diff options
author | msozeau <msozeau@85f007b7-540e-0410-9357-904b9bb8a0f7> | 2009-10-28 22:51:46 +0000 |
---|---|---|
committer | msozeau <msozeau@85f007b7-540e-0410-9357-904b9bb8a0f7> | 2009-10-28 22:51:46 +0000 |
commit | 1cd1801ee86d6be178f5bce700633aee2416d236 (patch) | |
tree | 66020b29fd37f2471afc32ba8624bfa373db64b7 /test-suite/success/Equations.v | |
parent | d491c4974ad7ec82a5369049c27250dd07de852c (diff) |
Integrate a few improvements on typeclasses and Program from the equations branch
and remove equations stuff which moves to a separate plugin.
Classes:
- Ability to define classes post-hoc from constants or inductive types.
- Correctly rebuild the hint database associated to local hypotheses when
they are changed by a [Hint Extern] in typeclass resolution.
Tactics and proofs:
- Change [revert] so that it keeps let-ins (but not [generalize]).
- Various improvements to the [generalize_eqs] tactic to make it more robust
and produce the smallest proof terms possible.
Move [specialize_hypothesis] in tactics.ml as it goes hand in hand with
[generalize_eqs].
- A few new general purpose tactics in Program.Tactics like [revert_until]
- Make transitive closure well-foundedness proofs transparent.
- More uniform testing for metas/evars in pretyping/unification.ml
(might introduce a few changes in the contribs).
Program:
- Better sorting of dependencies in obligations.
- Ability to start a Program definition from just a type and no obligations,
automatically adding an obligation for this type.
- In compilation of Program's well-founded definitions, make the functional a
separate definition for easier reasoning.
- Add a hint database for every Program populated by [Hint Unfold]s for
every defined obligation constant.
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@12440 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'test-suite/success/Equations.v')
-rw-r--r-- | test-suite/success/Equations.v | 321 |
1 files changed, 0 insertions, 321 deletions
diff --git a/test-suite/success/Equations.v b/test-suite/success/Equations.v deleted file mode 100644 index d6e17f30d..000000000 --- a/test-suite/success/Equations.v +++ /dev/null @@ -1,321 +0,0 @@ -Require Import Program. - -Equations neg (b : bool) : bool := -neg true := false ; -neg false := true. - -Eval compute in neg. - -Require Import Coq.Lists.List. - -Equations head A (default : A) (l : list A) : A := -head A default nil := default ; -head A default (cons a v) := a. - -Eval compute in head. - -Equations tail {A} (l : list A) : (list A) := -tail A nil := nil ; -tail A (cons a v) := v. - -Eval compute in @tail. - -Eval compute in (tail (cons 1 nil)). - -Reserved Notation " x ++ y " (at level 60, right associativity). - -Equations app' {A} (l l' : list A) : (list A) := -app' A nil l := l ; -app' A (cons a v) l := cons a (app' v l). - -Equations app (l l' : list nat) : list nat := - [] ++ l := l ; - (a :: v) ++ l := a :: (v ++ l) - -where " x ++ y " := (app x y). - -Eval compute in @app'. - -Equations zip' {A} (f : A -> A -> A) (l l' : list A) : (list A) := -zip' A f nil nil := nil ; -zip' A f (cons a v) (cons b w) := cons (f a b) (zip' f v w) ; -zip' A f nil (cons b w) := nil ; -zip' A f (cons a v) nil := nil. - - -Eval compute in @zip'. - -Equations