aboutsummaryrefslogtreecommitdiffhomepage
path: root/test-suite/ideal-features
diff options
context:
space:
mode:
authorGravatar herbelin <herbelin@85f007b7-540e-0410-9357-904b9bb8a0f7>2001-10-03 13:58:16 +0000
committerGravatar herbelin <herbelin@85f007b7-540e-0410-9357-904b9bb8a0f7>2001-10-03 13:58:16 +0000
commitd2f9f3411f654674528a737cd131010600e6635c (patch)
tree15b7de0fca64fcf3f34cfcde81158b1e96760010 /test-suite/ideal-features
parent327173c954d45fb56b498a98be195bd3e04e893d (diff)
Ces fichiers repassent (y restait un bug dans l'inférence du prédicat)
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@2095 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'test-suite/ideal-features')
-rw-r--r--test-suite/ideal-features/Case5.v15
-rw-r--r--test-suite/ideal-features/Cases.v1596
-rw-r--r--test-suite/ideal-features/CasesDep.v374
3 files changed, 0 insertions, 1985 deletions
diff --git a/test-suite/ideal-features/Case5.v b/test-suite/ideal-features/Case5.v
deleted file mode 100644
index d703286f9..000000000
--- a/test-suite/ideal-features/Case5.v
+++ /dev/null
@@ -1,15 +0,0 @@
-
-Reset ff.
-Parameter ff: (n,m:nat)~n=m -> ~(S n)=(S m).
-Parameter discr_r : (n:nat) ~(O=(S n)).
-Parameter discr_l : (n:nat) ~((S n)=O).
-
-
-Type
-[n:nat]
- <[n:nat]n=O\/~n=O>Cases n of
- O => (or_introl ? ~O=O (refl_equal ? O))
- | (S O) => (or_intror (S O)=O ? (discr_l O))
- | (S (S x)) => (or_intror (S (S x))=O ? (discr_l (S x)))
-
- end.
diff --git a/test-suite/ideal-features/Cases.v b/test-suite/ideal-features/Cases.v
deleted file mode 100644
index 313f8f74a..000000000
--- a/test-suite/ideal-features/Cases.v
+++ /dev/null
@@ -1,1596 +0,0 @@
-(***********************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
-(* \VV/ *************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(***********************************************************************)
-(****************************************************************************)
-(* Pattern-matching when non inductive terms occur *)
-
-(* Dependent form of annotation *)
-Type <[n:nat]nat>Cases O eq of O x => O | (S x) y => x end.
-Type <[_,_:nat]nat>Cases O eq O of O x y => O | (S x) y z => x end.
-
-(* Non dependent form of annotation *)
-Type <nat>Cases O eq of O x => O | (S x) y => x end.
-
-(****************************************************************************)
-(* All remaining examples come from Cristina Cornes' V6 TESTS/MultCases.v *)
-
-Inductive IFExpr : Set :=
- Var : nat -> IFExpr
- | Tr : IFExpr
- | Fa : IFExpr
- | IfE : IFExpr -> IFExpr -> IFExpr -> IFExpr.
-
-Inductive List [A:Set] :Set :=
- Nil:(List A) | Cons:A->(List A)->(List A).
-
-Inductive listn : nat-> Set :=
- niln : (listn O)
-| consn : (n:nat)nat->(listn n) -> (listn (S n)).
-
-Inductive Listn [A:Set] : nat-> Set :=
- Niln : (Listn A O)
-| Consn : (n:nat)nat->(Listn A n) -> (Listn A (S n)).
-
-Inductive Le : nat->nat->Set :=
- LeO: (n:nat)(Le O n)
-| LeS: (n,m:nat)(Le n m) -> (Le (S n) (S m)).
-
-Inductive LE [n:nat] : nat->Set :=
- LE_n : (LE n n) | LE_S : (m:nat)(LE n m)->(LE n (S m)).
-
-Require Bool.
-
-
-
-Inductive PropForm : Set :=
- Fvar : nat -> PropForm
- | Or : PropForm -> PropForm -> PropForm .
-
-Section testIFExpr.
-Definition Assign:= nat->bool.
-Parameter Prop_sem : Assign -> PropForm -> bool.
-
-Type [A:Assign][F:PropForm]
- <bool>Cases F of
- (Fvar n) => (A n)
- | (Or F G) => (orb (Prop_sem A F) (Prop_sem A G))
- end.
-
-Type [A:Assign][H:PropForm]
- <bool>Cases H of
- (Fvar n) => (A n)
- | (Or F G) => (orb (Prop_sem A F) (Prop_sem A G))
- end.
-End testIFExpr.
