 n m).
-Intros.
-Auto.
-Intros.
-Auto.
-Intros.
-Simpl.
-Auto.
+Fixpoint ftest5 (n m : nat) {struct n} : nat :=
+ match n with
+ | O => 0
+ | S p => match m with
+ | O => ftest5 p 0
+ | S r => ftest5 p r
+ end
+ end.
+
+Lemma test5 : forall n m : nat, ftest5 n m <= 2.
+intros n m.
+ functional induction ftest5 n m.
+intros.
+auto.
+intros.
+auto.
+intros.
+simpl in |- *.
+auto.
Qed.
-Definition ftest7 : (n : nat) nat :=
- [n : nat] Cases (ftest5 n O) of O => O | (S r) => O end.
+Definition ftest7 (n : nat) : nat :=
+ match ftest5 n 0 with
+ | O => 0
+ | S r => 0
+ end.
-Lemma essai7:
- (Hrec : (n : nat) (ftest5 n O) = O -> (le (ftest7 n) (S (S O))))
- (Hrec0 : (n, r : nat) (ftest5 n O) = (S r) -> (le (ftest7 n) (S (S O))))
- (n : nat) (le (ftest7 n) (S (S O))).
-Intros hyp1 hyp2 n.
-Unfold ftest7.
-(Functional Induction ftest7 n); Auto.
+Lemma essai7 :
+ forall (Hrec : forall n : nat, ftest5 n 0 = 0 -> ftest7 n <= 2)
+ (Hrec0 : forall n r : nat, ftest5 n 0 = S r -> ftest7 n <= 2)
+ (n : nat), ftest7 n <= 2.
+intros hyp1 hyp2 n.
+unfold ftest7 in |- *.
+ functional induction ftest7 n; auto.
Qed.
-Fixpoint ftest6 [n : nat] : nat -> nat :=
- [m : nat]
- Cases n of
- O => O
- | (S p) =>
- Cases (ftest5 p O) of O => (ftest6 p O) | (S r) => (ftest6 p r) end
+Fixpoint ftest6 (n m : nat) {struct n} : nat :=
+ match n with
+ | O => 0
+ | S p => match ftest5 p 0 with
+ | O => ftest6 p 0
+ | S r => ftest6 p r
+ end
end.
-Lemma princ6:
- ((n, m : nat) n = O -> (le (ftest6 O m) (S (S O)))) ->
- ((n, m, p : nat)
- (le (ftest6 p O) (S (S O))) ->
- (ftest5 p O) = O -> n = (S p) -> (le (ftest6 (S p) m) (S (S O)))) ->
- ((n, m, p, r : nat)
- (le (ftest6 p r) (S (S O))) ->
- (ftest5 p O) = (S r) -> n = (S p) -> (le (ftest6 (S p) m) (S (S O)))) ->
- (x, y : nat) (le (ftest6 x y) (S (S O))).
-Intros hyp1 hyp2 hyp3 n m.
-Generalize hyp1 hyp2 hyp3.
-Clear hyp1 hyp2 hyp3.
-(Functional Induction ftest6 n m);Auto.
+Lemma princ6 :
+ (forall n m : nat, n = 0 -> ftest6 0 m <= 2) ->
+ (forall n m p : nat,
+ ftest6 p 0 <= 2 -> ftest5 p 0 = 0 -> n = S p -> ftest6 (S p) m <= 2) ->
+ (forall n m p r : nat,
+ ftest6 p r <= 2 -> ftest5 p 0 = S r -> n = S p -> ftest6 (S p) m <= 2) ->
+ forall x y : nat, ftest6 x y <= 2.
+intros hyp1 hyp2 hyp3 n m.
+generalize hyp1 hyp2 hyp3.
+clear hyp1 hyp2 hyp3.
+ functional induction ftest6 n m; auto.
Qed.
-Lemma essai6: (n, m : nat) (le (ftest6 n m) (S (S O))).
-Intros n m.
-Unfold ftest6.
-(Functional Induction ftest6 n m); Simpl; Auto.
+Lemma essai6 : forall n m : nat, ftest6 n m <= 2.
+intros n m.
+unfold ftest6 in |- *.
+ functional induction ftest6 n m; simpl in |- *; auto.
Qed.
diff --git a/test-suite/success/Generalize.v b/test-suite/success/Generalize.v
index 0dc739915..980c89dd9 100644
--- a/test-suite/success/Generalize.v
+++ b/test-suite/success/Generalize.v
@@ -1,7 +1,8 @@
(* Check Generalize Dependent *)
-Lemma l1 : [a:=O;b:=a](c:b=b;d:(True->b=b))d=d.
-Intros.
-Generalize Dependent a.
-Intros a b c d.
+Lemma l1 :
+ let a := 0 in let b := a in forall (c : b = b) (d : True -> b = b), d = d.
+intros.
+generalize dependent a.
+intros a b c d.
Abort.
diff --git a/test-suite/success/Hints.v b/test-suite/success/Hints.v
index f32753e02..e1c74048c 100644
--- a/test-suite/success/Hints.v
+++ b/test-suite/success/Hints.v
@@ -2,47 +2,47 @@
(* Checks that qualified names are accepted *)
(* New-style syntax *)
-Hint h1 : core arith := Resolve Logic.refl_equal.
-Hint h2 := Immediate Logic.trans_equal.
-Hint h3 : core := Unfold Logic.sym_equal.
-Hint h4 : foo bar := Constructors Logic.eq.
-Hint h5 : foo bar := Extern 3 (eq ? ? ?) Apply Logic.refl_equal.
+Hint Resolve refl_equal: core arith.
+Hint Immediate trans_equal.
+Hint Unfold sym_equal: core.
+Hint Constructors eq: foo bar.
+Hint Extern 3 (_ = _) => apply refl_equal: foo bar.
(* Old-style syntax *)
-Hints Resolve Coq.Init.Logic.refl_equal Coq.Init.Logic.sym_equal.
-Hints Resolve Coq.Init.Logic.refl_equal Coq.Init.Logic.sym_equal : foo.
-Hints Immediate Coq.Init.Logic.refl_equal Coq.Init.Logic.sym_equal.
-Hints Immediate Coq.Init.Logic.refl_equal Coq.Init.Logic.sym_equal : foo.
-Hints Unfold Coq.Init.Datatypes.fst Coq.Init.Logic.sym_equal.
-Hints Unfold Coq.Init.Datatypes.fst Coq.Init.Logic.sym_equal : foo.
+Hint Resolve refl_equal sym_equal.
+Hint Resolve refl_equal sym_equal: foo.
+Hint Immediate refl_equal sym_equal.
+Hint Immediate refl_equal sym_equal: foo.
+Hint Unfold fst sym_equal.
+Hint Unfold fst sym_equal: foo.
(* What's this stranged syntax ? *)
-HintDestruct Conclusion h6 (le ? ?) 4 [ Fun H -> Apply H ].
-HintDestruct Discardable Hypothesis h7 (le ? ?) 4 [ Fun H -> Apply H ].
-HintDestruct Hypothesis h8 (le ? ?) 4 [ Fun H -> Apply H ].
+Hint Destruct h6 := 4 Conclusion (_ <= _) => fun H => apply H.
+Hint Destruct h7 := 4 Discardable Hypothesis (_ <= _) => fun H => apply H.
+Hint Destruct h8 := 4 Hypothesis (_ <= _) => fun H => apply H.
(* Checks that local names are accepted *)
Section A.
- Remark Refl : (A:Set)(x:A)x=x.
+ Remark Refl : forall (A : Set) (x : A), x = x.
Proof refl_equal.
Definition Sym := sym_equal.
- Local Trans := trans_equal.
+ Let Trans := trans_equal.
- Hint h1 : foo := Resolve Refl.
- Hint h2 : bar := Resolve Sym.
- Hint h3 : foo2 := Resolve Trans.
+ Hint Resolve Refl: foo.
+ Hint Resolve Sym: bar.
+ Hint Resolve Trans: foo2.
- Hint h2 := Immediate Refl.
- Hint h2 := Immediate Sym.
- Hint h2 := Immediate Trans.
+ Hint Immediate Refl.
+ Hint Immediate Sym.
+ Hint Immediate Trans.
- Hint h3 := Unfold Refl.
- Hint h3 := Unfold Sym.
- Hint h3 := Unfold Trans.
+ Hint Unfold Refl.
+ Hint Unfold Sym.
+ Hint Unfold Trans.
- Hints Resolve Sym Trans Refl.
- Hints Immediate Sym Trans Refl.
- Hints Unfold Sym Trans Refl.
+ Hint Resolve Sym Trans Refl.
+ Hint Immediate Sym Trans Refl.
+ Hint Unfold Sym Trans Refl.
End A.
diff --git a/test-suite/success/If.v8 b/test-suite/success/If.v
index d044f4ff0..b7f06dcf6 100644
--- a/test-suite/success/If.v8
+++ b/test-suite/success/If.v
@@ -4,3 +4,4 @@ Check fun b : bool =>
if b as b0 return (if b0 then b0 = true else b0 = false)
then refl_equal true
else refl_equal false.
+
diff --git a/test-suite/success/ImplicitTactic.v8 b/test-suite/success/ImplicitTactic.v
index ccdc0be34..d8fa3043d 100644
--- a/test-suite/success/ImplicitTactic.v8
+++ b/test-suite/success/ImplicitTactic.v
@@ -13,3 +13,4 @@ Goal forall n d, d<>0 -> { q:nat & { r:nat | d * q + r = n }}.
intros.
(* Here, assumption is used to solve the implicit argument of quo *)
exists (n / d).
+
diff --git a/test-suite/success/Inductive.v b/test-suite/success/Inductive.v
index 87431a75c..33da5e4ce 100644
--- a/test-suite/success/Inductive.v
+++ b/test-suite/success/Inductive.v
@@ -1,34 +1,44 @@
(* Check local definitions in context of inductive types *)
-Inductive A [C,D:Prop; E:=C; F:=D; x,y:E->F] : E -> Set :=
- I : (z:E)(A C D x y z).
+Inductive A (C D : Prop) (E:=C) (F:=D) (x y : E -> F) : E -> Set :=
+ I : forall z : E, A C D x y z.
Check
- [C,D:Prop; E:=C; F:=D; x,y:(E ->F);
- P:((c:C)(A C D x y c) ->Type);
- f:((z:C)(P z (I C D x y z)));
- y0:C; a:(A C D x y y0)]
- <[y1:C; a0:(A C D x y y1)](P y1 a0)>Cases a of (I x0) => (f x0) end.
-
-Record B [C,D:Set; E:=C; F:=D; x,y:E->F] : Set := { p : C; q : E }.
+ (fun C D : Prop =>
+ let E := C in
+ let F := D in
+ fun (x y : E -> F) (P : forall c : C, A C D x y c -> Type)
+ (f : forall z : C, P z (I C D x y z)) (y0 : C)
+ (a : A C D x y y0) =>
+ match a as a0 in (A _ _ _ _ y1) return (P y1 a0) with
+ | I x0 => f x0
+ end).
+
+Record B (C D : Set) (E:=C) (F:=D) (x y : E -> F) : Set := {p : C; q : E}.
Check
- [C,D:Set; E:=C; F:=D; x,y:(E ->F);
- P:((B C D x y) ->Type);
- f:((p0,q0:C)(P (Build_B C D x y p0 q0)));
- b:(B C D x y)]
- <[b0:(B C D x y)](P b0)>Cases b of (Build_B x0 x1) => (f x0 x1) end.
+ (fun C D : Set =>
+ let E := C in
+ let F := D in
+ fun (x y : E -> F) (P : B C D x y -> Type)
+ (f : forall p0 q0 : C, P (Build_B C D x y p0 q0))
+ (b : B C D x y) =>
+ match b as b0 return (P b0) with
+ | Build_B x0 x1 => f x0 x1
+ end).
(* Check implicit parameters of inductive types (submitted by Pierre
Casteran and also implicit in #338) *)
Set Implicit Arguments.
+Unset Strict Implicit.
-CoInductive LList [A:Set] : Set :=
- | LNil : (LList A)
- | LCons : A -> (LList A) -> (LList A).
+CoInductive LList (A : Set) : Set :=
+ | LNil : LList A
+ | LCons : A -> LList A -> LList A.
-Implicits LNil [1].
+Implicit Arguments LNil [A].
-Inductive Finite [A:Set] : (LList A) -> Prop :=
- | Finite_LNil : (Finite LNil)
- | Finite_LCons : (a:A) (l:(LList A)) (Finite l) -> (Finite (LCons a l)).
+Inductive Finite (A : Set) : LList A -> Prop :=
+ | Finite_LNil : Finite LNil
+ | Finite_LCons :
+ forall (a : A) (l : LList A), Finite l -> Finite (LCons a l).
diff --git a/test-suite/success/Injection.v b/test-suite/success/Injection.v
index fd80cec6f..f8f7c9960 100644
--- a/test-suite/success/Injection.v
+++ b/test-suite/success/Injection.v
@@ -2,33 +2,37 @@
(* Check that Injection tries Intro until *)
-Lemma l1 : (x:nat)(S x)=(S (S x))->False.
-Injection 1.
-Apply n_Sn.
+Lemma l1 : forall x : nat, S x = S (S x) -> False.
+ injection 1.
+apply n_Sn.
Qed.
-Lemma l2 : (x:nat)(H:(S x)=(S (S x)))H==H->False.
-Injection H.
-Intros.
-Apply (n_Sn x H0).
+Lemma l2 : forall (x : nat) (H : S x = S (S x)), H = H -> False.
+ injection H.
+intros.
+apply (n_Sn x H0).
Qed.
(* Check that no tuple needs to be built *)
-Lemma l3 : (x,y:nat)
- (existS ? [n:nat]({n=n}+{n=n}) x (left ? ? (refl_equal nat x)))=
- (existS ? [n:nat]({n=n}+{n=n}) y (left ? ? (refl_equal nat y)))
- -> x=y.
-Intros x y H.
-Injection H.
-Exact [H]H.
+Lemma l3 :
+ forall x y : nat,
+ existS (fun n : nat => {n = n} + {n = n}) x (left _ (refl_equal x)) =
+ existS (fun n : nat => {n = n} + {n = n}) y (left _ (refl_equal y)) ->
+ x = y.
+intros x y H.
+ injection H.
+exact (fun H => H).
Qed.
(* Check that a tuple is built (actually the same as the initial one) *)
-Lemma l4 : (p1,p2:{O=O}+{O=O})
- (existS ? [n:nat]({n=n}+{n=n}) O p1)=(existS ? [n:nat]({n=n}+{n=n}) O p2)
- ->(existS ? [n:nat]({n=n}+{n=n}) O p1)=(existS ? [n:nat]({n=n}+{n=n}) O p2).
-Intros.
-Injection H.
-Exact [H]H.
+Lemma l4 :
+ forall p1 p2 : {0 = 0} + {0 = 0},
+ existS (fun n : nat => {n = n} + {n = n}) 0 p1 =
+ existS (fun n : nat => {n = n} + {n = n}) 0 p2 ->
+ existS (fun n : nat => {n = n} + {n = n}) 0 p1 =
+ existS (fun n : nat => {n = n} + {n = n}) 0 p2.
+intros.
+ injection H.
+exact (fun H => H).
Qed.
diff --git a/test-suite/success/Inversion.v b/test-suite/success/Inversion.v
index 2649617bc..f83328e82 100644
--- a/test-suite/success/Inversion.v
+++ b/test-suite/success/Inversion.v
@@ -1,96 +1,101 @@
-Axiom magic:False.
+Axiom magic : False.