zip'' {A} (f : A -> A -> A) (l l' : list A) (def : list A) : (list A) := -zip'' A f nil nil def := nil ; -zip'' A f (cons a v) (cons b w) def := cons (f a b) (zip'' f v w def) ; -zip'' A f nil (cons b w) def := def ; -zip'' A f (cons a v) nil def := def. - -Eval compute in @zip''. - -Inductive fin : nat -> Set := -| fz : Π {n}, fin (S n) -| fs : Π {n}, fin n -> fin (S n). - -Inductive finle : Π (n : nat) (x : fin n) (y : fin n), Prop := -| leqz : Π {n j}, finle (S n) fz j -| leqs : Π {n i j}, finle n i j -> finle (S n) (fs i) (fs j). - -Scheme finle_ind_dep := Induction for finle Sort Prop. - -Instance finle_ind_pack n x y : DependentEliminationPackage (finle n x y) := - { elim_type := _ ; elim := finle_ind_dep }. - -Implicit Arguments finle [[n]]. - -Require Import Bvector. - -Implicit Arguments Vnil [[A]]. -Implicit Arguments Vcons [[A] [n]]. - -Equations vhead {A n} (v : vector A (S n)) : A := -vhead A n (Vcons a v) := a. - -Equations vmap {A B} (f : A -> B) {n} (v : vector A n) : (vector B n) := -vmap A B f 0 Vnil := Vnil ; -vmap A B f (S n) (Vcons a v) := Vcons (f a) (vmap f v). - -Eval compute in (vmap id (@Vnil nat)). -Eval compute in (vmap id (@Vcons nat 2 _ Vnil)). -Eval compute in @vmap. - -Equations Below_nat (P : nat -> Type) (n : nat) : Type := -Below_nat P 0 := unit ; -Below_nat P (S n) := prod (P n) (Below_nat P n). - -Equations below_nat (P : nat -> Type) n (step : Π (n : nat), Below_nat P n -> P n) : Below_nat P n := -below_nat P 0 step := tt ; -below_nat P (S n) step := let rest := below_nat P n step in - (step n rest, rest). - -Class BelowPack (A : Type) := - { Below : Type ; below : Below }. - -Instance nat_BelowPack : BelowPack nat := - { Below := Π P n step, Below_nat P n ; - below := λ P n step, below_nat P n (step P) }. - -Definition rec_nat (P : nat -> Type) n (step : Π n, Below_nat P n -> P n) : P n := - step n (below_nat P n step). - -Fixpoint Below_vector (P : Π A n, vector A n -> Type) A n (v : vector A n) : Type := - match v with Vnil => unit | Vcons a n' v' => prod (P A n' v') (Below_vector P A n' v') end. - -Equations below_vector (P : Π A n, vector A n -> Type) A n (v : vector A n) - (step : Π A n (v : vector A n), Below_vector P A n v -> P A n v) : Below_vector P A n v := -below_vector P A ?(0) Vnil step := tt ; -below_vector P A ?(S n) (Vcons a v) step := - let rest := below_vector P A n v step in - (step A n v rest, rest). - -Instance vector_BelowPack : BelowPack (Π A n, vector A n) := - { Below := Π P A n v step, Below_vector P A n v ; - below := λ P A n v step, below_vector P A n v (step P) }. - -Instance vector_noargs_BelowPack A n : BelowPack (vector A n) := - { Below := Π P v step, Below_vector P A n v ; - below := λ P v step, below_vector P A n v (step P) }. - -Definition rec_vector (P : Π A n, vector A n -> Type) A n v - (step : Π A n (v : vector A n), Below_vector P A n v -> P A n v) : P A n v := - step A n v (below_vector P A n v step). - -Class Recursor (A : Type) (BP : BelowPack A) := - { rec_type : Π x : A, Type ; rec : Π x : A, rec_type x }. - -Instance nat_Recursor : Recursor nat nat_BelowPack := - { rec_type := λ n, Π P step, P n ; - rec := λ n P step, rec_nat P n (step P) }. - -(* Instance vect_Recursor : Recursor (Π A n, vector A n) vector_BelowPack := *) -(* rec_type := Π (P : Π A n, vector A n -> Type) step A n v, P A n v; *) -(* rec := λ P step A n v, rec_vector P A n v step. *) - -Instance vect_Recursor_noargs A n : Recursor (vector A n) (vector_noargs_BelowPack A n) := - { rec_type := λ v, Π (P : Π A n, vector A n -> Type) step, P A n v; - rec := λ v P step, rec_vector P A n v step }. - -Implicit Arguments Below_vector [P A n]. - -Notation " x ~= y " := (@JMeq _ x _ y) (at level 70, no associativity). - -(** Won't pass the guardness check which diverges anyway. *) - -(* Equations trans {n} {i j k : fin n} (p : finle i j) (q : finle j k) : finle i k := *) -(* trans ?(S n) ?(fz) ?(j) ?(k) leqz q := leqz ; *) -(* trans ?(S n) ?(fs i) ?(fs j) ?(fs k) (leqs p) (leqs q) := leqs (trans p q). *) - -(* Lemma trans_eq1 n (j k : fin (S n)) (q : finle j k) : trans leqz q = leqz. *) -(* Proof. intros. simplify_equations ; reflexivity. Qed. *) - -(* Lemma trans_eq2 n i j k p q : @trans (S n) (fs i) (fs j) (fs k) (leqs p) (leqs q) = leqs (trans p q). *) -(* Proof. intros. simplify_equations ; reflexivity. Qed. *) - -Section Image. - Context {S T : Type}. - Variable f : S -> T. - - Inductive Imf : T -> Type := imf (s : S) : Imf (f s). - - Equations inv (t : T) (im : Imf t) : S := - inv (f s) (imf s) := s. - -End Image. - -Section Univ. - - Inductive univ : Set := - | ubool | unat | uarrow (from:univ) (to:univ). - - Equations interp (u : univ) : Type := - interp ubool := bool ; interp unat := nat ; - interp (uarrow from to) := interp from -> interp to. - - Equations foo (u : univ) (el : interp u) : interp u := - foo ubool true := false ; - foo ubool false := true ; - foo unat t := t ; - foo (uarrow from to) f := id ∘ f. - - Eval lazy beta delta [ foo foo_obligation_1 foo_obligation_2 ] iota zeta in foo. - -End Univ. - -Eval compute in (foo ubool false). -Eval compute in (foo (uarrow ubool ubool) negb). -Eval compute in (foo (uarrow ubool ubool) id). - -Inductive foobar : Set := bar | baz. - -Equations bla (f : foobar) : bool := -bla bar := true ; -bla baz := false. - -Eval simpl in bla. -Print refl_equal. - -Notation "'refl'" := (@refl_equal _ _). - -Equations K {A} (x : A) (P : x = x -> Type) (p : P (refl_equal x)) (p : x = x) : P p := -K A x P p refl := p. - -Equations eq_sym {A} (x y : A) (H : x = y) : y = x := -eq_sym A x x refl := refl. - -Equations eq_trans {A} (x y z : A) (p : x = y) (q : y = z) : x = z := -eq_trans A x x x refl refl := refl. - -Lemma eq_trans_eq A x : @eq_trans A x x x refl refl = refl. -Proof. reflexivity. Qed. - -Equations nth {A} {n} (v : vector A n) (f : fin n) : A := -nth A (S n) (Vcons a v) fz := a ; -nth A (S n) (Vcons a v) (fs f) := nth v f. - -Equations tabulate {A} {n} (f : fin n -> A) : vector A n := -tabulate A 0 f := Vnil ; -tabulate A (S n) f := Vcons (f fz) (tabulate (f ∘ fs)). - -Equations vlast {A} {n} (v : vector A (S n)) : A := -vlast A 0 (Vcons a Vnil) := a ; -vlast A (S n) (Vcons a (n:=S n) v) := vlast v. - -Print Assumptions vlast. - -Equations vlast' {A} {n} (v : vector A (S n)) : A := -vlast' A ?(0) (Vcons a Vnil) := a ; -vlast' A ?