-
-
-
-Type [x:nat]<nat>Cases x of O => O | x => x end.
-
-Section testlist.
-Parameter A:Set.
-Inductive list : Set := nil : list | cons : A->list->list.
-Parameter inf: A->A->Prop.
-
-
-Definition list_Lowert2 :=
- [a:A][l:list](<Prop>Cases l of nil => True
- | (cons b l) =>(inf a b) end).
-
-Definition titi :=
- [a:A][l:list](<list>Cases l of nil => l
- | (cons b l) => l end).
-Reset list.
-End testlist.
-
-
-(* To test translation *)
-(* ------------------- *)
-
-
-Type <nat>Cases O of O => O | _ => O end.
-
-Type <nat>Cases O of
- (O as b) => b
- | (S O) => O
- | (S (S x)) => x end.
-
-Type Cases O of
- (O as b) => b
- | (S O) => O
- | (S (S x)) => x end.
-
-
-Type [x:nat]<nat>Cases x of
- (O as b) => b
- | (S x) => x end.
-
-Type [x:nat]Cases x of
- (O as b) => b
- | (S x) => x end.
-
-Type <nat>Cases O of
- (O as b) => b
- | (S x) => x end.
-
-Type <nat>Cases O of
- x => x
- end.
-
-Type Cases O of
- x => x
- end.
-
-Type <nat>Cases O of
- O => O
- | ((S x) as b) => b
- end.
-
-Type [x:nat]<nat>Cases x of
- O => O
- | ((S x) as b) => b
- end.
-
-Type [x:nat] Cases x of
- O => O
- | ((S x) as b) => b
- end.
-
-
-Type <nat>Cases O of
- O => O
- | (S x) => O
- end.
-
-
-Type <nat*nat>Cases O of
- O => (O,O)
- | (S x) => (x,O)
- end.
-
-Type Cases O of
- O => (O,O)
- | (S x) => (x,O)
- end.
-
-Type <nat->nat>Cases O of
- O => [n:nat]O
- | (S x) => [n:nat]O
- end.
-
-Type Cases O of
- O => [n:nat]O
- | (S x) => [n:nat]O
- end.
-
-
-Type <nat->nat>Cases O of
- O => [n:nat]O
- | (S x) => [n:nat](plus x n)
- end.
-
-Type Cases O of
- O => [n:nat]O
- | (S x) => [n:nat](plus x n)
- end.
-
-
-Type <nat>Cases O of
- O => O
- | ((S x) as b) => (plus b x)
- end.
-
-Type <nat>Cases O of
- O => O
- | ((S (x as a)) as b) => (plus b a)
- end.
-Type Cases O of
- O => O
- | ((S (x as a)) as b) => (plus b a)
- end.
-
-
-Type Cases O of
- O => O
- | _ => O
- end.
-
-Type <nat>Cases O of
- O => O
- | x => x
- end.
-
-Type <nat>Cases O (S O) of
- x y => (plus x y)
- end.
-
-Type Cases O (S O) of
- x y => (plus x y)
- end.
-
-Type <nat>Cases O (S O) of
- O y => y
- | (S x) y => (plus x y)
- end.
-
-Type Cases O (S O) of
- O y => y
- | (S x) y => (plus x y)
- end.
-
-
-Type <nat>Cases O (S O) of
- O x => x
- | (S y) O => y
- | x y => (plus x y)
- end.
-
-
-
-
-Type Cases O (S O) of
- O x => (plus x O)
- | (S y) O => (plus y O)
- | x y => (plus x y)
- end.
-
-Type
- <nat>Cases O (S O) of
- O x => (plus x O)
- | (S y) O => (plus y O)
- | x y => (plus x y)
- end.
-
-
-Type
- <nat>Cases O (S O) of
- O x => x
- | ((S x) as b) (S y) => (plus (plus b x) y)
- | x y => (plus x y)
- end.
-
-
-Type Cases O (S O) of
- O x => x
- | ((S x) as b) (S y) => (plus (plus b x) y)
- | x y => (plus x y)
- end.
-
-
-Type [l:(List nat)]<(List nat)>Cases l of
- Nil => (Nil nat)
- | (Cons a l) => l
- end.
-
-Type [l:(List nat)] Cases l of
- Nil => (Nil nat)
- | (Cons a l) => l
- end.
-
-Type <nat>Cases (Nil nat) of
- Nil =>O
- | (Cons a l) => (S a)
- end.
-Type Cases (Nil nat) of
- Nil =>O
- | (Cons a l) => (S a)
- end.
-
-Type <(List nat)>Cases (Nil nat) of
- (Cons a l) => l
- | x => x
- end.