(* Submitted by Dachuan Yu (bug #220) *)
-Fixpoint T[n:nat] : Type :=
- Cases n of
- | O => (nat -> Prop)
- | (S n') => (T n')
- end.
-Inductive R : (n:nat)(T n) -> nat -> Prop :=
- | RO : (Psi:(T O); l:nat)
- (Psi l) -> (R O Psi l)
- | RS : (n:nat; Psi:(T (S n)); l:nat)
- (R n Psi l) -> (R (S n) Psi l).
-Definition Psi00 : (nat -> Prop) := [n:nat] False.
-Definition Psi0 : (T O) := Psi00.
-Lemma Inversion_RO : (l:nat)(R O Psi0 l) -> (Psi00 l).
-Inversion 1.
+Fixpoint T (n : nat) : Type :=
+ match n with
+ | O => nat -> Prop
+ | S n' => T n'
+ end.
+Inductive R : forall n : nat, T n -> nat -> Prop :=
+ | RO : forall (Psi : T 0) (l : nat), Psi l -> R 0 Psi l
+ | RS :
+ forall (n : nat) (Psi : T (S n)) (l : nat), R n Psi l -> R (S n) Psi l.
+Definition Psi00 (n : nat) : Prop := False.
+Definition Psi0 : T 0 := Psi00.
+Lemma Inversion_RO : forall l : nat, R 0 Psi0 l -> Psi00 l.
+inversion 1.
Abort.
(* Submitted by Pierre Casteran (bug #540) *)
Set Implicit Arguments.
-Parameter rule: Set -> Type.
+Unset Strict Implicit.
+Parameter rule : Set -> Type.
-Inductive extension [I:Set]:Type :=
- NL : (extension I)
-|add_rule : (rule I) -> (extension I) -> (extension I).
+Inductive extension (I : Set) : Type :=
+ | NL : extension I
+ | add_rule : rule I -> extension I -> extension I.
-Inductive in_extension [I :Set;r: (rule I)] : (extension I) -> Type :=
- in_first : (e:?)(in_extension r (add_rule r e))
-|in_rest : (e,r':?)(in_extension r e) -> (in_extension r (add_rule r' e)).
+Inductive in_extension (I : Set) (r : rule I) : extension I -> Type :=
+ | in_first : forall e, in_extension r (add_rule r e)
+ | in_rest : forall e r', in_extension r e -> in_extension r (add_rule r' e).
-Implicits NL [1].
+Implicit Arguments NL [I].
-Inductive super_extension [I:Set;e :(extension I)] : (extension I) -> Type :=
- super_NL : (super_extension e NL)
-| super_add : (r:?)(e': (extension I))
- (in_extension r e) ->
- (super_extension e e') ->
- (super_extension e (add_rule r e')).
+Inductive super_extension (I : Set) (e : extension I) :
+extension I -> Type :=
+ | super_NL : super_extension e NL
+ | super_add :
+ forall r (e' : extension I),
+ in_extension r e ->
+ super_extension e e' -> super_extension e (add_rule r e').
-Lemma super_def : (I :Set)(e1, e2: (extension I))
- (super_extension e2 e1) ->
- (ru:?)
- (in_extension ru e1) ->
- (in_extension ru e2).
+Lemma super_def :
+ forall (I : Set) (e1 e2 : extension I),
+ super_extension e2 e1 -> forall ru, in_extension ru e1 -> in_extension ru e2.
Proof.
- Induction 1.
- Inversion 1; Auto.
- Elim magic.
+ simple induction 1.
+ inversion 1; auto.
+ elim magic.
Qed.
(* Example from Norbert Schirmer on Coq-Club, Sep 2000 *)
+Set Strict Implicit.
Unset Implicit Arguments.
-Definition Q[n,m:nat;prf:(le n m)]:=True.
-Goal (n,m:nat;H:(le (S n) m))(Q (S n) m H)==True.
-Intros.
-Dependent Inversion_clear H.
-Elim magic.
-Elim magic.
+Definition Q (n m : nat) (prf : n <= m) := True.
+Goal forall (n m : nat) (H : S n <= m), Q (S n) m H = True.
+intros.
+dependent inversion_clear H.
+elim magic.
+elim magic.
Qed.
(* Submitted by Boris Yakobowski (bug #529) *)
(* Check that Inversion does not fail due to unnormalized evars *)
Set Implicit Arguments.
+Unset Strict Implicit.
Require Import Bvector.
Inductive I : nat -> Set :=
-| C1 : (I (S O))
-| C2 : (k,i:nat)(vector (I i) k) -> (I i).
+ | C1 : I 1
+ | C2 : forall k i : nat, vector (I i) k -> I i.
-Inductive SI : (k:nat)(I k) -> (vector nat k) -> nat -> Prop :=
-| SC2 : (k,i,vf:nat) (v:(vector (I i) k))(xi:(vector nat i))(SI (C2 v) xi vf).
+Inductive SI : forall k : nat, I k -> vector nat k -> nat -> Prop :=
+ SC2 :
+ forall (k i vf : nat) (v : vector (I i) k) (xi : vector nat i),
+ SI (C2 v) xi vf.
-Theorem SUnique : (k:nat)(f:(I k))(c:(vector nat k))
-(v,v':?) (SI f c v) -> (SI f c v') -> v=v'.
+Theorem SUnique :
+ forall (k : nat) (f : I k) (c : vector nat k) v v',
+ SI f c v -> SI f c v' -> v = v'.
Proof.
-NewInduction 1.
-Intros H ; Inversion H.
+induction 1.
+intros H; inversion H.
Admitted.
(* Used to failed at some time *)
+Set Strict Implicit.
Unset Implicit Arguments.
-Parameter bar : (p,q:nat) p=q -> Prop.
-Inductive foo : nat -> nat -> Prop :=
- C : (a,b:nat)(Heq:a = b) (bar a b Heq) -> (foo a b).
-Lemma depinv : (a,b:?) (foo a b) -> True.
-Intros a b H.
-Inversion H.
+Parameter bar : forall p q : nat, p = q -> Prop.
+Inductive foo : nat -> nat -> Prop :=
+ C : forall (a b : nat) (Heq : a = b), bar a b Heq -> foo a b.
+Lemma depinv : forall a b, foo a b -> True.
+intros a b H.
+inversion H.
Abort.
diff --git a/test-suite/success/LetIn.v b/test-suite/success/LetIn.v
index 0e0b44358..b61ea784b 100644
--- a/test-suite/success/LetIn.v
+++ b/test-suite/success/LetIn.v
@@ -1,11 +1,11 @@
(* Simple let-in's *)
-Definition l1 := [P := O]P.
-Definition l2 := [P := nat]P.
-Definition l3 := [P := True]P.
-Definition l4 := [P := Prop]P.
-Definition l5 := [P := Type]P.
+Definition l1 := let P := 0 in P.
+Definition l2 := let P := nat in P.
+Definition l3 := let P := True in P.
+Definition l4 := let P := Prop in P.
+Definition l5 := let P := Type in P.
(* Check casting of let-in *)
-Definition l6 := [P := O : nat]P.
-Definition l7 := [P := True : Prop]P.
-Definition l8 := [P := True : Type]P.
+Definition l6 := let P := 0:nat in P.
+Definition l7 := let P := True:Prop in P.
+Definition l8 := let P := True:Type in P.
diff --git a/test-suite/success/MatchFail.v b/test-suite/success/MatchFail.v
index d89ee3bec..660ca3cb0 100644
--- a/test-suite/success/MatchFail.v
+++ b/test-suite/success/MatchFail.v
@@ -6,23 +6,24 @@ Require Export ZArithRing.
2*(POS e)+1 ou 2*(POS e), pour rendre les expressions plus
à même d'être utilisées par Ring, lorsque ces expressions contiennent
des variables de type positive. *)
-Tactic Definition compute_POS :=
- (Match Context With
- | [|- [(POS (xI ?1))]] -> Let v = ?1 In
- (Match v With
- | [xH] ->
- (Fail 1)
- |_->
- Rewrite (POS_xI v))
- | [ |- [(POS (xO ?1))]] -> Let v = ?1 In
- Match v With
- |[xH]->
- (Fail 1)
- |[?]->
- Rewrite (POS_xO v)).
+Ltac compute_POS :=
+ match goal with
+ | |- context [(Zpos (xI ?X1))] =>
+ let v := constr:X1 in
+ match constr:v with
+ | 1%positive => fail 1
+ | _ => rewrite (BinInt.Zpos_xI v)
+ end
+ | |- context [(Zpos (xO ?X1))] =>
+ let v := constr:X1 in
+ match constr:v with
+ | 1%positive => fail 1
+ | _ => rewrite (BinInt.Zpos_xO v)
+ end
+ end.
-Goal (x:positive)(POS (xI (xI x)))=`4*(POS x)+3`.
-Intros.
-Repeat compute_POS.
-Ring.
+Goal forall x : positive, Zpos (xI (xI x)) = (4 * Zpos x + 3)%Z.
+intros.
+repeat compute_POS.
+ ring.
Qed.
diff --git a/test-suite/success/Mod_ltac.v b/test-suite/success/Mod_ltac.v
index 1a9f6fc53..44bb3a55e 100644
--- a/test-suite/success/Mod_ltac.v
+++ b/test-suite/success/Mod_ltac.v
@@ -1,20 +1,20 @@
(* Submitted by Houda Anoun *)
Module toto.
-Tactic Definition titi:=Auto.
+Ltac titi := auto.
End toto.
Module ti.
Import toto.
-Tactic Definition equal:=
-Match Context With
-[ |- ?1=?1]-> titi
-| [ |- ?]-> Idtac.
+Ltac equal := match goal with
+ | |- (?X1 = ?X1) => titi
+ | |- _ => idtac
+ end.
End ti.
Import ti.
-Definition simple:(a:nat) a=a.
-Intro.
+Definition simple : forall a : nat, a = a.
+intro.
equal.
Qed.
diff --git a/test-suite/success/Mod_params.v b/test-suite/success/Mod_params.v
index 098de3cfb..74228bbbf 100644
--- a/test-suite/success/Mod_params.v
+++ b/test-suite/success/Mod_params.v
@@ -3,10 +3,10 @@
Module Type SIG.
End SIG.
-Module Type FSIG[X:SIG].
+Module Type FSIG (X: SIG).
End FSIG.
-Module F[X:SIG].
+Module F (X: SIG).
End F.
Module Q.
@@ -22,57 +22,57 @@ End Q.
Module M.
Reset M.
-Module M[X:SIG].
+Module M (X: SIG).
Reset M.
-Module M[X,Y:SIG].
+Module M (X Y: SIG).
Reset M.
-Module M[X:SIG;Y:SIG].
+Module M (X: SIG) (Y: SIG).
Reset M.
-Module M[X,Y:SIG;Z1,Z:SIG].
+Module M (X Y: SIG) (Z1 Z: SIG).
Reset M.
-Module M[X:SIG][Y:SIG].
+Module M (X: SIG) (Y: SIG).
Reset M.
-Module M[X,Y:SIG][Z1,Z:SIG].
+Module M (X Y: SIG) (Z1 Z: SIG).
Reset M.
-Module M:SIG.
+Module M : SIG.
Reset M.
-Module M[X:SIG]:SIG.
+Module M (X: SIG) : SIG.
Reset M.
-Module M[X,Y:SIG]:SIG.
+Module M (X Y: SIG) : SIG.
Reset M.
-Module M[X:SIG;Y:SIG]:SIG.
+Module M (X: SIG) (Y: SIG) : SIG.
Reset M.
-Module M[X,Y:SIG;Z1,Z:SIG]:SIG.
+Module M (X Y: SIG) (Z1 Z: SIG) : SIG.
Reset M.
-Module M[X:SIG][Y:SIG]:SIG.
+Module M (X: SIG) (Y: SIG) : SIG.
Reset M.
-Module M[X,Y:SIG][Z1,Z:SIG]:SIG.
+Module M (X Y: SIG) (Z1 Z: SIG) : SIG.
Reset M.
-Module M:=(F Q).
+Module M := F Q.
Reset M.
-Module M[X:FSIG]:=(X Q).
+Module M (X: FSIG) := X Q.
Reset M.
-Module M[X,Y:FSIG]:=(X Q).
+Module M (X Y: FSIG) := X Q.
Reset M.
-Module M[X:FSIG;Y:SIG]:=(X Y).
+Module M (X: FSIG) (Y: SIG) := X Y.
Reset M.
-Module M[X,Y:FSIG;Z1,Z:SIG]:=(X Z).
+Module M (X Y: FSIG) (Z1 Z: SIG) := X Z.
Reset M.
-Module M[X:FSIG][Y:SIG]:=(X Y).
+Module M (X: FSIG) (Y: SIG) := X Y.
Reset M.
-Module M[X,Y:FSIG][Z1,Z:SIG]:=(X Z).
+Module M (X Y: FSIG) (Z1 Z: SIG) := X Z.
Reset M.
-Module M:SIG:=(F Q).
+Module M : SIG := F Q.
Reset M.
-Module M[X:FSIG]:SIG:=(X Q).
+Module M (X: FSIG) : SIG := X Q.
Reset M.
-Module M[X,Y:FSIG]:SIG:=(X Q).
+Module M (X Y: FSIG) : SIG := X Q.
Reset M.
-Module M[X:FSIG;Y:SIG]:SIG:=(X Y).
+Module M (X: FSIG) (Y: SIG) : SIG := X Y.
Reset M.
-Module M[X,Y:FSIG;Z1,Z:SIG]:SIG:=(X Z).
+Module M (X Y: FSIG) (Z1 Z: SIG) : SIG := X Z.
Reset M.
-Module M[X:FSIG][Y:SIG]:SIG:=(X Y).
+Module M (X: FSIG) (Y: SIG) : SIG := X Y.
Reset M.
-Module M[X,Y:FSIG][Z1,Z:SIG]:SIG:=(X Z).
+Module M (X Y: FSIG) (Z1 Z: SIG) : SIG := X Z.
Reset M.
diff --git a/test-suite/success/Mod_strengthen.v8 b/test-suite/success/Mod_strengthen.v
index 3d9885e47..449610be6 100644
--- a/test-suite/success/Mod_strengthen.v8
+++ b/test-suite/success/Mod_strengthen.v
@@ -64,3 +64,4 @@ Proof.
reflexivity.
Qed.
+
diff --git a/test-suite/success/NatRing.v b/test-suite/success/NatRing.v
index 6a1eeccc6..8426c7e48 100644
--- a/test-suite/success/NatRing.v
+++ b/test-suite/success/NatRing.v
@@ -1,10 +1,10 @@
-Require ArithRing.
+Require Import ArithRing.
-Lemma l1 : (S (S O))=(plus (S O) (S O)).
-NatRing.
+Lemma l1 : 2 = 1 + 1.
+ring_nat.
Qed.
-Lemma l2 : (x:nat)(S (S x))=(plus (S O) (S x)).
-Intro.
-NatRing.
-Qed. \ No newline at end of file
+Lemma l2 : forall x : nat, S (S x) = 1 + S x.
+intro.
+ring_nat.
+Qed.
diff --git a/test-suite/success/Omega.v b/test-suite/success/Omega.v
index c324919ff..6df2f83d1 100644
--- a/test-suite/success/Omega.v
+++ b/test-suite/success/Omega.v
@@ -1,40 +1,38 @@
-Require Omega.
+Require Import Omega.
(* Submitted by Xavier Urbain 18 Jan 2002 *)
-Lemma lem1 : (x,y:Z)
- `-5 < x < 5` ->
- `-5 < y` ->
- `-5 < x+y+5`.
+Lemma lem1 :
+ forall x y : Z, (-5 < x < 5)%Z -> (-5 < y)%Z -> (-5 < x + y + 5)%Z.