(S n) (Vcons a (n:=S n) v) := vlast' v. - -Lemma vlast_equation1 A (a : A) : vlast' (Vcons a Vnil) = a. -Proof. intros. simplify_equations. reflexivity. Qed. - -Lemma vlast_equation2 A n a v : @vlast' A (S n) (Vcons a v) = vlast' v. -Proof. intros. simplify_equations ; reflexivity. Qed. - -Print Assumptions vlast'. -Print Assumptions nth. -Print Assumptions tabulate. - -Extraction vlast. -Extraction vlast'. - -Equations vliat {A} {n} (v : vector A (S n)) : vector A n := -vliat A 0 (Vcons a Vnil) := Vnil ; -vliat A (S n) (Vcons a v) := Vcons a (vliat v). - -Eval compute in (vliat (Vcons 2 (Vcons 5 (Vcons 4 Vnil)))). - -Equations vapp' {A} {n m} (v : vector A n) (w : vector A m) : vector A (n + m) := -vapp' A ?(0) m Vnil w := w ; -vapp' A ?(S n) m (Vcons a v) w := Vcons a (vapp' v w). - -Eval compute in @vapp'. - -Fixpoint vapp {A n m} (v : vector A n) (w : vector A m) : vector A (n + m) := - match v with - | Vnil => w - | Vcons a n' v' => Vcons a (vapp v' w) - end. - -Lemma JMeq_Vcons_inj A n m a (x : vector A n) (y : vector A m) : n = m -> JMeq x y -> JMeq (Vcons a x) (Vcons a y). -Proof. intros until y. simplify_dep_elim. reflexivity. Qed. - -Equations NoConfusion_fin (P : Prop) {n : nat} (x y : fin n) : Prop := -NoConfusion_fin P (S n) fz fz := P -> P ; -NoConfusion_fin P (S n) fz (fs y) := P ; -NoConfusion_fin P (S n) (fs x) fz := P ; -NoConfusion_fin P (S n) (fs x) (fs y) := (x = y -> P) -> P. - -Eval compute in NoConfusion_fin. -Eval compute in NoConfusion_fin_comp. - -Print Assumptions NoConfusion_fin. - -Eval compute in (fun P n => NoConfusion_fin P (n:=S n) fz fz). - -(* Equations noConfusion_fin P (n : nat) (x y : fin n) (H : x = y) : NoConfusion_fin P x y := *) -(* noConfusion_fin P (S n) fz fz refl := λ p _, p ; *) -(* noConfusion_fin P (S n) (fs x) (fs x) refl := λ p : x = x -> P, p refl. *) - -Equations_nocomp NoConfusion_vect (P : Prop) {A n} (x y : vector A n) : Prop := -NoConfusion_vect P A 0 Vnil Vnil := P -> P ; -NoConfusion_vect P A (S n) (Vcons a x) (Vcons b y) := (a = b -> x = y -> P) -> P. - -Equations noConfusion_vect (P : Prop) A n (x y : vector A n) (H : x = y) : NoConfusion_vect P x y := -noConfusion_vect P A 0 Vnil Vnil refl := λ p, p ; -noConfusion_vect P A (S n) (Vcons a v) (Vcons a v) refl := λ p : a = a -> v = v -> P, p refl refl. - -(* Instance fin_noconf n : NoConfusionPackage (fin n) := *) -(* NoConfusion := λ P, Π x y, x = y -> NoConfusion_fin P x y ; *) -(* noConfusion := λ P x y, noConfusion_fin P n x y. *) - -Instance vect_noconf A n : NoConfusionPackage (vector A n) := - { NoConfusion := λ P, Π x y, x = y -> NoConfusion_vect P x y ; - noConfusion := λ P x y, noConfusion_vect P A n x y }. - -Equations fog {n} (f : fin n) : nat := -fog (S n) fz := 0 ; fog (S n) (fs f) := S (fog f). - -Inductive Split {X : Set}{m n : nat} : vector X (m + n) -> Set := - append : Π (xs : vector X m)(ys : vector X n), Split (vapp xs ys). - -Implicit Arguments Split [[X]]. - -Equations_nocomp split {X : Set}(m n : nat) (xs : vector X (m + n)) : Split m n xs := -split X 0 n xs := append Vnil xs ; -split X (S m) n (Vcons x xs) := - let 'append xs' ys' in Split _ _ vec := split m n xs return Split (S m) n (Vcons x vec) in - append (Vcons x xs') ys'. - -Eval compute in (split 0 1 (vapp Vnil (Vcons 2 Vnil))). -Eval compute in (split _ _ (vapp (Vcons 3 Vnil) (Vcons 2 Vnil))). - -Extraction Inline split_obligation_1 split_obligation_2. -Recursive Extraction split. - -Eval compute in @split. |