-
-Type Cases (Nil nat) of
- (Cons a l) => l
- | x => x
- end.
-
-Type <(List nat)>Cases (Nil nat) of
- Nil => (Nil nat)
- | (Cons a l) => l
- end.
-
-Type Cases (Nil nat) of
- Nil => (Nil nat)
- | (Cons a l) => l
- end.
-
-
-Type
- <nat>Cases O of
- O => O
- | (S x) => <nat>Cases (Nil nat) of
- Nil => x
- | (Cons a l) => (plus x a)
- end
- end.
-
-Type
- Cases O of
- O => O
- | (S x) => Cases (Nil nat) of
- Nil => x
- | (Cons a l) => (plus x a)
- end
- end.
-
-Type
- [y:nat]Cases y of
- O => O
- | (S x) => Cases (Nil nat) of
- Nil => x
- | (Cons a l) => (plus x a)
- end
- end.
-
-
-Type
- <nat>Cases O (Nil nat) of
- O x => O
- | (S x) Nil => x
- | (S x) (Cons a l) => (plus x a)
- end.
-
-
-
-Type [n:nat][l:(listn n)]<[_:nat]nat>Cases l of
- niln => O
- | x => O
- end.
-
-Type [n:nat][l:(listn n)]
- Cases l of
- niln => O
- | x => O
- end.
-
-
-Type <[_:nat]nat>Cases niln of
- niln => O
- | x => O
- end.
-
-Type Cases niln of
- niln => O
- | x => O
- end.
-
-
-Type <[_:nat]nat>Cases niln of
- niln => O
- | (consn n a l) => a
- end.
-Type Cases niln of niln => O
- | (consn n a l) => a
- end.
-
-
-Type <[n:nat][_:(listn n)]nat>Cases niln of
- (consn m _ niln) => m
- | _ => (S O) end.
-
-
-
-Type [n:nat][x:nat][l:(listn n)]<[_:nat]nat>Cases x l of
- O niln => O
- | y x => O
- end.
-
-Type <[_:nat]nat>Cases O niln of
- O niln => O
- | y x => O
- end.
-
-
-Type <[_:nat]nat>Cases niln O of
- niln O => O
- | y x => O
- end.
-
-Type Cases niln O of
- niln O => O
- | y x => O
- end.
-
-Type <[_:nat][_:nat]nat>Cases niln niln of
- niln niln => O
- | x y => O
- end.
-
-Type Cases niln niln of
- niln niln => O
- | x y => O
- end.
-
-Type <[_,_,_:nat]nat>Cases niln niln niln of
- niln niln niln => O
- | x y z => O
- end.
-
-
-Type Cases niln niln niln of
- niln niln niln => O
- | x y z => O
- end.
-
-
-
-Type <[_:nat]nat>Cases (niln) of
- niln => O
- | (consn n a l) => O
- end.
-
-Type Cases (niln) of
- niln => O
- | (consn n a l) => O
- end.
-
-
-Type <[_:nat][_:nat]nat>Cases niln niln of
- niln niln => O
- | niln (consn n a l) => n
- | (consn n a l) x => a
- end.
-
-
-Type Cases niln niln of
- niln niln => O
- | niln (consn n a l) => n
- | (consn n a l) x => a
- end.
-
-
-Type [n:nat][l:(listn n)]<[_:nat]nat>Cases l of
- niln => O
- | x => O
- end.
-
-Type [c:nat;s:bool]
- <[_:nat;_:bool]nat>Cases c s of
- | O _ => O
- | _ _ => c
- end.
-
-Type [c:nat;s:bool]
- <[_:nat;_:bool]nat>Cases c s of
- | O _ => O
- | (S _) _ => c
- end.
-
-
-(* Rows of pattern variables: some tricky cases *)
-Axiom P:nat->Prop; f:(n:nat)(P n).
-
-Type [i:nat]
- <[_:bool;n:nat](P n)>Cases true i of
- | true k => (f k)
- | _ k => (f k)
- end.
-
-Type [i:nat]
- <[n:nat;_:bool](P n)>Cases i true of
- | k true => (f k)
- | k _ => (f k)
- end.
-
-(* Nested Cases: the SYNTH of the Cases on n used to make Multcase believe
- * it has to synthtize the predicate on O (which he can't)
- *)
-Type <[n]Cases n of O => bool | (S _) => nat end>Cases O of
- O => true
- | (S _) => O
- end.
-
-Type [n:nat][l:(listn n)]Cases l of
- niln => O
- | x => O
- end.
-
-Type [n:nat][l:(listn n)]<[_:nat]nat>Cases l of
- niln => O
- | (consn n a niln) => O
- | (consn n a (consn m b l)) => (plus n m)
- end.