Proof.
-Intros x y.
-Omega.
+intros x y.
+ omega.
Qed.
(* Proposed by Pierre Crégut *)
-Lemma lem2 : (x:Z) `x < 4` -> `x > 2` -> `x=3`.
-Intro.
-Omega.
+Lemma lem2 : forall x : Z, (x < 4)%Z -> (x > 2)%Z -> x = 3%Z.
+intro.
+ omega.
Qed.
(* Proposed by Jean-Christophe Filliâtre *)
-Lemma lem3 : (x,y:Z) `x = y` -> `x+x = y+y`.
+Lemma lem3 : forall x y : Z, x = y -> (x + x)%Z = (y + y)%Z.
Proof.
-Intros.
-Omega.
+intros.
+ omega.
Qed.
(* Proposed by Jean-Christophe Filliâtre: confusion between an Omega *)
(* internal variable and a section variable (June 2001) *)
Section A.
-Variable x,y : Z.
-Hypothesis H : `x > y`.
-Lemma lem4 : `x > y`.
-Omega.
+Variable x y : Z.
+Hypothesis H : (x > y)%Z.
+Lemma lem4 : (x > y)%Z.
+ omega.
Qed.
End A.
@@ -42,48 +40,48 @@ End A.
(* May 2002 *)
Section B.
-Variables R1,R2,S1,S2,H,S:Z.
-Hypothesis I:`R1 < 0`->`R2 = R1+(2*S1-1)`.
-Hypothesis J:`R1 < 0`->`S2 = S1-1`.
-Hypothesis K:`R1 >= 0`->`R2 = R1`.
-Hypothesis L:`R1 >= 0`->`S2 = S1`.
-Hypothesis M:`H <= 2*S`.
-Hypothesis N:`S < H`.
-Lemma lem5 : `H > 0`.
-Omega.
+Variable R1 R2 S1 S2 H S : Z.
+Hypothesis I : (R1 < 0)%Z -> R2 = (R1 + (2 * S1 - 1))%Z.
+Hypothesis J : (R1 < 0)%Z -> S2 = (S1 - 1)%Z.
+Hypothesis K : (R1 >= 0)%Z -> R2 = R1.
+Hypothesis L : (R1 >= 0)%Z -> S2 = S1.
+Hypothesis M : (H <= 2 * S)%Z.
+Hypothesis N : (S < H)%Z.
+Lemma lem5 : (H > 0)%Z.
+ omega.
Qed.
End B.
(* From Nicolas Oury (bug #180): handling -> on Set (fixed Oct 2002) *)
-Lemma lem6: (A: Set) (i:Z) `i<= 0` -> (`i<= 0` -> A) -> `i<=0`.
-Intros.
-Omega.
+Lemma lem6 :
+ forall (A : Set) (i : Z), (i <= 0)%Z -> ((i <= 0)%Z -> A) -> (i <= 0)%Z.
+intros.
+ omega.
Qed.
(* Adapted from an example in Nijmegen/FTA/ftc/RefSeparating (Oct 2002) *)
-Require Omega.
+Require Import Omega.
Section C.
-Parameter g:(m:nat)~m=O->Prop.
-Parameter f:(m:nat)(H:~m=O)(g m H).
-Variable n:nat.
-Variable ap_n:~n=O.
-Local delta:=(f n ap_n).
-Lemma lem7 : n=n.
-Omega.
+Parameter g : forall m : nat, m <> 0 -> Prop.
+Parameter f : forall (m : nat) (H : m <> 0), g m H.
+Variable n : nat.
+Variable ap_n : n <> 0.
+Let delta := f n ap_n.
+Lemma lem7 : n = n.
+ omega.
Qed.
End C.
(* Problem of dependencies *)
-Require Omega.
-Lemma lem8 : (H:O=O->O=O) H=H -> O=O.
-Intros; Omega.
+Require Import Omega.
+Lemma lem8 : forall H : 0 = 0 -> 0 = 0, H = H -> 0 = 0.
+intros; omega.
Qed.
(* Bug that what caused by the use of intro_using in Omega *)
-Require Omega.
-Lemma lem9 : (p,q:nat)
- ~((le p q)/\(lt p q)\/(le q p)/\(lt p q))
- -> (lt p p)\/(le p p).
-Intros; Omega.
+Require Import Omega.
+Lemma lem9 :
+ forall p q : nat, ~ (p <= q /\ p < q \/ q <= p /\ p < q) -> p < p \/ p <= p.
+intros; omega.
Qed.
diff --git a/test-suite/success/Omega2.v8 b/test-suite/success/Omega2.v
index c1f4877a6..54b13702a 100644
--- a/test-suite/success/Omega2.v8
+++ b/test-suite/success/Omega2.v
@@ -25,3 +25,4 @@ forall v1 v2 v3 v4 v5 : Z,
intros.
omega.
Qed.
+
diff --git a/test-suite/success/PPFix.v8 b/test-suite/success/PPFix.v
index 1ecbae3ab..833eb3ad1 100644
--- a/test-suite/success/PPFix.v8
+++ b/test-suite/success/PPFix.v
@@ -6,3 +6,4 @@ Check fix a(n: nat): n<5 -> nat :=
| 0 => fun _ => 0
| S n => fun h => S (a n (lt_S_n _ _ (lt_S _ _ h)))
end.
+
diff --git a/test-suite/success/Print.v b/test-suite/success/Print.v
index 4554a8430..c4726bf3f 100644
--- a/test-suite/success/Print.v
+++ b/test-suite/success/Print.v
@@ -6,15 +6,14 @@ Print Graph.
Print Coercions.
Print Classes.
Print nat.
-Print Proof O.
+Print Term O.
Print All.
-Print Grammar constr constr.
+Print Grammar constr.
Inspect 10.
Section A.
-Coercion f := [x]True : nat -> Prop.
-Print Coercion Paths nat SORTCLASS.
+Coercion f (x : nat) : Prop := True.
+Print Coercion Paths nat Sortclass.
Print Section A.
-Print.
diff --git a/test-suite/success/Projection.v b/test-suite/success/Projection.v
index 7f5cd8000..88da60133 100644
--- a/test-suite/success/Projection.v
+++ b/test-suite/success/Projection.v
@@ -1,10 +1,8 @@
-Structure S : Type :=
- {Dom : Type;
- Op : Dom -> Dom -> Dom}.
+Structure S : Type := {Dom : Type; Op : Dom -> Dom -> Dom}.
-Check [s:S](Dom s).
-Check [s:S](Op s).
-Check [s:S;a,b:(Dom s)](Op s a b).
+Check (fun s : S => Dom s).
+Check (fun s : S => Op s).
+Check (fun (s : S) (a b : Dom s) => Op s a b).
(* v8
Check fun s:S => s.(Dom).
@@ -13,17 +11,16 @@ Check fun (s:S) (a b:s.(Dom)) => s.(Op) a b.
*)
Set Implicit Arguments.
-Unset Strict Implicits.
+Unset Strict Implicit.
+Unset Strict Implicit.
-Structure S' [A:Set] : Type :=
- {Dom' : Type;
- Op' : A -> Dom' -> Dom'}.
+Structure S' (A : Set) : Type := {Dom' : Type; Op' : A -> Dom' -> Dom'}.
-Check [s:(S' nat)](Dom' s).
-Check [s:(S' nat)](Op' 2!s).
-Check [s:(S' nat)](!Op' nat s).
-Check [s:(S' nat);a:nat;b:(Dom' s)](Op' a b).
-Check [s:(S' nat);a:nat;b:(Dom' s)](!Op' nat s a b).
+Check (fun s : S' nat => Dom' s).
+Check (fun s : S' nat => Op' (s:=s)).
+Check (fun s : S' nat => Op' (A:=nat) (s:=s)).
+Check (fun (s : S' nat) (a : nat) (b : Dom' s) => Op' a b).
+Check (fun (s : S' nat) (a : nat) (b : Dom' s) => Op' (A:=nat) (s:=s) a b).
(* v8
Check fun s:S' => s.(Dom').
diff --git a/test-suite/success/RecTutorial.v8 b/test-suite/success/RecTutorial.v
index 1cef3f2f0..7d3d6730f 100644
--- a/test-suite/success/RecTutorial.v8
+++ b/test-suite/success/RecTutorial.v
@@ -1227,3 +1227,4 @@ Qed.
+
diff --git a/test-suite/success/Record.v b/test-suite/success/Record.v
index f3a13634d..7fdbcda7b 100644
--- a/test-suite/success/Record.v
+++ b/test-suite/success/Record.v
@@ -1,3 +1,3 @@
(* Nijmegen expects redefinition of sorts *)
Definition CProp := Prop.
-Record test : CProp := { n:nat }.
+Record test : CProp := {n : nat}.
diff --git a/test-suite/success/Reg.v b/test-suite/success/Reg.v
index eaa0690cb..89b3032c0 100644
--- a/test-suite/success/Reg.v
+++ b/test-suite/success/Reg.v
@@ -1,136 +1,144 @@
-Require Reals.
+Require Import Reals.
-Axiom y : R->R.
-Axiom d_y : (derivable y).
-Axiom n_y : (x:R)``(y x)<>0``.
-Axiom dy_0 : (derive_pt y R0 (d_y R0)) == R1.
+Axiom y : R -> R.
+Axiom d_y : derivable y.
+Axiom n_y : forall x : R, y x <> 0%R.
+Axiom dy_0 : derive_pt y 0 (d_y 0%R) = 1%R.
-Lemma essai0 : (continuity_pt [x:R]``(x+2)/(y x)+x/(y x)`` R0).
-Assert H := d_y.
-Assert H0 := n_y.
-Reg.
+Lemma essai0 : continuity_pt (fun x : R => ((x + 2) / y x + x / y x)%R) 0.
+assert (H := d_y).
+assert (H0 := n_y).
+reg.
Qed.
-Lemma essai1 : (derivable_pt [x:R]``/2*(sin x)`` ``1``).
-Reg.
+Lemma essai1 : derivable_pt (fun x : R => (/ 2 * sin x)%R) 1.
+reg.
Qed.
-Lemma essai2 : (continuity [x:R]``(Rsqr x)*(cos (x*x))+x``).
-Reg.
+Lemma essai2 : continuity (fun x : R => (Rsqr x * cos (x * x) + x)%R).
+reg.
Qed.
-Lemma essai3 : (derivable_pt [x:R]``x*((Rsqr x)+3)`` R0).
-Reg.
+Lemma essai3 : derivable_pt (fun x : R => (x * (Rsqr x + 3))%R) 0.
+reg.
Qed.
-Lemma essai4 : (derivable [x:R]``(x+x)*(sin x)``).
-Reg.
+Lemma essai4 : derivable (fun x : R => ((x + x) * sin x)%R).
+reg.
Qed.
-Lemma essai5 : (derivable [x:R]``1+(sin (2*x+3))*(cos (cos x))``).
-Reg.
+Lemma essai5 : derivable (fun x : R => (1 + sin (2 * x + 3) * cos (cos x))%R).
+reg.
Qed.
-Lemma essai6 : (derivable [x:R]``(cos (x+3))``).
-Reg.
+Lemma essai6 : derivable (fun x : R => cos (x + 3)).
+reg.
Qed.
-Lemma essai7 : (derivable_pt [x:R]``(cos (/(sqrt x)))*(Rsqr ((sin x)+1))`` R1).
-Reg.
-Apply Rlt_R0_R1.
-Red; Intro; Rewrite sqrt_1 in H; Assert H0 := R1_neq_R0; Elim H0; Assumption.
+Lemma essai7 :
+ derivable_pt (fun x : R => (cos (/ sqrt x) * Rsqr (sin x + 1))%R) 1.
+reg.
+apply Rlt_0_1.
+red in |- *; intro; rewrite sqrt_1 in H; assert (H0 := R1_neq_R0); elim H0;
+ assumption.
Qed.
-Lemma essai8 : (derivable_pt [x:R]``(sqrt ((Rsqr x)+(sin x)+1))`` R0).
-Reg.
-Rewrite sin_0.
-Rewrite Rsqr_O.
-Replace ``0+0+1`` with ``1``; [Apply Rlt_R0_R1 | Ring].
+Lemma essai8 : derivable_pt (fun x : R => sqrt (Rsqr x + sin x + 1)) 0.
+reg.
+ rewrite sin_0.
+ rewrite Rsqr_0.
+ replace (0 + 0 + 1)%R with 1%R; [ apply Rlt_0_1 | ring ].
Qed.
-Lemma essai9 : (derivable_pt (plus_fct id sin) R1).
-Reg.
+Lemma essai9 : derivable_pt (id + sin) 1.
+reg.
Qed.
-Lemma essai10 : (derivable_pt [x:R]``x+2`` R0).
-Reg.
+Lemma essai10 : derivable_pt (fun x : R => (x + 2)%R) 0.
+reg.
Qed.
-Lemma essai11 : (derive_pt [x:R]``x+2`` R0 essai10)==R1.
-Reg.
+Lemma essai11 : derive_pt (fun x : R => (x + 2)%R) 0 essai10 = 1%R.
+reg.
Qed.
-Lemma essai12 : (derivable [x:R]``x+(Rsqr (x+2))``).
-Reg.
+Lemma essai12 : derivable (fun x : R => (x + Rsqr (x + 2))%R).
+reg.
Qed.
-Lemma essai13 : (derive_pt [x:R]``x+(Rsqr (x+2))`` R0 (essai12 R0)) == ``5``.
-Reg.
+Lemma essai13 :
+ derive_pt (fun x : R => (x + Rsqr (x + 2))%R) 0 (essai12 0%R) = 5%R.
+reg.
Qed.
-Lemma essai14 : (derivable_pt [x:R]``2*x+x`` ``2``).
-Reg.
+Lemma essai14 : derivable_pt (fun x : R => (2 * x + x)%R) 2.
+reg.
Qed.
-Lemma essai15 : (derive_pt [x:R]``2*x+x`` ``2`` essai14) == ``3``.
-Reg.
+Lemma essai15 : derive_pt (fun x : R => (2 * x + x)%R) 2 essai14 = 3%R.
+reg.
Qed.
-Lemma essai16 : (derivable_pt [x:R]``x+(sin x)`` R0).
-Reg.
+Lemma essai16 : derivable_pt (fun x : R => (x + sin x)%R) 0.
+reg.
Qed.
-Lemma essai17 : (derive_pt [x:R]``x+(sin x)`` R0 essai16)==``2``.
-Reg.
-Rewrite cos_0.
-Reflexivity.
+Lemma essai17 : derive_pt (fun x : R => (x + sin x)%R) 0 essai16 = 2%R.
+reg.
+ rewrite cos_0.
+reflexivity.
Qed.
-Lemma essai18 : (derivable_pt [x:R]``x+(y x)`` ``0``).
-Assert H := d_y.
-Reg.
+Lemma essai18 : derivable_pt (fun x : R => (x + y x)%R) 0.
+assert (H := d_y).
+reg.
Qed.
-Lemma essai19 : (derive_pt [x:R]``x+(y x)`` ``0`` essai18) == ``2``.
-Assert H := dy_0.
-Assert H0 := d_y.
-Reg.
+Lemma essai19 : derive_pt (fun x : R => (x + y x)%R) 0 essai18 = 2%R.
+assert (H := dy_0).
+assert (H0 := d_y).
+reg.
Qed.
-Axiom z:R->R.
-Axiom d_z: (derivable z).
+Axiom z : R -> R.
+Axiom d_z : derivable z.
-Lemma essai20 : (derivable_pt [x:R]``(z (y x))`` R0).
-Reg.
-Apply d_y.
