aboutsummaryrefslogtreecommitdiffhomepage
path: root/test-suite/success/namedunivs.v
diff options
context:
space:
mode:
authorGravatar Matthieu Sozeau <mattam@mattam.org>2014-06-23 17:32:57 +0200
committerGravatar Matthieu Sozeau <mattam@mattam.org>2014-06-23 18:31:17 +0200
commit54b1866084938d46e510146a46bad8a712da27b7 (patch)
treef402a8b04de76c5916933e952a4468b37d1ba584 /test-suite/success/namedunivs.v
parentc92bb5b1da8223d61e0ac63a4ebd4a54f46d4670 (diff)
Changed syntax of explicit universes.
Diffstat (limited to 'test-suite/success/namedunivs.v')
-rw-r--r--test-suite/success/namedunivs.v34
1 files changed, 17 insertions, 17 deletions
diff --git a/test-suite/success/namedunivs.v b/test-suite/success/namedunivs.v
index 62ee5519d..5c0a3c7f2 100644
--- a/test-suite/success/namedunivs.v
+++ b/test-suite/success/namedunivs.v
@@ -2,15 +2,15 @@
(* Goal forall A B : Set, @paths Type A B -> @paths Set A B. *)
(* intros A B H. *)
(* Fail exact H. *)
-(* Abort . *)
+(* Section . *)
Section lift_strict.
Polymorphic Definition liftlt :=
- let t := Type{i} : Type{k} in
- fun A : Type{i} => A : Type{k}.
+ let t := Type@{i} : Type@{k} in
+ fun A : Type@{i} => A : Type@{k}.
Polymorphic Definition liftle :=
- fun A : Type{i} => A : Type{k}.
+ fun A : Type@{i} => A : Type@{k}.
End lift_strict.
@@ -20,25 +20,25 @@ Set Universe Polymorphism.
(* | None : option A *)
(* | Some : A -> option A. *)
-Inductive option (A : Type{i}) : Type{i} :=
+Inductive option (A : Type@{i}) : Type@{i} :=
| None : option A
| Some : A -> option A.
-Definition foo' {A : Type{i}} (o : option@{i} A) : option@{i} A :=
+Definition foo' {A : Type@{i}} (o : option@{i} A) : option@{i} A :=
o.
-Definition foo'' {A : Type{i}} (o : option@{j} A) : option@{k} A :=
+Definition foo'' {A : Type@{i}} (o : option@{j} A) : option@{k} A :=
o.
-(* Inductive prod (A : Type{i}) (B : Type{j}) := *)
+(* Inductive prod (A : Type@{i}) (B : Type@{j}) := *)
(* | pair : A -> B -> prod A B. *)
-(* Definition snd {A : Type{i}} (B : Type{j}) (p : prod A B) : B := *)
+(* Definition snd {A : Type@{i}} (B : Type@{j}) (p : prod A B) : B := *)
(* match p with *)
(* | pair _ _ a b => b *)
(* end. *)
-(* Definition snd' {A : Type{i}} (B : Type{i}) (p : prod A B) : B := *)
+(* Definition snd' {A : Type@{i}} (B : Type@{i}) (p : prod A B) : B := *)
(* match p with *)
(* | pair _ _ a b => b *)
(* end. *)
@@ -47,44 +47,44 @@ Definition foo'' {A : Type{i}} (o : option@{j} A) : option@{k} A :=
(* Inductive paths {A : Type} : A -> A -> Type := *)
(* | idpath (a : A) : paths a a. *)
-Inductive paths {A : Type{i}} : A -> A -> Type{i} :=
+Inductive paths {A : Type@{i}} : A -> A -> Type@{i} :=
| idpath (a : A) : paths a a.
Definition Funext :=
forall (A : Type) (B : A -> Type),
forall f g : (forall a, B a), (forall x : A, paths (f x) (g x)) -> paths f g.
-Definition paths_lift_closed (A : Type{i}) (x y : A) :
+Definition paths_lift_closed (A : Type@{i}) (x y : A) :
paths x y -> @paths (liftle@{j Type} A) x y.
Proof.
intros. destruct X. exact (idpath _).
Defined.
-Definition paths_lift (A : Type{i}) (x y : A) :
+Definition paths_lift (A : Type@{i}) (x y : A) :
paths x y -> paths@{j} x y.
Proof.
intros. destruct X. exact (idpath _).
Defined.
-Definition paths_lift_closed_strict (A : Type{i}) (x y : A) :
+Definition paths_lift_closed_strict (A : Type@{i}) (x y : A) :
paths x y -> @paths (liftlt@{j Type} A) x y.
Proof.
intros. destruct X. exact (idpath _).
Defined.
-Definition paths_downward_closed_le (A : Type{i}) (x y : A) :
+Definition paths_downward_closed_le (A : Type@{i}) (x y : A) :
paths@{j} (A:=liftle@{i j} A) x y -> paths@{i} x y.
Proof.
intros. destruct X. exact (idpath _).
Defined.
-Definition paths_downward_closed_lt (A : Type{i}) (x y : A) :
+Definition paths_downward_closed_lt (A : Type@{i}) (x y : A) :
@paths (liftlt@{j i} A) x y -> paths x y.
Proof.
intros. destruct X. exact (idpath _).
Defined.
-Definition paths_downward_closed_lt_nolift (A : Type{i}) (x y : A) :
+Definition paths_downward_closed_lt_nolift (A : Type@{i}) (x y : A) :
paths@{j} x y -> paths x y.
Proof.
intros. destruct X. exact (idpath _).