-
-
-Type [n:nat][l:(listn n)]Cases l of
- niln => O
- | (consn n a niln) => O
- | (consn n a (consn m b l)) => (plus n m)
- end.
-
-
-
-Type [n:nat][l:(listn n)]<[_:nat]nat>Cases l of
- niln => O
- | (consn n a niln) => O
- | (consn n a (consn m b l)) => (plus n m)
- end.
-
-Type [n:nat][l:(listn n)]Cases l of
- niln => O
- | (consn n a niln) => O
- | (consn n a (consn m b l)) => (plus n m)
- end.
-
-
-Type [A:Set][n:nat][l:(Listn A n)]<[_:nat]nat>Cases l of
- Niln => O
- | (Consn n a Niln) => O
- | (Consn n a (Consn m b l)) => (plus n m)
- end.
-
-Type [A:Set][n:nat][l:(Listn A n)]Cases l of
- Niln => O
- | (Consn n a Niln) => O
- | (Consn n a (Consn m b l)) => (plus n m)
- end.
-
-(*
-Type [A:Set][n:nat][l:(Listn A n)]
- <[_:nat](Listn A O)>Cases l of
- (Niln as b) => b
- | (Consn n a (Niln as b))=> (Niln A)
- | (Consn n a (Consn m b l)) => (Niln A)
- end.
-
-Type [A:Set][n:nat][l:(Listn A n)]
- Cases l of
- (Niln as b) => b
- | (Consn n a (Niln as b))=> (Niln A)
- | (Consn n a (Consn m b l)) => (Niln A)
- end.
-*)
-(******** This example rises an error unconstrained_variables!
-Type [A:Set][n:nat][l:(Listn A n)]
- Cases l of
- (Niln as b) => (Consn A O O b)
- | ((Consn n a Niln) as L) => L
- | (Consn n a _) => (Consn A O O (Niln A))
- end.
-**********)
-
-(* To test tratement of as-patterns in depth *)
-Type [A:Set] [l:(List A)]
- Cases l of
- (Nil as b) => (Nil A)
- | ((Cons a Nil) as L) => L
- | ((Cons a (Cons b m)) as L) => L
- end.
-
-
-Type [n:nat][l:(listn n)]
- <[_:nat](listn n)>Cases l of
- niln => l
- | (consn n a c) => l
- end.
-Type [n:nat][l:(listn n)]
- Cases l of
- niln => l
- | (consn n a c) => l
- end.
-
-
-Type [n:nat][l:(listn n)]
- <[_:nat](listn n)>Cases l of
- (niln as b) => l
- | _ => l
- end.
-
-
-Type [n:nat][l:(listn n)]
- Cases l of
- (niln as b) => l
- | _ => l
- end.
-
-Type [n:nat][l:(listn n)]
- <[_:nat](listn n)>Cases l of
- (niln as b) => l
- | x => l
- end.
-
-
-Type [A:Set][n:nat][l:(Listn A n)]
- Cases l of
- (Niln as b) => l
- | _ => l
- end.
-
-Type [A:Set][n:nat][l:(Listn A n)]
- <[_:nat](Listn A n)>Cases l of
- Niln => l
- | (Consn n a Niln) => l
- | (Consn n a (Consn m b c)) => l
- end.
-
-Type [A:Set][n:nat][l:(Listn A n)]
- Cases l of
- Niln => l
- | (Consn n a Niln) => l
- | (Consn n a (Consn m b c)) => l
- end.
-
-Type [A:Set][n:nat][l:(Listn A n)]
- <[_:nat](Listn A n)>Cases l of
- (Niln as b) => l
- | (Consn n a (Niln as b)) => l
- | (Consn n a (Consn m b _)) => l
- end.
-
-Type [A:Set][n:nat][l:(Listn A n)]
- Cases l of
- (Niln as b) => l
- | (Consn n a (Niln as b)) => l
- | (Consn n a (Consn m b _)) => l
- end.
-
-
-Type <[_:nat]nat>Cases (niln) of
- niln => O
- | (consn n a niln) => O
- | (consn n a (consn m b l)) => (plus n m)
- end.
-
-
-Type Cases (niln) of
- niln => O
- | (consn n a niln) => O
- | (consn n a (consn m b l)) => (plus n m)
- end.
-
-Type <[_,_:nat]nat>Cases (LeO O) of
- (LeO x) => x
- | (LeS n m h) => (plus n m)
- end.
-
-
-Type Cases (LeO O) of
- (LeO x) => x
- | (LeS n m h) => (plus n m)
- end.