-Apply d_z.
+Lemma essai20 : derivable_pt (fun x : R => z (y x)) 0.
+reg.
+apply d_y.
+apply d_z.
Qed.
-Lemma essai21 : (derive_pt [x:R]``(z (y x))`` R0 essai20) == R1.
-Assert H := dy_0.
-Reg.
+Lemma essai21 : derive_pt (fun x : R => z (y x)) 0 essai20 = 1%R.
+assert (H := dy_0).
+reg.
Abort.
-Lemma essai22 : (derivable [x:R]``(sin (z x))+(Rsqr (z x))/(y x)``).
-Assert H := d_y.
-Reg.
-Apply n_y.
-Apply d_z.
+Lemma essai22 : derivable (fun x : R => (sin (z x) + Rsqr (z x) / y x)%R).
+assert (H := d_y).
+reg.
+apply n_y.
+apply d_z.
Qed.
(* Pour tester la continuite de sqrt en 0 *)
-Lemma essai23 : (continuity_pt [x:R]``(sin (sqrt (x-1)))+(exp (Rsqr ((sqrt x)+3)))`` R1).
-Reg.
-Left; Apply Rlt_R0_R1.
-Right; Unfold Rminus; Rewrite Rplus_Ropp_r; Reflexivity.
-Qed.
-
-Lemma essai24 : (derivable [x:R]``(sqrt (x*x+2*x+2))+(Rabsolu (x*x+1))``).
-Reg.
-Replace ``x*x+2*x+2`` with ``(Rsqr (x+1))+1``.
-Apply ge0_plus_gt0_is_gt0; [Apply pos_Rsqr | Apply Rlt_R0_R1].
-Unfold Rsqr; Ring.
-Red; Intro; Cut ``0<x*x+1``.
-Intro; Rewrite H in H0; Elim (Rlt_antirefl ? H0).
-Apply ge0_plus_gt0_is_gt0; [Replace ``x*x`` with (Rsqr x); [Apply pos_Rsqr | Reflexivity] | Apply Rlt_R0_R1].
+Lemma essai23 :
+ continuity_pt
+ (fun x : R => (sin (sqrt (x - 1)) + exp (Rsqr (sqrt x + 3)))%R) 1.
+reg.
+left; apply Rlt_0_1.
+right; unfold Rminus in |- *; rewrite Rplus_opp_r; reflexivity.
+Qed.
+
+Lemma essai24 :
+ derivable (fun x : R => (sqrt (x * x + 2 * x + 2) + Rabs (x * x + 1))%R).
+reg.
+ replace (x * x + 2 * x + 2)%R with (Rsqr (x + 1) + 1)%R.
+apply Rplus_le_lt_0_compat; [ apply Rle_0_sqr | apply Rlt_0_1 ].
+unfold Rsqr in |- *; ring.
+red in |- *; intro; cut (0 < x * x + 1)%R.
+intro; rewrite H in H0; elim (Rlt_irrefl _ H0).
+apply Rplus_le_lt_0_compat;
+ [ replace (x * x)%R with (Rsqr x); [ apply Rle_0_sqr | reflexivity ]
+ | apply Rlt_0_1 ].
Qed.
diff --git a/test-suite/success/Rename.v b/test-suite/success/Rename.v
index edb20a81a..8a5db157c 100644
--- a/test-suite/success/Rename.v
+++ b/test-suite/success/Rename.v
@@ -1,5 +1,5 @@
-Goal (n:nat)(n=O)->(n=O).
-Intros.
-Rename n into p.
-NewInduction p; Auto.
+Goal forall n : nat, n = 0 -> n = 0.
+intros.
+rename n into p.
+induction p; auto.
Qed.
diff --git a/test-suite/success/Require.v b/test-suite/success/Require.v
index 654808fc1..f851d8c7d 100644
--- a/test-suite/success/Require.v
+++ b/test-suite/success/Require.v
@@ -1,3 +1,3 @@
-Require Coq.Arith.Plus.
-Read Module Coq.Arith.Minus.
+Require Import Coq.Arith.Plus.
+Require Coq.Arith.Minus.
Locate Library Coq.Arith.Minus.
diff --git a/test-suite/success/Reset.v b/test-suite/success/Reset.v
index 27100ed37..b71ea69d7 100644
--- a/test-suite/success/Reset.v
+++ b/test-suite/success/Reset.v
@@ -1,7 +1,7 @@
(* Check Reset Section *)
Section A.
-Definition B:=Prop.
+Definition B := Prop.
End A.
Reset A.
diff --git a/test-suite/success/Simplify_eq.v b/test-suite/success/Simplify_eq.v
index 41aa77efe..5b856e3da 100644
--- a/test-suite/success/Simplify_eq.v
+++ b/test-suite/success/Simplify_eq.v
@@ -2,12 +2,12 @@
(* Check that Simplify_eq tries Intro until *)
-Lemma l1 : O=(S O)->False.
-Simplify_eq 1.
+Lemma l1 : 0 = 1 -> False.
+ simplify_eq 1.
Qed.
-Lemma l2 : (x:nat)(H:(S x)=(S (S x)))H==H->False.
-Simplify_eq H.
-Intros.
-Apply (n_Sn x H0).
+Lemma l2 : forall (x : nat) (H : S x = S (S x)), H = H -> False.
+ simplify_eq H.
+intros.
+apply (n_Sn x H0).
Qed.
diff --git a/test-suite/success/Tauto.v b/test-suite/success/Tauto.v
index b6d999357..42898b8d1 100644
--- a/test-suite/success/Tauto.v
+++ b/test-suite/success/Tauto.v
@@ -18,183 +18,186 @@
Simplifications of goals, based on LJT* calcul ****)
(**** Examples of intuitionistic tautologies ****)
-Parameter A,B,C,D,E,F:Prop.
-Parameter even:nat -> Prop.
-Parameter P:nat -> Prop.
+Parameter A B C D E F : Prop.
+Parameter even : nat -> Prop.
+Parameter P : nat -> Prop.
-Lemma Ex_Wallen:(A->(B/\C)) -> ((A->B)\/(A->C)).
+Lemma Ex_Wallen : (A -> B /\ C) -> (A -> B) \/ (A -> C).
Proof.
- Tauto.
-Save.
+ tauto.
+Qed.
-Lemma Ex_Klenne:~(~(A \/ ~A)).
+Lemma Ex_Klenne : ~ ~ (A \/ ~ A).
Proof.
- Tauto.
-Save.
+ tauto.
+Qed.
-Lemma Ex_Klenne':(n:nat)(~(~((even n) \/ ~(even n)))).
+Lemma Ex_Klenne' : forall n : nat, ~ ~ (even n \/ ~ even n).
Proof.
- Tauto.
-Save.
+ tauto.
+Qed.
-Lemma Ex_Klenne'':~(~(((n:nat)(even n)) \/ ~((m:nat)(even m)))).
+Lemma Ex_Klenne'' :
+ ~ ~ ((forall n : nat, even n) \/ ~ (forall m : nat, even m)).
Proof.
- Tauto.
-Save.
+ tauto.
+Qed.
-Lemma tauto:((x:nat)(P x)) -> ((y:nat)(P y)).
+Lemma tauto : (forall x : nat, P x) -> forall y : nat, P y.
Proof.
- Tauto.
-Save.
+ tauto.
+Qed.
-Lemma tauto1:(A -> A).
+Lemma tauto1 : A -> A.
Proof.
- Tauto.
-Save.
+ tauto.
+Qed.
-Lemma tauto2:(A -> B -> C) -> (A -> B) -> A -> C.
+Lemma tauto2 : (A -> B -> C) -> (A -> B) -> A -> C.
Proof.
- Tauto.
-Save.
+ tauto.
+Qed.
-Lemma a:(x0: (A \/ B))(x1:(B /\ C))(A -> B).
+Lemma a : forall (x0 : A \/ B) (x1 : B /\ C), A -> B.
Proof.
- Tauto.
-Save.
+ tauto.
+Qed.
-Lemma a2:((A -> (B /\ C)) -> ((A -> B) \/ (A -> C))).
+Lemma a2 : (A -> B /\ C) -> (A -> B) \/ (A -> C).
Proof.
- Tauto.
-Save.
+ tauto.
+Qed.
-Lemma a4:(~A -> ~A).
+Lemma a4 : ~ A -> ~ A.
Proof.
- Tauto.
-Save.
+ tauto.
+Qed.
-Lemma e2:~(~(A \/ ~A)).
+Lemma e2 : ~ ~ (A \/ ~ A).
Proof.
- Tauto.
-Save.
+ tauto.
+Qed.
-Lemma e4:~(~((A \/ B) -> (A \/ B))).
+Lemma e4 : ~ ~ (A \/ B -> A \/ B).
Proof.
- Tauto.
-Save.
+ tauto.
+Qed.
-Lemma y0:(x0:A)(x1: ~A)(x2:(A -> B))(x3:(A \/ B))(x4:(A /\ B))(A -> False).
+Lemma y0 :
+ forall (x0 : A) (x1 : ~ A) (x2 : A -> B) (x3 : A \/ B) (x4 : A /\ B),
+ A -> False.
Proof.
- Tauto.
-Save.
+ tauto.
+Qed.
-Lemma y1:(x0:((A /\ B) /\ C))B.
+Lemma y1 : forall x0 : (A /\ B) /\ C, B.
Proof.
- Tauto.
-Save.
+ tauto.
+Qed.
-Lemma y2:(x0:A)(x1:B)(C \/ B).
+Lemma y2 : forall (x0 : A) (x1 : B), C \/ B.
Proof.
- Tauto.
-Save.
+ tauto.
+Qed.
-Lemma y3:(x0:(A /\ B))(B /\ A).
+Lemma y3 : forall x0 : A /\ B, B /\ A.
Proof.
- Tauto.
-Save.
+ tauto.
+Qed.
-Lemma y5:(x0:(A \/ B))(B \/ A).
+Lemma y5 : forall x0 : A \/ B, B \/ A.
Proof.
- Tauto.
-Save.
+ tauto.
+Qed.
-Lemma y6:(x0:(A -> B))(x1:A) B.
+Lemma y6 : forall (x0 : A -> B) (x1 : A), B.
Proof.
- Tauto.
-Save.
+ tauto.
+Qed.
-Lemma y7:(x0 : ((A /\ B) -> C))(x1 : B)(x2 : A) C.
+Lemma y7 : forall (x0 : A /\ B -> C) (x1 : B) (x2 : A), C.
Proof.
- Tauto.
-Save.
+ tauto.
+Qed.
-Lemma y8:(x0 : ((A \/ B) -> C))(x1 : A) C.
+Lemma y8 : forall (x0 : A \/ B -> C) (x1 : A), C.
Proof.
- Tauto.
-Save.
+ tauto.
+Qed.
-Lemma y9:(x0 : ((A \/ B) -> C))(x1 : B) C.
+Lemma y9 : forall (x0 : A \/ B -> C) (x1 : B), C.
Proof.
- Tauto.
-Save.
+ tauto.
+Qed.
-Lemma y10:(x0 : ((A -> B) -> C))(x1 : B) C.
+Lemma y10 : forall (x0 : (A -> B) -> C) (x1 : B), C.
Proof.
- Tauto.
-Save.
+ tauto.
+Qed.
(* This example took much time with the old version of Tauto *)
-Lemma critical_example0:(~~B->B)->(A->B)->~~A->B.
+Lemma critical_example0 : (~ ~ B -> B) -> (A -> B) -> ~ ~ A -> B.
Proof.
- Tauto.
-Save.
+ tauto.
+Qed.
(* Same remark as previously *)
-Lemma critical_example1:(~~B->B)->(~B->~A)->~~A->B.
+Lemma critical_example1 : (~ ~ B -> B) -> (~ B -> ~ A) -> ~ ~ A -> B.
Proof.
- Tauto.
-Save.
+ tauto.
+Qed.
(* This example took very much time (about 3mn on a PIII 450MHz in bytecode)
with the old Tauto. Now, it's immediate (less than 1s). *)
-Lemma critical_example2:(~A<->B)->(~B<->A)->(~~A<->A).
+Lemma critical_example2 : (~ A <-> B) -> (~ B <-> A) -> (~ ~ A <-> A).
Proof.
- Tauto.
-Save.
+ tauto.
+Qed.
(* This example was a bug *)
-Lemma old_bug0:(~A<->B)->(~(C\/E)<->D/\F)->~(C\/A\/E)<->D/\B/\F.
+Lemma old_bug0 :
+ (~ A <-> B) -> (~ (C \/ E) <-> D /\ F) -> (~ (C \/ A \/ E) <-> D /\ B /\ F).
Proof.
- Tauto.
-Save.
+ tauto.
+Qed.
(* Another bug *)
-Lemma old_bug1:((A->B->False)->False) -> (B->False) -> False.
+Lemma old_bug1 : ((A -> B -> False) -> False) -> (B -> False) -> False.
Proof.
- Tauto.
-Save.
+ tauto.
+Qed.
(* A bug again *)
-Lemma old_bug2:
- ((((C->False)->A)->((B->False)->A)->False)->False) ->
- (((C->B->False)->False)->False) ->
- ~A->A.
+Lemma old_bug2 :
+ ((((C -> False) -> A) -> ((B -> False) -> A) -> False) -> False) ->
+ (((C -> B -> False) -> False) -> False) -> ~ A -> A.
Proof.
- Tauto.
-Save.
+ tauto.
+Qed.
(* A bug from CNF form *)
-Lemma old_bug3:
- ((~A\/B)/\(~B\/B)/\(~A\/~B)/\(~B\/~B)->False)->~((A->B)->B)->False.
+Lemma old_bug3 :
+ ((~ A \/ B) /\ (~ B \/ B) /\ (~ A \/ ~ B) /\ (~ B \/ ~ B) -> False) ->
+ ~ ((A -> B) -> B) -> False.
Proof.
- Tauto.
-Save.
+ tauto.
+Qed.
(* sometimes, the behaviour of Tauto depends on the order of the hyps *)
-Lemma old_bug3bis:
- ~((A->B)->B)->((~B\/~B)/\(~B\/~A)/\(B\/~B)/\(B\/~A)->False)->False.
+Lemma old_bug3bis :
+ ~ ((A -> B) -> B) ->
+ ((~ B \/ ~ B) /\ (~ B \/ ~ A) /\ (B \/ ~ B) /\ (B \/ ~ A) -> False) -> False.
Proof.
- Tauto.
-Save.
+ tauto.
+Qed.
(* A bug found by Freek Wiedijk <freek@cs.kun.nl> *)
-Lemma new_bug:
- ((A<->B)->(B<->C)) ->
- ((B<->C)->(C<->A)) ->
- ((C<->A)->(A<->B)) ->
- (A<->B).
+Lemma new_bug :
+ ((A <-> B) -> (B <-> C)) ->
+ ((B <-> C) -> (C <-> A)) -> ((C <-> A) -> (A <-> B)) -> (A <-> B).
Proof.
- Tauto.
-Save.
+ tauto.
+Qed.
(* A private club has the following rules :
@@ -211,30 +214,31 @@ Save.
Section club.
-Variable Scottish, RedSocks, WearKilt, Married, GoOutSunday : Prop.
+Variable Scottish RedSocks WearKilt Married GoOutSunday : Prop.
-Hypothesis rule1 : ~Scottish -> RedSocks.
-Hypothesis rule2 : WearKilt \/ ~RedSocks.
-Hypothesis rule3 : Married -> ~GoOutSunday.
+Hypothesis rule1 : ~ Scottish -> RedSocks.
+Hypothesis rule2 : WearKilt \/ ~ RedSocks.