-
-Type [n:nat][l:(Listn nat n)]
- <[_:nat]nat>Cases l of
- Niln => O
- | (Consn n a l) => O
- end.
-
-
-Type [n:nat][l:(Listn nat n)]
- Cases l of
- Niln => O
- | (Consn n a l) => O
- end.
-
-
-Type Cases (Niln nat) of
- Niln => O
- | (Consn n a l) => O
- end.
-
-Type <[_:nat]nat>Cases (LE_n O) of
- LE_n => O
- | (LE_S m h) => O
- end.
-
-
-Type Cases (LE_n O) of
- LE_n => O
- | (LE_S m h) => O
- end.
-
-
-
-Type Cases (LE_n O) of
- LE_n => O
- | (LE_S m h) => O
- end.
-
-
-
-Type <[_:nat]nat>Cases (niln ) of
- niln => O
- | (consn n a niln) => n
- | (consn n a (consn m b l)) => (plus n m)
- end.
-
-Type Cases (niln ) of
- niln => O
- | (consn n a niln) => n
- | (consn n a (consn m b l)) => (plus n m)
- end.
-
-
-Type <[_:nat]nat>Cases (Niln nat) of
- Niln => O
- | (Consn n a Niln) => n
- | (Consn n a (Consn m b l)) => (plus n m)
- end.
-
-Type Cases (Niln nat) of
- Niln => O
- | (Consn n a Niln) => n
- | (Consn n a (Consn m b l)) => (plus n m)
- end.
-
-
-Type <[_,_:nat]nat>Cases (LeO O) of
- (LeO x) => x
- | (LeS n m (LeO x)) => (plus x m)
- | (LeS n m (LeS x y h)) => (plus n x)
- end.
-
-
-Type Cases (LeO O) of
- (LeO x) => x
- | (LeS n m (LeO x)) => (plus x m)
- | (LeS n m (LeS x y h)) => (plus n x)
- end.
-
-
-Type <[_,_:nat]nat>Cases (LeO O) of
- (LeO x) => x
- | (LeS n m (LeO x)) => (plus x m)
- | (LeS n m (LeS x y h)) => m
- end.
-
-Type Cases (LeO O) of
- (LeO x) => x
- | (LeS n m (LeO x)) => (plus x m)
- | (LeS n m (LeS x y h)) => m
- end.
-
-
-Type [n,m:nat][h:(Le n m)]
- <[_,_:nat]nat>Cases h of
- (LeO x) => x
- | x => O
- end.
-
-Type [n,m:nat][h:(Le n m)]
- Cases h of
- (LeO x) => x
- | x => O
- end.
-
-
-Type [n,m:nat][h:(Le n m)]
- <[_,_:nat]nat>Cases h of
- (LeS n m h) => n
- | x => O
- end.
-
-
-Type [n,m:nat][h:(Le n m)]
- Cases h of
- (LeS n m h) => n
- | x => O
- end.
-
-
-Type [n,m:nat][h:(Le n m)]
- <[_,_:nat]nat*nat>Cases h of
- (LeO n) => (O,n)
- |(LeS n m _) => ((S n),(S m))
- end.
-
-
-Type [n,m:nat][h:(Le n m)]
- Cases h of
- (LeO n) => (O,n)
- |(LeS n m _) => ((S n),(S m))
- end.
-
-
-Fixpoint F [n,m:nat; h:(Le n m)] : (Le n (S m)) :=
- <[n,m:nat](Le n (S m))>Cases h of
- (LeO m') => (LeO (S m'))
- | (LeS n' m' h') => (LeS n' (S m') (F n' m' h'))
- end.
-
-Reset F.
-
-Fixpoint F [n,m:nat; h:(Le n m)] :(Le n (S m)) :=
- <[n,m:nat](Le n (S m))>Cases h of
- (LeS n m h) => (LeS n (S m) (F n m h))
- | (LeO m) => (LeO (S m))
- end.
-
-(* Rend la longueur de la liste *)
-Definition length1:= [n:nat] [l:(listn n)]
- <[_:nat]nat>Cases l of
- (consn n _ (consn m _ _)) => (S (S m))
- |(consn n _ _) => (S O)
- | _ => O
- end.
-
-Reset length1.
-Definition length1:= [n:nat] [l:(listn n)]
- Cases l of
- (consn n _ (consn m _ _)) => (S (S m))
- |(consn n _ _) => (S O)
- | _ => O
- end.
-
-
-Definition length2:= [n:nat] [l:(listn n)]
- <[_:nat]nat>Cases l of
- (consn n _ (consn m _ _)) => (S (S m))
- |(consn n _ _) => (S n)
- | _ => O
- end.
-
-Reset length2.
-
-Definition length2:= [n:nat] [l:(listn n)]
- Cases l of
- (consn n _ (consn m _ _)) => (S (S m))
- |(consn n _ _) => (S n)
- | _ => O
- end.
-
-Definition length3 :=
-[n:nat][l:(listn n)]
- <[_:nat]nat>Cases l of
- (consn n _ (consn m _ l)) => (S n)
- |(consn n _ _) => (S O)
- | _ => O
- end.
-
-
-Reset length3.
-
-Definition length3 :=
-[n:nat][l:(listn n)]
- Cases l of
- (consn n _ (consn m _ l)) => (S n)
- |(consn n _ _) => (S O)
- | _ => O
- end.
-
-
-Type <[_,_:nat]nat>Cases (LeO O) of
- (LeS n m h) =>(plus n m)
- | x => O
- end.
-Type Cases (LeO O) of
- (LeS n m h) =>(plus n m)
- | x => O
- end.
-
-Type [n,m:nat][h:(Le n m)]<[_,_:nat]nat>Cases h of
- (LeO x) => x
- | (LeS n m (LeO x)) => (plus x m)
- | (LeS n m (LeS x y h)) =>(plus n (plus m (plus x y)))
- end.
-
-
-Type [n,m:nat][h:(Le n m)]Cases h of
- (LeO x) => x
- | (LeS n m (LeO x)) => (plus x m)
- | (LeS n m (LeS x y h)) =>(plus n (plus m (plus x y)))
- end.
-
-Type <[_,_:nat]nat>Cases (LeO O) of
- (LeO x) => x
- | (LeS n m (LeO x)) => (plus x m)
- | (LeS n m (LeS x y h)) =>(plus n (plus m (plus x y)))
- end.
-
-Type Cases (LeO O) of
- (LeO x) => x
- | (LeS n m (LeO x)) => (plus x m)
- | (LeS n m (LeS x y h)) =>(plus n (plus m (plus x y)))
- end.
-
-
-Type <[_:nat]nat>Cases (LE_n O) of
- LE_n => O
- | (LE_S m LE_n) => (plus O m)
- | (LE_S m (LE_S y h)) => (plus O m)
- end.
-
-
-Type Cases (LE_n O) of
- LE_n => O
- | (LE_S m LE_n) => (plus O m)
- | (LE_S m (LE_S y h)) => (plus O m)
- end.
-
-
-Type [n,m:nat][h:(Le n m)] Cases h of
- x => x
- end.
-
-Type [n,m:nat][h:(Le n m)]<[_,_:nat]nat>Cases h of
- (LeO n) => n
- | x => O
- end.
-Type [n,m:nat][h:(Le n m)] Cases h of
- (LeO n) => n
- | x => O
- end.
-
-
-Type [n:nat]<[_:nat]nat->nat>Cases niln of
- niln => [_:nat]O
- | (consn n a niln) => [_:nat]O
- | (consn n a (consn m b l)) => [_:nat](plus n m)
- end.
-
-
-Type [n:nat] Cases niln of
- niln => [_:nat]O
- | (consn n a niln) => [_:nat]O
- | (consn n a (consn m b l)) => [_:nat](plus n m)
- end.
-
-Type [A:Set][n:nat][l:(Listn A n)]
- <[_:nat]nat->nat>Cases l of
- Niln => [_:nat]O
- | (Consn n a Niln) => [_:nat] n
- | (Consn n a (Consn m b l)) => [_:nat](plus n m)
- end.
-
-Type [A:Set][n:nat][l:(Listn A n)]
- Cases l of
- Niln => [_:nat]O
- | (Consn n a Niln) => [_:nat] n
- | (Consn n a (Consn m b l)) => [_:nat](plus n m)
- end.
-
-(* Alsos tests for multiple _ patterns *)
-Type [A:Set][n:nat][l:(Listn A n)]
- <[n:nat](Listn A n)>Cases l of
- (Niln as b) => b
- | ((Consn _ _ _ ) as b)=> b
- end.
-
-(** Horrible error message!
-
-Type [A:Set][n:nat][l:(Listn A n)]
- Cases l of
- (Niln as b) => b
- | ((Consn _ _ _ ) as b)=> b
- end.
-******)
-
-Type <[n:nat](listn n)>Cases niln of
- (niln as b) => b
- | ((consn _ _ _ ) as b)=> b
- end.
-
-
-Type <[n:nat](listn n)>Cases niln of
- (niln as b) => b
- | x => x
- end.