+Hypothesis rule3 : Married -> ~ GoOutSunday.
Hypothesis rule4 : GoOutSunday <-> Scottish.
-Hypothesis rule5 : WearKilt -> (Scottish /\ Married).
+Hypothesis rule5 : WearKilt -> Scottish /\ Married.
Hypothesis rule6 : Scottish -> WearKilt.
Lemma NoMember : False.
-Tauto.
-Save.
+ tauto.
+Qed.
End club.
(**** Use of Intuition ****)
-Lemma intu0:(((x:nat)(P x)) /\ B) ->
- (((y:nat)(P y)) /\ (P O)) \/ (B /\ (P O)).
+Lemma intu0 :
+ (forall x : nat, P x) /\ B -> (forall y : nat, P y) /\ P 0 \/ B /\ P 0.
Proof.
- Intuition.
-Save.
+ intuition.
+Qed.
-Lemma intu1:((A:Prop)A\/~A)->(x,y:nat)(x=y\/~x=y).
+Lemma intu1 :
+ (forall A : Prop, A \/ ~ A) -> forall x y : nat, x = y \/ x <> y.
Proof.
- Intuition.
-Save.
+ intuition.
+Qed.
diff --git a/test-suite/success/TestRefine.v b/test-suite/success/TestRefine.v
index ee3d7e3f8..8ed0f7ba6 100644
--- a/test-suite/success/TestRefine.v
+++ b/test-suite/success/TestRefine.v
@@ -6,27 +6,32 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(* Petit bench vite fait, mal fait *)
-
-Require Refine.
-
-
(************************************************************************)
-Lemma essai : (x:nat)x=x.
+Lemma essai : forall x : nat, x = x.
-Refine (([x0:nat]Cases x0 of
- O => ?
- | (S p) => ?
- end) :: (x:nat)x=x). (* x0=x0 et x0=x0 *)
+ refine
+ ((fun x0 : nat => match x0 with
+ | O => _
+ | S p => _
+ end)
+ :forall x : nat, x = x). (* x0=x0 et x0=x0 *)
Restart.
-Refine [x0:nat]<[n:nat]n=n>Case x0 of ? [p:nat]? end. (* OK *)
+ refine
+ (fun x0 : nat => match x0 as n return (n = n) with
+ | O => _
+ | S p => _
+ end). (* OK *)
Restart.
-Refine [x0:nat]<[n:nat]n=n>Cases x0 of O => ? | (S p) => ? end. (* OK *)
+ refine
+ (fun x0 : nat => match x0 as n return (n = n) with
+ | O => _
+ | S p => _
+ end). (* OK *)
Restart.
@@ -41,40 +46,52 @@ Abort.
Lemma T : nat.
-Refine (S ?).
+ refine (S _).
Abort.
(************************************************************************)
-Lemma essai2 : (x:nat)x=x.
+Lemma essai2 : forall x : nat, x = x.
-Refine Fix f{f/1 : (x:nat)x=x := [x:nat]? }.
+ refine (fix f (x : nat) : x = x := _).
Restart.
-Refine Fix f{f/1 : (x:nat)x=x :=
- [x:nat]<[n:nat](eq nat n n)>Case x of ? [p:nat]? end}.
+ refine
+ (fix f (x : nat) : x = x :=
+ match x as n return (n = n :>nat) with
+ | O => _
+ | S p => _
+ end).
Restart.
-Refine Fix f{f/1 : (x:nat)x=x :=
- [x:nat]<[n:nat]n=n>Cases x of O => ? | (S p) => ? end}.
+ refine
+ (fix f (x : nat) : x = x :=
+ match x as n return (n = n) with
+ | O => _
+ | S p => _
+ end).
Restart.
-Refine Fix f{f/1 : (x:nat)x=x :=
- [x:nat]<[n:nat](eq nat n n)>Case x of
- ?
- [p:nat](f_equal nat nat S p p ?) end}.
+ refine
+ (fix f (x : nat) : x = x :=
+ match x as n return (n = n :>nat) with
+ | O => _
+ | S p => f_equal S _
+ end).
Restart.
-Refine Fix f{f/1 : (x:nat)x=x :=
- [x:nat]<[n:nat](eq nat n n)>Cases x of
- O => ?
- | (S p) =>(f_equal nat nat S p p ?) end}.
+ refine
+ (fix f (x : nat) : x = x :=
+ match x as n return (n = n :>nat) with
+ | O => _
+ | S p => f_equal S _
+ end).
Abort.
@@ -83,13 +100,13 @@ Abort.
Lemma essai : nat.
-Parameter f : nat*nat -> nat -> nat.
+Parameter f : nat * nat -> nat -> nat.
-Refine (f ? ([x:nat](? :: nat) O)).
+ refine (f _ ((fun x : nat => _:nat) 0)).
Restart.
-Refine (f ? O).
+ refine (f _ 0).
Abort.
@@ -98,93 +115,113 @@ Abort.
Parameter P : nat -> Prop.
-Lemma essai : { x:nat | x=(S O) }.
+Lemma essai : {x : nat | x = 1}.
-Refine (exist nat ? (S O) ?). (* ECHEC *)
+ refine (exist _ 1 _). (* ECHEC *)
Restart.
(* mais si on contraint par le but alors ca marche : *)
(* Remarque : on peut toujours faire ça *)
-Refine ((exist nat ? (S O) ?) :: { x:nat | x=(S O) }).
+ refine (exist _ 1 _:{x : nat | x = 1}).
Restart.
-Refine (exist nat [x:nat](x=(S O)) (S O) ?).
+ refine (exist (fun x : nat => x = 1) 1 _).
Abort.
(************************************************************************)
-Lemma essai : (n:nat){ x:nat | x=(S n) }.
+Lemma essai : forall n : nat, {x : nat | x = S n}.
-Refine [n:nat]<[n:nat]{x:nat|x=(S n)}>Case n of ? [p:nat]? end.
+ refine
+ (fun n : nat =>
+ match n return {x : nat | x = S n} with
+ | O => _
+ | S p => _
+ end).
Restart.
-Refine (([n:nat]Case n of ? [p:nat]? end) :: (n:nat){ x:nat | x=(S n) }).
+ refine
+ ((fun n : nat => match n with
+ | O => _
+ | S p => _
+ end)
+ :forall n : nat, {x : nat | x = S n}).
Restart.
-Refine [n:nat]<[n:nat]{x:nat|x=(S n)}>Cases n of O => ? | (S p) => ? end.
+ refine
+ (fun n : nat =>
+ match n return {x : nat | x = S n} with
+ | O => _
+ | S p => _
+ end).
Restart.
-Refine Fix f{f/1 :(n:nat){x:nat|x=(S n)} :=
- [n:nat]<[n:nat]{x:nat|x=(S n)}>Case n of ? [p:nat]? end}.
+ refine
+ (fix f (n : nat) : {x : nat | x = S n} :=
+ match n return {x : nat | x = S n} with
+ | O => _
+ | S p => _
+ end).
Restart.
-Refine Fix f{f/1 :(n:nat){x:nat|x=(S n)} :=
- [n:nat]<[n:nat]{x:nat|x=(S n)}>Cases n of O => ? | (S p) => ? end}.
+ refine
+ (fix f (n : nat) : {x : nat | x = S n} :=
+ match n return {x : nat | x = S n} with
+ | O => _
+ | S p => _
+ end).
-Exists (S O). Trivial.
-Elim (f0 p).
-Refine [x:nat][h:x=(S p)](exist nat [x:nat]x=(S (S p)) (S x) ?).
-Rewrite h. Auto.
-Save.
+exists 1. trivial.
+elim (f0 p).
+ refine
+ (fun (x : nat) (h : x = S p) => exist (fun x : nat => x = S (S p)) (S x) _).
+ rewrite h. auto.
+Qed.
(* Quelques essais de recurrence bien fondée *)
-Require Wf.
-Require Wf_nat.
+Require Import Wf.
+Require Import Wf_nat.
-Lemma essai_wf : nat->nat.
+Lemma essai_wf : nat -> nat.
-Refine [x:nat](well_founded_induction
- nat
- lt ?
- [_:nat]nat->nat
- [phi0:nat][w:(phi:nat)(lt phi phi0)->nat->nat](w x ?)
- x x).
-Exact lt_wf.
+ refine
+ (fun x : nat =>
+ well_founded_induction _ (fun _ : nat => nat -> nat)
+ (fun (phi0 : nat) (w : forall phi : nat, phi < phi0 -> nat -> nat) =>
+ w x _) x x).
+exact lt_wf.
Abort.
-Require Compare_dec.
-Require Lt.
+Require Import Compare_dec.
+Require Import Lt.
Lemma fibo : nat -> nat.
-Refine (well_founded_induction
- nat
- lt ?
- [_:nat]nat
- [x0:nat][fib:(x:nat)(lt x x0)->nat]
- Cases (zerop x0) of
- (left _) => (S O)
- | (right h1) => Cases (zerop (pred x0)) of
- (left _) => (S O)
- | (right h2) => (plus (fib (pred x0) ?)
- (fib (pred (pred x0)) ?))
- end
- end).
-Exact lt_wf.
-Auto with arith.
-Apply lt_trans with m:=(pred x0); Auto with arith.
-Save.
-
+ refine
+ (well_founded_induction _ (fun _ : nat => nat)
+ (fun (x0 : nat) (fib : forall x : nat, x < x0 -> nat) =>
+ match zerop x0 with
+ | left _ => 1
+ | right h1 =>
+ match zerop (pred x0) with
+ | left _ => 1
+ | right h2 => fib (pred x0) _ + fib (pred (pred x0)) _
+ end
+ end)).
+exact lt_wf.
+auto with arith.
+apply lt_trans with (m := pred x0); auto with arith.
+Qed.
diff --git a/test-suite/success/Try.v b/test-suite/success/Try.v
index 05cab1e6f..b356f277c 100644
--- a/test-suite/success/Try.v
+++ b/test-suite/success/Try.v
@@ -2,7 +2,7 @@
non-existent names in Unfold [cf bug #263] *)
Lemma lem1 : True.
-Try (Unfold i_dont_exist).
-Trivial.
+try unfold i_dont_exist in |- *.
+trivial.
Qed.
diff --git a/test-suite/success/autorewritein.v8 b/test-suite/success/autorewritein.v
index 3e218099a..8126e9e4b 100644
--- a/test-suite/success/autorewritein.v8
+++ b/test-suite/success/autorewritein.v
@@ -17,3 +17,4 @@ Proof.
intros.
autorewrite with base0 in H using try (apply H1; reflexivity).
Qed.
+
diff --git a/test-suite/success/cc.v b/test-suite/success/cc.v
index 940aa7507..42df990fd 100644
--- a/test-suite/success/cc.v
+++ b/test-suite/success/cc.v
@@ -1,73 +1,79 @@
-Theorem t1: (A:Set)(a:A)(f:A->A)
- (f a)=a->(f (f a))=a.
-Intros.
-Congruence.
-Save.
-
-Theorem t2: (A:Set)(a,b:A)(f:A->A)(g:A->A->A)
- a=(f a)->(g b (f a))=(f (f a))->(g a b)=(f (g b a))->
- (g a b)=a.
-Intros.
-Congruence.
-Save.
+Theorem t1 : forall (A : Set) (a : A) (f : A -> A), f a = a -> f (f a) = a.
+intros.
+ congruence.
+Qed.
+
+Theorem t2 :
+ forall (A : Set) (a b : A) (f : A -> A) (g : A -> A -> A),
+ a = f a -> g b (f a) = f (f a) -> g a b = f (g b a) -> g a b = a.
+intros.
+ congruence.
+Qed.
(* 15=0 /\ 10=0 /\ 6=0 -> 0=1 *)
-Theorem t3: (N:Set)(o:N)(s:N->N)(d:N->N)
- (s(s(s(s(s(s(s(s(s(s(s(s(s(s(s o)))))))))))))))=o->
- (s (s (s (s (s (s (s (s (s (s o))))))))))=o->
- (s (s (s (s (s (s o))))))=o->
- o=(s o).
-Intros.
-Congruence.
-Save.
+Theorem t3 :
+ forall (N : Set) (o : N) (s d : N -> N),
+ s (s (s (s (s (s (s (s (s (s (s (s (s (s (s o)))))))))))))) = o ->
+ s (s (s (s (s (s (s (s (s (s o))))))))) = o ->
+ s (s (s (s (s (s o))))) = o -> o = s o.
+intros.
+ congruence.
+Qed.
(* Examples that fail due to dependencies *)
(* yields transitivity problem *)
-Theorem dep:(A:Set)(P:A->Set)(f,g:(x:A)(P x))(x,y:A)
- (e:x=y)(e0:(f y)=(g y))(f x)=(g x).
-Intros;Dependent Rewrite -> e;Exact e0.
-Save.
+Theorem dep :
+ forall (A : Set) (P : A -> Set) (f g : forall x : A, P x)
+ (x y : A) (e : x = y) (e0 : f y = g y), f x = g x.
+intros; dependent rewrite e; exact e0.
+Qed.
(* yields congruence problem *)
-Theorem dep2:(A,B:Set)(f:(A:Set)(b:bool)if b then unit else A->unit)(e:A==B)
- (f A true)=(f B true).
-Intros;Rewrite e;Reflexivity.
-Save.
+Theorem dep2 :
+ forall (A B : Set)
+ (f : forall (A : Set) (b : bool), if b then unit else A -> unit)
+ (e : A = B), f A true = f B true.
+intros; rewrite e; reflexivity.
+Qed.
(* example that Congruence. can solve
(dependent function applied to the same argument)*)
-Theorem dep3:(A:Set)(P:(A->Set))(f,g:(x:A)(P x))f=g->(x:A)(f x)=(g x). Intros.
-Congruence.
-Save.
+Theorem dep3 :
+ forall (A : Set) (P : A -> Set) (f g : forall x : A, P x),
+ f = g -> forall x : A, f x = g x. intros.
+ congruence.
+Qed.
(* Examples with injection rule *)
-Theorem inj1 : (A:Set;a,b,c,d:A)(a,c)=(b,d)->a=b/\c=d.
-Intros.
-Split;Congruence.
-Save.
+Theorem inj1 :
+ forall (A : Set) (a b c d : A), (a, c) = (b, d) -> a = b /\ c = d.
+intros.
+split; congruence.
+Qed.
-Theorem inj2 : (A:Set;a,c,d:A;f:A->A*A) (f=(pair A A a))->
- (Some ? (f c))=(Some ? (f d))->c=d.
-Intros.
-Congruence.
-Save.
+Theorem inj2 :
+ forall (A : Set) (a c d : A) (f : A -> A * A),
+ f = pair (B:=A) a -> Some (f c) = Some (f d) -> c = d.
+intros.
+ congruence.
+Qed.
(* Examples with discrimination rule *)
-Theorem discr1 : true=false->False.
-Intros.
-Congruence.
-Save.
+Theorem discr1 : true = false -> False.
+intros.
+ congruence.
+Qed.
-Theorem discr2 : (Some ? true)=(Some ? false)->False.
-Intros.
-Congruence.
-Save.
+Theorem discr2 : Some true = Some false -> False.
+intros.
+ congruence.
+Qed.
diff --git a/test-suite/success/coercions.v b/test-suite/success/coercions.v
index 17c4f9078..8dd48752b 100644
--- a/test-suite/success/coercions.v
+++ b/test-suite/success/coercions.v
@@ -1,26 +1,26 @@
(* Interaction between coercions and casts *)
(* Example provided by Eduardo Gimenez *)
-Parameter Z,S:Set.
+Parameter Z S : Set.
-Parameter f: S -> Z.
-Coercion f: S >-> Z.