-
-Type [n,m:nat][h:(LE n m)]<[_:nat]nat->nat>Cases h of
- LE_n => [_:nat]n
- | (LE_S m LE_n) => [_:nat](plus n m)
- | (LE_S m (LE_S y h)) => [_:nat](plus m y )
- end.
-Type [n,m:nat][h:(LE n m)]Cases h of
- LE_n => [_:nat]n
- | (LE_S m LE_n) => [_:nat](plus n m)
- | (LE_S m (LE_S y h)) => [_:nat](plus m y )
- end.
-
-
-Type [n,m:nat][h:(LE n m)]
- <[_:nat]nat>Cases h of
- LE_n => n
- | (LE_S m LE_n ) => (plus n m)
- | (LE_S m (LE_S y LE_n )) => (plus (plus n m) y)
- | (LE_S m (LE_S y (LE_S y' h))) => (plus (plus n m) (plus y y'))
- end.
-
-
-
-Type [n,m:nat][h:(LE n m)]
- Cases h of
- LE_n => n
- | (LE_S m LE_n ) => (plus n m)
- | (LE_S m (LE_S y LE_n )) => (plus (plus n m) y)
- | (LE_S m (LE_S y (LE_S y' h))) => (plus (plus n m) (plus y y'))
- end.
-
-
-Type [n,m:nat][h:(LE n m)]<[_:nat]nat>Cases h of
- LE_n => n
- | (LE_S m LE_n) => (plus n m)
- | (LE_S m (LE_S y h)) => (plus (plus n m) y)
- end.
-
-
-Type [n,m:nat][h:(LE n m)]Cases h of
- LE_n => n
- | (LE_S m LE_n) => (plus n m)
- | (LE_S m (LE_S y h)) => (plus (plus n m) y)
- end.
-
-Type [n,m:nat]
- <[_,_:nat]nat>Cases (LeO O) of
- (LeS n m h) =>(plus n m)
- | x => O
- end.
-
-Type [n,m:nat]
- Cases (LeO O) of
- (LeS n m h) =>(plus n m)
- | x => O
- end.
-
-Parameter test : (n:nat){(le O n)}+{False}.
-Type [n:nat]<nat>Cases (test n) of
- (left _) => O
- | _ => O end.
-
-
-Type [n:nat] <nat> Cases (test n) of
- (left _) => O
- | _ => O end.
-
-Type [n:nat]Cases (test n) of
- (left _) => O
- | _ => O end.
-
-Parameter compare : (n,m:nat)({(lt n m)}+{n=m})+{(gt n m)}.
-Type <nat>Cases (compare O O) of
- (* k<i *) (inleft (left _)) => O
- | (* k=i *) (inleft _) => O
- | (* k>i *) (inright _) => O end.
-
-Type Cases (compare O O) of
- (* k<i *) (inleft (left _)) => O
- | (* k=i *) (inleft _) => O
- | (* k>i *) (inright _) => O end.
-
-
-
-CoInductive SStream [A:Set] : (nat->A->Prop)->Set :=
-scons :
- (P:nat->A->Prop)(a:A)(P O a)->(SStream A [n:nat](P (S n)))->(SStream A P).
-Parameter B : Set.
-
-Type
- [P:nat->B->Prop][x:(SStream B P)]<[_:nat->B->Prop]B>Cases x of
- (scons _ a _ _) => a end.
-
-
-Type
- [P:nat->B->Prop][x:(SStream B P)] Cases x of
- (scons _ a _ _) => a end.
-
-Type <nat*nat>Cases (O,O) of (x,y) => ((S x),(S y)) end.
-Type <nat*nat>Cases (O,O) of ((x as b), y) => ((S x),(S y)) end.
-Type <nat*nat>Cases (O,O) of (pair x y) => ((S x),(S y)) end.
-
-Type Cases (O,O) of (x,y) => ((S x),(S y)) end.
-Type Cases (O,O) of ((x as b), y) => ((S x),(S y)) end.
-Type Cases (O,O) of (pair x y) => ((S x),(S y)) end.
-
-
-
-Parameter concat : (A:Set)(List A) ->(List A) ->(List A).
-
-Type <(List nat)>Cases (Nil nat) (Nil nat) of
- (Nil as b) x => (concat nat b x)
- | ((Cons _ _) as d) (Nil as c) => (concat nat d c)
- | _ _ => (Nil nat)
- end.
-Type Cases (Nil nat) (Nil nat) of
- (Nil as b) x => (concat nat b x)
- | ((Cons _ _) as d) (Nil as c) => (concat nat d c)
- | _ _ => (Nil nat)
- end.
-
-
-Inductive redexes : Set :=
- VAR : nat -> redexes
- | Fun : redexes -> redexes
- | Ap : bool -> redexes -> redexes -> redexes.