+Parameter f : S -> Z.
+Coercion f : S >-> Z.
Parameter g : Z -> Z.
-Check [s](g (s::S)).
+Check (fun s => g (s:S)).
(* Check uniform inheritance condition *)
Parameter h : nat -> nat -> Prop.
-Parameter i : (n,m:nat)(h n m) -> nat.
+Parameter i : forall n m : nat, h n m -> nat.
Coercion i : h >-> nat.
(* Check coercion to funclass when the source occurs in the target *)
-Parameter C: nat -> nat -> nat.
-Coercion C : nat >-> FUNCLASS.
+Parameter C : nat -> nat -> nat.
+Coercion C : nat >-> Funclass.
(* Remark: in the following example, it cannot be decide whether C is
from nat to Funclass or from A to nat. An explicit Coercion command is
diff --git a/test-suite/success/coqbugs0181.v b/test-suite/success/coqbugs0181.v
index 21f906a60..d541dcf7b 100644
--- a/test-suite/success/coqbugs0181.v
+++ b/test-suite/success/coqbugs0181.v
@@ -1,7 +1,7 @@
(* test the strength of pretyping unification *)
-Require PolyList.
-Definition listn := [A,n] {l:(list A)|(length l)=n}.
-Definition make_ln [A,n;l:(list A); h:([l](length l)=n l)] :=
- (exist ?? l h).
+Require Import List.
+Definition listn A n := {l : list A | length l = n}.
+Definition make_ln A n (l : list A) (h : (fun l => length l = n) l) :=
+ exist _ l h.
diff --git a/test-suite/success/destruct.v b/test-suite/success/destruct.v
index f09863d9d..ede573a34 100644
--- a/test-suite/success/destruct.v
+++ b/test-suite/success/destruct.v
@@ -1,9 +1,9 @@
(* Simplification of bug 711 *)
-Parameter f:true=false.
-Goal let p=f in True.
-Intro p.
-LetTac b:=true.
+Parameter f : true = false.
+Goal let p := f in True.
+intro p.
+set (b := true) in *.
(* Check that it doesn't fail with an anomaly *)
(* Ultimately, adapt destruct to make it succeeding *)
-Try NewDestruct b.
+try destruct b.
diff --git a/test-suite/success/eauto.v b/test-suite/success/eauto.v
index 97f7ccf0e..26339d513 100644
--- a/test-suite/success/eauto.v
+++ b/test-suite/success/eauto.v
@@ -5,45 +5,56 @@
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-Require PolyList.
+Require Import List.
-Parameter in_list : (list nat*nat)->nat->Prop.
-Definition not_in_list : (list nat*nat)->nat->Prop
- := [l,n]~(in_list l n).
+Parameter in_list : list (nat * nat) -> nat -> Prop.
+Definition not_in_list (l : list (nat * nat)) (n : nat) : Prop :=
+ ~ in_list l n.
(* Hints Unfold not_in_list. *)
-Axiom lem1 : (l1,l2:(list nat*nat))(n:nat)
- (not_in_list (app l1 l2) n)->(not_in_list l1 n).
-
-Axiom lem2 : (l1,l2:(list nat*nat))(n:nat)
- (not_in_list (app l1 l2) n)->(not_in_list l2 n).
-
-Axiom lem3 : (l:(list nat*nat))(n,p,q:nat)
- (not_in_list (cons (p,q) l) n)->(not_in_list l n).
-
-Axiom lem4 : (l1,l2:(list nat*nat))(n:nat)
- (not_in_list l1 n)->(not_in_list l2 n)->(not_in_list (app l1 l2) n).
-
-Hints Resolve lem1 lem2 lem3 lem4: essai.
-
-Goal (l:(list nat*nat))(n,p,q:nat)
- (not_in_list (cons (p,q) l) n)->(not_in_list l n).
-Intros.
-EAuto with essai.
-Save.
+Axiom
+ lem1 :
+ forall (l1 l2 : list (nat * nat)) (n : nat),
+ not_in_list (l1 ++ l2) n -> not_in_list l1 n.
+
+Axiom
+ lem2 :
+ forall (l1 l2 : list (nat * nat)) (n : nat),
+ not_in_list (l1 ++ l2) n -> not_in_list l2 n.
+
+Axiom
+ lem3 :
+ forall (l : list (nat * nat)) (n p q : nat),
+ not_in_list ((p, q) :: l) n -> not_in_list l n.
+
+Axiom
+ lem4 :
+ forall (l1 l2 : list (nat * nat)) (n : nat),
+ not_in_list l1 n -> not_in_list l2 n -> not_in_list (l1 ++ l2) n.
+
+Hint Resolve lem1 lem2 lem3 lem4: essai.
+
+Goal
+forall (l : list (nat * nat)) (n p q : nat),
+not_in_list ((p, q) :: l) n -> not_in_list l n.
+intros.
+ eauto with essai.
+Qed.
(* Example from Nicolas Magaud on coq-club - Jul 2000 *)
-Definition Nat: Set := nat.
-Parameter S':Nat ->Nat.
-Parameter plus':Nat -> Nat ->Nat.
-
-Lemma simpl_plus_l_rr1:
- ((n0:Nat) ((m, p:Nat) (plus' n0 m)=(plus' n0 p) ->m=p) ->
- (m, p:Nat) (S' (plus' n0 m))=(S' (plus' n0 p)) ->m=p) ->
- (n:Nat) ((m, p:Nat) (plus' n m)=(plus' n p) ->m=p) ->
- (m, p:Nat) (S' (plus' n m))=(S' (plus' n p)) ->m=p.
-Intros.
-EAuto. (* does EApply H *)
+Definition Nat : Set := nat.
+Parameter S' : Nat -> Nat.
+Parameter plus' : Nat -> Nat -> Nat.
+
+Lemma simpl_plus_l_rr1 :
+ (forall n0 : Nat,
+ (forall m p : Nat, plus' n0 m = plus' n0 p -> m = p) ->
+ forall m p : Nat, S' (plus' n0 m) = S' (plus' n0 p) -> m = p) ->
+ forall n : Nat,
+ (forall m p : Nat, plus' n m = plus' n p -> m = p) ->
+ forall m p : Nat, S' (plus' n m) = S' (plus' n p) -> m = p.
+intros.
+ eauto. (* does EApply H *)
Qed.
diff --git a/test-suite/success/eqdecide.v b/test-suite/success/eqdecide.v
index f826df9a4..e7b8ca237 100644
--- a/test-suite/success/eqdecide.v
+++ b/test-suite/success/eqdecide.v
@@ -6,24 +6,26 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-Inductive T : Set := A: T | B :T->T.
+Inductive T : Set :=
+ | A : T
+ | B : T -> T.
-Lemma lem1 : (x,y:T){x=y}+{~x=y}.
-Decide Equality.
+Lemma lem1 : forall x y : T, {x = y} + {x <> y}.
+ decide equality.
Qed.
-Lemma lem2 : (x,y:T){x=y}+{~x=y}.
-Intros x y.
-Decide Equality x y.
+Lemma lem2 : forall x y : T, {x = y} + {x <> y}.
+intros x y.
+ decide equality x y.
Qed.
-Lemma lem3 : (x,y:T){x=y}+{~x=y}.
-Intros x y.
-Decide Equality y x.
+Lemma lem3 : forall x y : T, {x = y} + {x <> y}.
+intros x y.
+ decide equality y x.
Qed.
-Lemma lem4 : (x,y:T){x=y}+{~x=y}.
-Intros x y.
-Compare x y; Auto.
+Lemma lem4 : forall x y : T, {x = y} + {x <> y}.
+intros x y.
+ compare x y; auto.
Qed.
diff --git a/test-suite/success/evars.v b/test-suite/success/evars.v
index 0a12789b9..dbace977e 100644
--- a/test-suite/success/evars.v
+++ b/test-suite/success/evars.v
@@ -1,38 +1,45 @@
(* The "?" of cons and eq should be inferred *)
-Variable list:Set -> Set.
-Variable cons:(T:Set) T -> (list T) -> (list T).
-Check (n:(list nat)) (EX l| (EX x| (n = (cons ? x l)))).
+Variable list : Set -> Set.
+Variable cons : forall T : Set, T -> list T -> list T.
+Check (forall n : list nat, exists l : _, (exists x : _, n = cons _ x l)).
(* Examples provided by Eduardo Gimenez *)
-Definition c [A;Q:(nat*A->Prop)->Prop;P] :=
- (Q [p:nat*A]let (i,v) = p in (P i v)).
+Definition c A (Q : (nat * A -> Prop) -> Prop) P :=
+ Q (fun p : nat * A => let (i, v) := p in P i v).
(* What does this test ? *)
-Require PolyList.
-Definition list_forall_bool [A:Set][p:A->bool][l:(list A)] : bool :=
- (fold_right ([a][r]if (p a) then r else false) true l).
+Require Import List.
+Definition list_forall_bool (A : Set) (p : A -> bool)
+ (l : list A) : bool :=
+ fold_right (fun a r => if p a then r else false) true l.
(* Checks that solvable ? in the lambda prefix of the definition are harmless*)
-Parameter A1,A2,F,B,C : Set.
+Parameter A1 A2 F B C : Set.
Parameter f : F -> A1 -> B.
-Definition f1 [frm0,a1]: B := (f frm0 a1).
+Definition f1 frm0 a1 : B := f frm0 a1.
(* Checks that solvable ? in the type part of the definition are harmless *)
-Definition f2 : (frm0:?;a1:?)B := [frm0,a1](f frm0 a1).
+Definition f2 frm0 a1 : B := f frm0 a1.
(* Checks that sorts that are evars are handled correctly (bug 705) *)
-Require PolyList.
-
-Fixpoint build [nl : (list nat)] :
- (Cases nl of nil => True | _ => False end) -> unit :=
- <[nl](Cases nl of nil => True | _ => False end) -> unit>Cases nl of
- | nil => [_]tt
- | (cons n rest) =>
- Cases n of
- | O => [_]tt
- | (S m) => [a](build rest (False_ind ? a))
- end
+Require Import List.
+
+Fixpoint build (nl : list nat) :
+ match nl with
+ | nil => True
+ | _ => False
+ end -> unit :=
+ match nl return (match nl with
+ | nil => True
+ | _ => False
+ end -> unit) with
+ | nil => fun _ => tt
+ | n :: rest =>
+ match n with
+ | O => fun _ => tt
+ | S m => fun a => build rest (False_ind _ a)
+ end
end.
@@ -40,8 +47,12 @@ Fixpoint build [nl : (list nat)] :
(* Bug de 1999 corrigé en déc 2004 *)
Check
- let p = [m:nat;f;n:nat]Cases (f m n) of
- (exist a b) => (exist ? ? a b)
- end
- in
- (p:: (x:nat)((y:nat)(n:nat){q:nat | y = (mult q n)}) -> (n:nat){q:nat | x = (mult q n)}).
+ (let p :=
+ fun (m : nat) f (n : nat) =>
+ match f m n with
+ | exist a b => exist _ a b
+ end in
+ p
+ :forall x : nat,
+ (forall y n : nat, {q : nat | y = q * n}) ->
+ forall n : nat, {q : nat | x = q * n}).
diff --git a/test-suite/success/fix.v b/test-suite/success/fix.v
index 374029bba..f4a4d36d9 100644
--- a/test-suite/success/fix.v
+++ b/test-suite/success/fix.v
@@ -12,40 +12,41 @@ Require Import ZArith.
Definition rNat := positive.
-Inductive rBoolOp: Set :=
- rAnd: rBoolOp
- | rEq: rBoolOp .
-
-Definition rlt: rNat -> rNat ->Prop := [a, b:rNat](compare a b EGAL)=INFERIEUR.
-
-Definition rltDec: (m, n:rNat){(rlt m n)}+{(rlt n m) \/ m=n}.
-Intros n m; Generalize (compare_convert_INFERIEUR n m);
- Generalize (compare_convert_SUPERIEUR n m);
- Generalize (compare_convert_EGAL n m); Case (compare n m EGAL).
-Intros H' H'0 H'1; Right; Right; Auto.
-Intros H' H'0 H'1; Left; Unfold rlt.
-Apply convert_compare_INFERIEUR; Auto.
-Intros H' H'0 H'1; Right; Left; Unfold rlt.
-Apply convert_compare_INFERIEUR; Auto.
-Apply H'0; Auto.
+Inductive rBoolOp : Set :=
+ | rAnd : rBoolOp
+ | rEq : rBoolOp.
+
+Definition rlt (a b : rNat) : Prop :=
+ (a ?= b)%positive Datatypes.Eq = Datatypes.Lt.
+
+Definition rltDec : forall m n : rNat, {rlt m n} + {rlt n m \/ m = n}.
+intros n m; generalize (nat_of_P_lt_Lt_compare_morphism n m);
+ generalize (nat_of_P_gt_Gt_compare_morphism n m);
+ generalize (Pcompare_Eq_eq n m); case ((n ?= m)%positive Datatypes.Eq).
+intros H' H'0 H'1; right; right; auto.
+intros H' H'0 H'1; left; unfold rlt in |- *.
+apply nat_of_P_lt_Lt_compare_complement_morphism; auto.
+intros H' H'0 H'1; right; left; unfold rlt in |- *.
+apply nat_of_P_lt_Lt_compare_complement_morphism; auto.
+apply H'0; auto.
Defined.
-Definition rmax: rNat -> rNat ->rNat.
-Intros n m; Case (rltDec n m); Intros Rlt0.
-Exact m.
-Exact n.
+Definition rmax : rNat -> rNat -> rNat.
+intros n m; case (rltDec n m); intros Rlt0.
+exact m.
+exact n.
Defined.
-Inductive rExpr: Set :=
- rV: rNat ->rExpr
- | rN: rExpr ->rExpr
- | rNode: rBoolOp -> rExpr -> rExpr ->rExpr .
-
-Fixpoint maxVar[e:rExpr]: rNat :=
- Cases e of
- (rV n) => n
- | (rN p) => (maxVar p)
- | (rNode n p q) => (rmax (maxVar p) (maxVar q))
- end.
+Inductive rExpr : Set :=
+ | rV : rNat -> rExpr
+ | rN : rExpr -> rExpr
+ | rNode : rBoolOp -> rExpr -> rExpr -> rExpr.
+
+Fixpoint maxVar (e : rExpr) : rNat :=
+ match e with
+ | rV n => n
+ | rN p => maxVar p
+ | rNode n p q => rmax (maxVar p) (maxVar q)
+ end.
diff --git a/test-suite/success/if.v b/test-suite/success/if.v
index 85cd1f11b..3f7638631 100644
--- a/test-suite/success/if.v
+++ b/test-suite/success/if.v
@@ -1,5 +1,5 @@
(* The synthesis of the elimination predicate may fail if algebric *)
(* universes are not cautiously treated *)
-Check [b:bool]if b then Type else nat.
+Check (fun b : bool => if b then Type else nat).
diff --git a/test-suite/success/implicit.v b/test-suite/success/implicit.v
index c597f9bf8..1786424e5 100644
--- a/test-suite/success/implicit.v
+++ b/test-suite/success/implicit.v
@@ -1,20 +1,23 @@
(* Implicit on section variables *)
Set Implicit Arguments.
+Unset Strict Implicit.
(* Example submitted by David Nowak *)
Section Spec.
-Variable A:Set.
-Variable op : (A:Set)A->A->Set.
-Infix 6 "#" op V8only (at level 70).
-Check (x:A)(x # x).
+Variable A : Set.
+Variable op : forall A : Set, A -> A -> Set.
+Infix "#" := op (at level 70).
+Check (forall x : A, x # x).
(* Example submitted by Christine *)
-Record stack : Type := {type : Set; elt : type;
- empty : type -> bool; proof : (empty elt)=true }.
+Record stack : Type :=
+ {type : Set; elt : type; empty : type -> bool; proof : empty elt = true}.
-Check (type:Set; elt:type; empty:(type->bool))(empty elt)=true->stack.
+Check
+ (forall (type : Set) (elt : type) (empty : type -> bool),
+ empty elt = true -> stack).
End Spec.
@@ -22,10 +25,10 @@ End Spec.
Parameter f : nat -> nat * nat.
Notation lhs := fst.
-Check [x](lhs ? ? (f x)).
-Check [x](!lhs ? ? (f x)).
-Notation "'rhs'" := snd.
-Check [x](rhs ? ? (f x)).
+Check (fun x => fst (f x)).
+Check (fun x => fst (f x)).
+Notation rhs := snd.
+Check (fun x => snd (f x)).
(* V8 seulement
Check (fun x => @ rhs ? ? (f x)).
*)
diff --git a/test-suite/success/import_lib.v b/test-suite/success/import_lib.v
index d031691d8..c3dc2fc62 100644
--- a/test-suite/success/import_lib.v
+++ b/test-suite/success/import_lib.v
@@ -1,47 +1,47 @@
-Definition le_trans:=O.
+Definition le_trans := 0.
Module Test_Read.
Module M.
- Read Module Le. (* Reading without importing *)
+ Require Le. (* Reading without importing *)
Check Le.le_trans.
- Lemma th0 : le_trans = O.
- Reflexivity.
+ Lemma th0 : le_trans = 0.
+ reflexivity.
Qed.
End M.
Check Le.le_trans.
- Lemma th0 : le_trans = O.
- Reflexivity.
+ Lemma th0 : le_trans = 0.
+ reflexivity.
Qed.
Import M.
- Lemma th1 : le_trans = O.
- Reflexivity.
+ Lemma th1 : le_trans = 0.
+ reflexivity.
Qed.
End Test_Read.
(****************************************************************)
-Definition le_decide := (S O). (* from Arith/Compare *)
-Definition min := O. (* from Arith/Min *)
+Definition le_decide := 1. (* from Arith/Compare *)
+Definition min := 0. (* from Arith/Min *)
Module Test_Require.
Module M.
- Require Compare. (* Imports Min as well *)
+ Require Import Compare. (* Imports Min as well *)
- Lemma th1 : le_decide = Compare.le_decide.
- Reflexivity.
+ Lemma th1 : le_decide = le_decide.
+ reflexivity.
Qed.
- Lemma th2 : min = Min.min.
- Reflexivity.
+ Lemma th2 : min = min.
+ reflexivity.
Qed.
End M.
@@ -52,23 +52,23 @@ Module Test_Require.
(* Checks that Compare and List are _not_ imported *)
- Lemma th1 : le_decide = (S O).
- Reflexivity.
+ Lemma th1 : le_decide = 1.
+ reflexivity.
Qed.
- Lemma th2 : min = O.
- Reflexivity.
+ Lemma th2 : min = 0.
+ reflexivity.
Qed.
(* It should still be the case after Import M *)
Import M.
- Lemma th3 : le_decide = (S O).
- Reflexivity.
+ Lemma th3 : le_decide = 1.
+ reflexivity.
Qed.
- Lemma th4 : min = O.
- Reflexivity.
+ Lemma th4 : min = 0.
+ reflexivity.
Qed.
End Test_Require.
@@ -79,12 +79,12 @@ Module Test_Import.
Module M.
Import Compare. (* Imports Min as well *)
- Lemma th1 : le_decide = Compare.le_decide.
- Reflexivity.
+ Lemma th1 : le_decide = le_decide.
+ reflexivity.
Qed.
- Lemma th2 : min = Min.min.
- Reflexivity.
+ Lemma th2 : min = min.
+ reflexivity.
Qed.
End M.
@@ -95,23 +95,23 @@ Module Test_Import.
(* Checks that Compare and List are _not_ imported *)
- Lemma th1 : le_decide = (S O).
- Reflexivity.
+ Lemma th1 : le_decide = 1.
+ reflexivity.
Qed.
- Lemma th2 : min = O.
- Reflexivity.
+ Lemma th2 : min = 0.
+ reflexivity.
Qed.
(* It should still be the case after Import M *)
Import M.
- Lemma th3 : le_decide = (S O).
- Reflexivity.
+ Lemma th3 : le_decide = 1.
+ reflexivity.
Qed.
- Lemma th4 : min = O.
- Reflexivity.
+ Lemma th4 : min = 0.
+ reflexivity.
Qed.
End Test_Import.
@@ -121,24 +121,24 @@ Module Test_Export.
Module M.
Export Compare. (* Exports Min as well *)
- Lemma th1 : le_decide = Compare.le_decide.
- Reflexivity.
+ Lemma th1 : le_decide = le_decide.
+ reflexivity.
Qed.
- Lemma th2 : min = Min.min.
- Reflexivity.
+ Lemma th2 : min = min.
+ reflexivity.
Qed.
End M.
(* Checks that Compare and List are _not_ imported *)
- Lemma th1 : le_decide = (S O).
- Reflexivity.
+ Lemma th1 : le_decide = 1.
+ reflexivity.
Qed.
- Lemma th2 : min = O.
- Reflexivity.
+ Lemma th2 : min = 0.
+ reflexivity.
Qed.
@@ -146,12 +146,12 @@ Module Test_Export.
Import M.
- Lemma th3 : le_decide = Compare.le_decide.
- Reflexivity.
+ Lemma th3 : le_decide = le_decide.
+ reflexivity.
Qed.
- Lemma th4 : min = Min.min.
- Reflexivity.
+ Lemma th4 : min = min.
+ reflexivity.
Qed.
End Test_Export.
@@ -160,30 +160,30 @@ End Test_Export.
Module Test_Require_Export.
- Definition mult_sym:=(S O). (* from Arith/Mult *)
- Definition plus_sym:=O. (* from Arith/Plus *)
+ Definition mult_sym := 1. (* from Arith/Mult *)
+ Definition plus_sym := 0. (* from Arith/Plus *)
Module M.
Require Export Mult. (* Exports Plus as well *)
- Lemma th1 : mult_sym = Mult.mult_sym.
- Reflexivity.
+ Lemma th1 : mult_comm = mult_comm.
+ reflexivity.
Qed.
- Lemma th2 : plus_sym = Plus.plus_sym.
- Reflexivity.
+ Lemma th2 : plus_comm = plus_comm.
+ reflexivity.
Qed.
End M.
(* Checks that Mult and Plus are _not_ imported *)
- Lemma th1 : mult_sym = (S O).
- Reflexivity.
+ Lemma th1 : mult_sym = 1.
+ reflexivity.
Qed.
- Lemma th2 : plus_sym = O.
- Reflexivity.
+ Lemma th2 : plus_sym = 0.
+ reflexivity.
Qed.
@@ -191,12 +191,12 @@ Module Test_Require_Export.
Import M.
- Lemma th3 : mult_sym = Mult.mult_sym.
- Reflexivity.
+ Lemma th3 : mult_comm = mult_comm.
+ reflexivity.
Qed.
- Lemma th4 : plus_sym = Plus.plus_sym.
- Reflexivity.
+ Lemma th4 : plus_comm = plus_comm.
+ reflexivity.
Qed.
End Test_Require_Export.
diff --git a/test-suite/success/import_mod.v b/test-suite/success/import_mod.v
index b4a8af46f..c098c6e89 100644
--- a/test-suite/success/import_mod.v
+++ b/test-suite/success/import_mod.v
@@ -1,38 +1,38 @@
-Definition p:=O.
-Definition m:=O.
+Definition p := 0.
+Definition m := 0.
Module Test_Import.
Module P.
- Definition p:=(S O).
+ Definition p := 1.
End P.
Module M.
Import P.
- Definition m:=p.
+ Definition m := p.
End M.
Module N.
Import M.
- Lemma th0 : p=O.
- Reflexivity.
+ Lemma th0 : p = 0.
+ reflexivity.
Qed.
End N.
(* M and P should be closed *)
- Lemma th1 : m=O /\ p=O.
- Split; Reflexivity.
+ Lemma th1 : m = 0 /\ p = 0.
+ split; reflexivity.
Qed.
Import N.
(* M and P should still be closed *)
- Lemma th2 : m=O /\ p=O.
- Split; Reflexivity.
+ Lemma th2 : m = 0 /\ p = 0.
+ split; reflexivity.
Qed.
End Test_Import.
@@ -42,34 +42,34 @@ End Test_Import.
Module Test_Export.
Module P.
- Definition p:=(S O).
+ Definition p := 1.
End P.
Module M.
Export P.
- Definition m:=p.
+ Definition m := p.
End M.
Module N.
Export M.
- Lemma th0 : p=(S O).
- Reflexivity.
+ Lemma th0 : p = 1.
+ reflexivity.
Qed.
End N.
(* M and P should be closed *)
- Lemma th1 : m=O /\ p=O.
- Split; Reflexivity.
+ Lemma th1 : m = 0 /\ p = 0.
+ split; reflexivity.
Qed.
Import N.
(* M and P should now be opened *)
- Lemma th2 : m=(S O) /\ p=(S O).
- Split; Reflexivity.
+ Lemma th2 : m = 1 /\ p = 1.
+ split; reflexivity.
Qed.
End Test_Export.
diff --git a/test-suite/success/inds_type_sec.v b/test-suite/success/inds_type_sec.v
index a391b8046..ed8b23c8d 100644
--- a/test-suite/success/inds_type_sec.v
+++ b/test-suite/success/inds_type_sec.v
@@ -6,5 +6,6 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
Section S.
-Inductive T [U:Type] : Type := c : U -> (T U).
+Inductive T (U : Type) : Type :=
+ c : U -> T U.
End S.
diff --git a/test-suite/success/induct.v b/test-suite/success/induct.v
index 9ae498d2d..2aec6e9b1 100644
--- a/test-suite/success/induct.v
+++ b/test-suite/success/induct.v
@@ -7,11 +7,11 @@
(************************************************************************)
(* Teste des definitions inductives imbriquees *)
-Require PolyList.
+Require Import List.
-Inductive X : Set :=
- cons1 : (list X)->X.
+Inductive X : Set :=
+ cons1 : list X -> X.
-Inductive Y : Set :=
- cons2 : (list Y*Y)->Y.
+Inductive Y : Set :=
+ cons2 : list (Y * Y) -> Y.
diff --git a/test-suite/success/intros.v8 b/test-suite/success/intros.v
index 1da947b50..3599da4dc 100644
--- a/test-suite/success/intros.v8
+++ b/test-suite/success/intros.v
@@ -4,3 +4,4 @@
Goal forall A, A -> True.
intros _ _.
+
diff --git a/test-suite/success/ltac.v b/test-suite/success/ltac.v
index 5cd397067..b6aa1e705 100644
--- a/test-suite/success/ltac.v
+++ b/test-suite/success/ltac.v
@@ -2,20 +2,23 @@
(* Submitted by Pierre Crégut *)
(* Checks substitution of x *)
-Tactic Definition f x := Unfold x; Idtac.
+Ltac f x := unfold x in |- *; idtac.
-Lemma lem1 : (plus O O) = O.
+Lemma lem1 : 0 + 0 = 0.
f plus.
-Reflexivity.
+reflexivity.
Qed.
(* Submitted by Pierre Crégut *)
(* Check syntactic correctness *)
-Recursive Tactic Definition F x := Idtac; (G x)
-And G y := Idtac; (F y).
+Ltac F x := idtac; G x
+ with G y := idtac; F y.
(* Check that Match Context keeps a closure *)
-Tactic Definition U := Let a = 'I In Match Context With [ |- ? ] -> Apply a.
+Ltac U := let a := constr:I in
+ match goal with
+ | |- _ => apply a
+ end.
Lemma lem2 : True.
U.
@@ -23,81 +26,106 @@ Qed.
(* Check that Match giving non-tactic arguments are evaluated at Let-time *)
-Tactic Definition B :=
- Let y = (Match Context With [ z:? |- ? ] -> z) In
- Intro H1; Exact y.
+Ltac B := let y := (match goal with
+ | z:_ |- _ => z
+ end) in
+ (intro H1; exact y).
Lemma lem3 : True -> False -> True -> False.
-Intros H H0.
+intros H H0.
B. (* y is H0 if at let-time, H1 otherwise *)
Qed.
(* Checks the matching order of hypotheses *)
-Tactic Definition Y := Match Context With [ x:?; y:? |- ? ] -> Apply x.
-Tactic Definition Z := Match Context With [ y:?; x:? |- ? ] -> Apply x.
-
-Lemma lem4 : (True->False) -> (False->False) -> False.
-Intros H H0.
+Ltac Y := match goal with
+ | x:_,y:_ |- _ => apply x
+ end.
+Ltac Z := match goal with
+ | y:_,x:_ |- _ => apply x
+ end.
+
+Lemma lem4 : (True -> False) -> (False -> False) -> False.
+intros H H0.
Z. (* Apply H0 *)
Y. (* Apply H *)
-Exact I.
+exact I.
Qed.
(* Check backtracking *)
-Lemma back1 : (0)=(1)->(0)=(0)->(1)=(1)->(0)=(0).
-Intros; Match Context With [_:(O)=?1;_:(1)=(1)|-? ] -> Exact (refl_equal ? ?1).
+Lemma back1 : 0 = 1 -> 0 = 0 -> 1 = 1 -> 0 = 0.
+intros;
+ match goal with
+ | _:(0 = ?X1),_:(1 = 1) |- _ => exact (refl_equal X1)
+ end.
Qed.
-Lemma back2 : (0)=(0)->(0)=(1)->(1)=(1)->(0)=(0).
-Intros; Match Context With [_:(O)=?1;_:(1)=(1)|-? ] -> Exact (refl_equal ? ?1).
+Lemma back2 : 0 = 0 -> 0 = 1 -> 1 = 1 -> 0 = 0.
+intros;
+ match goal with
+ | _:(0 = ?X1),_:(1 = 1) |- _ => exact (refl_equal X1)
+ end.
Qed.
-Lemma back3 : (0)=(0)->(1)=(1)->(0)=(1)->(0)=(0).
-Intros; Match Context With [_:(O)=?1;_:(1)=(1)|-? ] -> Exact (refl_equal ? ?1).
+Lemma back3 : 0 = 0 -> 1 = 1 -> 0 = 1 -> 0 = 0.
+intros;
+ match goal with
+ | _:(0 = ?X1),_:(1 = 1) |- _ => exact (refl_equal X1)
+ end.
Qed.
(* Check context binding *)
-Tactic Definition sym t := Match t With [C[?1=?2]] -> Inst C[?1=?2].
-
-Lemma sym : ~(0)=(1)->~(1)=(0).
-Intro H.
-Let t = (sym (Check H)) In Assert t.
-Exact H.
-Intro H1.
-Apply H.
-Symmetry.
-Assumption.
+Ltac sym t :=
+ match constr:t with
+ | context C[(?X1 = ?X2)] => context C [X1 = X2]
+ end.
+
+Lemma sym : 0 <> 1 -> 1 <> 0.
+intro H.
+let t := sym type of H in
+assert t.
+exact H.
+intro H1.
+apply H.
+symmetry in |- *.
+assumption.
Qed.
(* Check context binding in match goal *)
(* This wasn't working in V8.0pl1, as the list of matched hyps wasn't empty *)
-Tactic Definition sym' :=
- Match Context With [_:True|-C[?1=?2]] -> Let t = Inst C[?2=?1] In Assert t.
-
-Lemma sym' : True->~(0)=(1)->~(1)=(0).
-Intros Ht H.
+Ltac sym' :=
+ match goal with
+ | _:True |- context C[(?X1 = ?X2)] =>
+ let t := context C [X2 = X1] in
+ assert t
+ end.
+
+Lemma sym' : True -> 0 <> 1 -> 1 <> 0.
+intros Ht H.
sym'.
-Exact H.
-Intro H1.
-Apply H.
-Symmetry.
-Assumption.
+exact H.
+intro H1.
+apply H.
+symmetry in |- *.
+assumption.
Qed.
(* Check that fails abort the current match context *)
Lemma decide : True \/ False.
-(Match Context With
-| _ -> Fail 1
-| _ -> Right) Orelse Left.
-Exact I.
+match goal with
+| _ => fail 1
+| _ => right
+end || left.
+exact I.
Qed.
(* Check that "match c with" backtracks on subterms *)
-Lemma refl : (1)=(1).
-Let t = (Match (1)=(2) With
- [[(S ?1)]] -> '((refl_equal nat ?1) :: (1)=(1)))
-In Assert H:=t.
-Assumption.
+Lemma refl : 1 = 1.
+let t :=
+ (match constr:(1 = 2) with
+ | context [(S ?X1)] => constr:(refl_equal X1:1 = 1)
+ end) in
+assert (H := t).
+assumption.
Qed.
(* Note that backtracking in "match c with" is only on type-checking not on
@@ -113,7 +141,7 @@ Qed.
(* Check the precedences of rel context, ltac context and vars context *)
(* (was wrong in V8.0) *)
-Tactic Definition check_binding y := Cut (([y]y) = S).
+Ltac check_binding y := cut ((fun y => y) = S).
Goal True.
check_binding true.
Abort.
diff --git a/test-suite/success/mutual_ind.v b/test-suite/success/mutual_ind.v
index e932f50ca..463efed3f 100644
--- a/test-suite/success/mutual_ind.v
+++ b/test-suite/success/mutual_ind.v
@@ -7,35 +7,36 @@
(************************************************************************)
(* Definition mutuellement inductive et dependante *)
-Require Export PolyList.
+Require Export List.
- Record signature : Type := {
- sort : Set;
- sort_beq : sort->sort->bool;
- sort_beq_refl : (f:sort)true=(sort_beq f f);
- sort_beq_eq : (f1,f2:sort)true=(sort_beq f1 f2)->f1=f2;
+ Record signature : Type :=
+ {sort : Set;
+ sort_beq : sort -> sort -> bool;
+ sort_beq_refl : forall f : sort, true = sort_beq f f;
+ sort_beq_eq : forall f1 f2 : sort, true = sort_beq f1 f2 -> f1 = f2;
fsym :> Set;
- fsym_type : fsym->(list sort)*sort;
- fsym_beq : fsym->fsym->bool;
- fsym_beq_refl : (f:fsym)true=(fsym_beq f f);
- fsym_beq_eq : (f1,f2:fsym)true=(fsym_beq f1 f2)->f1=f2
- }.
+ fsym_type : fsym -> list sort * sort;
+ fsym_beq : fsym -> fsym -> bool;
+ fsym_beq_refl : forall f : fsym, true = fsym_beq f f;
+ fsym_beq_eq : forall f1 f2 : fsym, true = fsym_beq f1 f2 -> f1 = f2}.
Variable F : signature.
- Definition vsym := (sort F)*nat.
+ Definition vsym := (sort F * nat)%type.
- Definition vsym_sort := (fst (sort F) nat).
- Definition vsym_nat := (snd (sort F) nat).
+ Definition vsym_sort := fst (A:=sort F) (B:=nat).
+ Definition vsym_nat := snd (A:=sort F) (B:=nat).
- Mutual Inductive term : (sort F)->Set :=
- | term_var : (v:vsym)(term (vsym_sort v))
- | term_app : (f:F)(list_term (Fst (fsym_type F f)))
- ->(term (Snd (fsym_type F f)))
- with list_term : (list (sort F)) -> Set :=
- | term_nil : (list_term (nil (sort F)))
- | term_cons : (s:(sort F);l:(list (sort F)))
- (term s)->(list_term l)->(list_term (cons s l)).
+ Inductive term : sort F -> Set :=
+ | term_var : forall v : vsym, term (vsym_sort v)
+ | term_app :
+ forall f : F,
+ list_term (fst (fsym_type F f)) -> term (snd (fsym_type F f))
+with list_term : list (sort F) -> Set :=
+ | term_nil : list_term nil
+ | term_cons :
+ forall (s : sort F) (l : list (sort F)),
+ term s -> list_term l -> list_term (s :: l).
diff --git a/test-suite/success/options.v b/test-suite/success/options.v
index 9e9af4fa8..bb6781506 100644
--- a/test-suite/success/options.v
+++ b/test-suite/success/options.v
@@ -1,5 +1,7 @@
(* Check that the syntax for options works *)
Set Implicit Arguments.
+Unset Strict Implicit.
+Set Strict Implicit.
Unset Implicit Arguments.
Test Implicit Arguments.
@@ -12,16 +14,16 @@ Unset Silent.
Test Silent.
Set Printing Depth 100.
-Print Table Printing Depth.
+Test Printing Depth.
Parameter i : bool -> nat.
Coercion i : bool >-> nat.
-Set Printing Coercion i.
-Unset Printing Coercion i.
+Add Printing Coercion i.
+Remove Printing Coercion i.
Test Printing Coercion i.
-Print Table Printing Let.
-Print Table Printing If.
+Test Printing Let.
+Test Printing If.
Remove Printing Let sig.
Remove Printing If bool.
diff --git a/test-suite/success/params_ind.v b/test-suite/success/params_ind.v
index 206891286..1bee31c8a 100644
--- a/test-suite/success/params_ind.v
+++ b/test-suite/success/params_ind.v
@@ -1,4 +1,4 @@
-Inductive list [A:Set] : Set :=
- nil : (list A)
-| cons : A -> (list A->A)-> (list A).
+Inductive list (A : Set) : Set :=
+ | nil : list A
+ | cons : A -> list (A -> A) -> list A.
diff --git a/test-suite/success/refine.v b/test-suite/success/refine.v
index 96fa79ebd..b61cf275f 100644
--- a/test-suite/success/refine.v
+++ b/test-suite/success/refine.v
@@ -1,33 +1,34 @@
(* Refine and let-in's *)
-Goal (EX x:nat | x=O).
-Refine let y = (plus O O) in ?.
-Exists y; Auto.
+Goal exists x : nat, x = 0.
+ refine (let y := 0 + 0 in _).
+exists y; auto.
Save test1.
-Goal (EX x:nat | x=O).
-Refine let y = (plus O O) in (ex_intro ? ? (plus y y) ?).
-Auto.
+Goal exists x : nat, x = 0.
+ refine (let y := 0 + 0 in ex_intro _ (y + y) _).
+auto.
Save test2.
Goal nat.
-Refine let y = O in (plus O ?).
-Exact (S O).
+ refine (let y := 0 in 0 + _).
+exact 1.
Save test3.
(* Example submitted by Yves on coqdev *)
-Require PolyList.
+Require Import List.
-Goal (l:(list nat))l=l.
+Goal forall l : list nat, l = l.
Proof.
-Refine [l]<[l]l=l>
- Cases l of
- | nil => ?
- | (cons O l0) => ?
- | (cons (S _) l0) => ?
- end.
+ refine
+ (fun l =>
+ match l return (l = l) with
+ | nil => _
+ | O :: l0 => _
+ | S _ :: l0 => _
+ end).
Abort.
(* Submitted by Roland Zumkeller (bug #888) *)
@@ -36,10 +37,10 @@ Abort.
(co-)fixpoint *)
Goal nat -> nat.
-Refine(
- Fix f {f [n:nat] : nat := (S ?) with
- pred [n:nat] : nat := n}).
-Exact 0.
+ refine (fix f (n : nat) : nat := S _
+ with pred (n : nat) : nat := n
+ for f).
+exact 0.
Qed.
(* Submitted by Roland Zumkeller (bug #889) *)
@@ -47,17 +48,19 @@ Qed.
(* The types of metas were in metamap and they were not updated when
passing through a binder *)
-Goal (n:nat) nat -> n=0.
-Refine [n]
- Fix f { f [i:nat] : n=0 :=
- Cases i of 0 => ? | (S _) => ? end }.
+Goal forall n : nat, nat -> n = 0.
+ refine
+ (fun n => fix f (i : nat) : n = 0 := match i with
+ | O => _
+ | S _ => _
+ end).
Abort.
(* Submitted by Roland Zumkeller (bug #931) *)
(* Don't turn dependent evar into metas *)
-Goal ((n:nat)n=O->Prop) -> Prop.
-Intro P.
-Refine(P ? ?).
-Reflexivity.
+Goal (forall n : nat, n = 0 -> Prop) -> Prop.
+intro P.
+ refine (P _ _).
+reflexivity.
Abort.
diff --git a/test-suite/success/rewrite.v b/test-suite/success/rewrite.v
index 8816d1536..9629b2132 100644
--- a/test-suite/success/rewrite.v
+++ b/test-suite/success/rewrite.v
@@ -1,17 +1,19 @@
(* Check that dependent rewrite applies on arbitrary terms *)
-Inductive listn : nat-> Set :=
- niln : (listn O)
-| consn : (n:nat)nat->(listn n) -> (listn (S n)).
+Inductive listn : nat -> Set :=
+ | niln : listn 0
+ | consn : forall n : nat, nat -> listn n -> listn (S n).
-Axiom ax : (n,n':nat)(l:(listn (plus n n')))(l':(listn (plus n' n)))
- (existS ? ? (plus n n') l) =(existS ? ? (plus n' n) l').
+Axiom
+ ax :
+ forall (n n' : nat) (l : listn (n + n')) (l' : listn (n' + n)),
+ existS _ (n + n') l = existS _ (n' + n) l'.
-Lemma lem : (n,n':nat)(l:(listn (plus n n')))(l':(listn (plus n' n)))
- (plus n n')=(plus n' n)
- /\ (existT ? ? (plus n n') l) =(existT ? ? (plus n' n) l').
+Lemma lem :
+ forall (n n' : nat) (l : listn (n + n')) (l' : listn (n' + n)),
+ n + n' = n' + n /\ existT _ (n + n') l = existT _ (n' + n) l'.
Proof.
-Intros n n' l l'.
-Dependent Rewrite (ax n n' l l').
-Split; Reflexivity.
+intros n n' l l'.
+ dependent rewrite (ax n n' l l').
+split; reflexivity.
Qed.
diff --git a/test-suite/success/set.v8 b/test-suite/success/set.v
index 5a190d313..230192753 100644
--- a/test-suite/success/set.v8
+++ b/test-suite/success/set.v
@@ -5,3 +5,4 @@ intros.
set n in * |-.
+
diff --git a/test-suite/success/setoid_test.v8 b/test-suite/success/setoid_test.v
index 574cb525a..dd1022f08 100644
--- a/test-suite/success/setoid_test.v8
+++ b/test-suite/success/setoid_test.v
@@ -103,3 +103,4 @@ setoid_rewrite H.
setoid_rewrite <- H.
trivial.
Qed.
+
diff --git a/test-suite/success/setoid_test2.v8 b/test-suite/success/setoid_test2.v
index a4156c680..bac1cf149 100644
--- a/test-suite/success/setoid_test2.v8
+++ b/test-suite/success/setoid_test2.v
@@ -239,3 +239,4 @@ Theorem test8:
Abort.
(*Print Setoids.*)
+
diff --git a/test-suite/success/setoid_test_function_space.v8 b/test-suite/success/setoid_test_function_space.v
index 81ec267e3..1602991df 100644
--- a/test-suite/success/setoid_test_function_space.v8
+++ b/test-suite/success/setoid_test_function_space.v
@@ -42,3 +42,4 @@ intuition.
setoid_rewrite <- H0.
assumption.
Qed.
+
diff --git a/test-suite/success/simpl.v8 b/test-suite/success/simpl.v
index 91015ab28..8d32b1d9f 100644
--- a/test-suite/success/simpl.v8
+++ b/test-suite/success/simpl.v
@@ -21,3 +21,4 @@ with copy_of_compute_size_tree (t:tree) : nat :=
Eval simpl in (copy_of_compute_size_forest leaf).
+
diff --git a/test-suite/success/unfold.v b/test-suite/success/unfold.v
index de75dfce8..359100110 100644
--- a/test-suite/success/unfold.v
+++ b/test-suite/success/unfold.v
@@ -8,8 +8,8 @@
(* Test le Hint Unfold sur des var locales *)
Section toto.
-Local EQ:=eq.
-Goal (EQ nat O O).
-Hints Unfold EQ.
-Auto.
-Save.
+Let EQ := eq.
+Goal EQ nat 0 0.
+Hint Unfold EQ.
+auto.
+Qed.
diff --git a/test-suite/success/univers.v b/test-suite/success/univers.v
index a2a1d0dd6..87edc4deb 100644
--- a/test-suite/success/univers.v
+++ b/test-suite/success/univers.v
@@ -1,41 +1,42 @@
(* This requires cumulativity *)
Definition Type2 := Type.
-Definition Type1 := Type : Type2.
+Definition Type1 : Type2 := Type.
-Lemma lem1 : (True->Type1)->Type2.
-Intro H.
-Apply H.
-Exact I.
+Lemma lem1 : (True -> Type1) -> Type2.
+intro H.
+apply H.
+exact I.
Qed.
-Lemma lem2 : (A:Type)(P:A->Type)(x:A)((y:A)(x==y)->(P y))->(P x).
-Auto.
+Lemma lem2 :
+ forall (A : Type) (P : A -> Type) (x : A),
+ (forall y : A, x = y -> P y) -> P x.
+auto.
Qed.
-Lemma lem3 : (P:Prop)P.
-Intro P ; Pattern P.
-Apply lem2.
+Lemma lem3 : forall P : Prop, P.
+intro P; pattern P in |- *.
+apply lem2.
Abort.
(* Check managing of universe constraints in inversion *)
(* Bug report #855 *)
-Inductive dep_eq : (X:Type) X -> X -> Prop :=
- | intro_eq : (X:Type) (f:X)(dep_eq X f f)
- | intro_feq : (A:Type) (B:A->Type)
- let T = (x:A)(B x) in
- (f, g:T) (x:A)
- (dep_eq (B x) (f x) (g x)) ->
- (dep_eq T f g).
+Inductive dep_eq : forall X : Type, X -> X -> Prop :=
+ | intro_eq : forall (X : Type) (f : X), dep_eq X f f
+ | intro_feq :
+ forall (A : Type) (B : A -> Type),
+ let T := forall x : A, B x in
+ forall (f g : T) (x : A), dep_eq (B x) (f x) (g x) -> dep_eq T f g.
Require Import Relations.
-Theorem dep_eq_trans : (X:Type) (transitive X (dep_eq X)).
+Theorem dep_eq_trans : forall X : Type, transitive X (dep_eq X).
Proof.
- Unfold transitive.
- Intros X f g h H1 H2.
- Inversion H1.
+ unfold transitive in |- *.
+ intros X f g h H1 H2.
+ inversion H1.
Abort.
@@ -50,8 +51,8 @@ Abort.
Especially, universe refreshing was not done for "set/pose" *)
-Lemma ind_unsec:(Q:nat->Type)True.
-Intro.
-Pose C:= (m:?)(Q m)->(Q m).
-Exact I.
+Lemma ind_unsec : forall Q : nat -> Type, True.
+intro.
+set (C := forall m, Q m -> Q m).
+exact I.
Qed.