-
-Fixpoint regular [U:redexes] : Prop := <Prop>Cases U of
- (VAR n) => True
-| (Fun V) => (regular V)
-| (Ap true ((Fun _) as V) W) => (regular V) /\ (regular W)
-| (Ap true _ W) => False
-| (Ap false V W) => (regular V) /\ (regular W)
-end.
-
-
-Type [n:nat]Cases n of O => O | (S ((S n) as V)) => V | _ => O end.
-
-Reset concat.
-Parameter concat :(n:nat) (listn n) -> (m:nat) (listn m)-> (listn (plus n m)).
-Type [n:nat][l:(listn n)][m:nat][l':(listn m)]
- <[n,_:nat](listn (plus n m))>Cases l l' of
- niln x => x
- | (consn n a l'') x =>(consn (plus n m) a (concat n l'' m x))
- end.
-
-Type [x,y,z:nat]
- [H:x=y]
- [H0:y=z]<[_:nat]x=z>Cases H of refl_equal =>
- <[n:nat]x=n>Cases H0 of refl_equal => H
- end
- end.
-
-Type [h:False]<False>Cases h of end.
-
-Type [h:False]<True>Cases h of end.
-
-Definition is_zero := [n:nat]Cases n of O => True | _ => False end.
-
-Type [n:nat][h:O=(S n)]<[n:nat](is_zero n)>Cases h of refl_equal => I end.
-
-Definition disc : (n:nat)O=(S n)->False :=
- [n:nat][h:O=(S n)]
- <[n:nat](is_zero n)>Cases h of refl_equal => I end.
-
-Definition nlength3 := [n:nat] [l: (listn n)]
- Cases l of
- niln => O
- | (consn O _ _) => (S O)
- | (consn (S n) _ _) => (S (S n))
- end.
-
-(* == Testing strategy elimintation predicate synthesis == *)
-Section titi.
-Variable h:False.
-Type Cases O of
- O => O
- | _ => (Except h)
- end.
-End titi.
-
-Type Cases niln of
- (consn _ a niln) => a
- | (consn n _ x) => O
- | niln => O
- end.
-
-
-
-Inductive wsort : Set := ws : wsort | wt : wsort.
-Inductive TS : wsort->Set :=
- id :(TS ws)
-| lift:(TS ws)->(TS ws).
-
-Type [b:wsort][M:(TS b)][N:(TS b)]
- Cases M N of
- (lift M1) id => False
- | _ _ => True
- end.
-
-
-
-(* ===================================================================== *)
-(* To test pattern matching over a non-dependent inductive type, but *)
-(* having constructors with some arguments that depend on others *)
-(* I.e. to test manipulation of elimination predicate *)
-(* ===================================================================== *)
-
-
-Parameter LTERM : nat -> Set.
-Mutual Inductive TERM : Type :=
- var : TERM
- | oper : (op:nat) (LTERM op) -> TERM.
-
-Parameter t1, t2:TERM.
-
-Type Cases t1 t2 of
- var var => True
-
- | (oper op1 l1) (oper op2 l2) => False
- | _ _ => False
- end.
-Reset LTERM.
-
-
-
-Require Peano_dec.
-Parameter n:nat.
-Definition eq_prf := (EXT m | n=m).
-Parameter p:eq_prf .
-
-Type Cases p of
- (exT_intro c eqc) =>
- Cases (eq_nat_dec c n) of
- (right _) => (refl_equal ? n)
- |(left y) (* c=n*) => (refl_equal ? n)
- end
- end.
-
-
-Parameter ordre_total : nat->nat->Prop.
-
-Parameter N_cla:(N:nat){N=O}+{N=(S O)}+{(ge N (S (S O)))}.
-
-Parameter exist_U2:(N:nat)(ge N (S (S O)))->
- {n:nat|(m:nat)(lt O m)/\(le m N)
- /\(ordre_total n m)
- /\(lt O n)/\(lt n N)}.
-
-Type [N:nat](Cases (N_cla N) of
- (inright H)=>(Cases (exist_U2 N H) of
- (exist a b)=>a
- end)
- | _ => O
- end).
-
-
-
-(* ============================================== *)
-(* To test compilation of dependent case *)
-(* Nested patterns *)
-(* ============================================== *)
-
-(* == To test that terms named with AS are correctly absolutized before
- substitution in rhs == *)
-
-Type [n:nat]<[n:nat]nat>Cases (n) of
- O => O
- | (S O) => O
- | ((S (S n1)) as N) => N
- end.
-
-(* ========= *)
-
-Type <[n:nat][_:(listn n)]Prop>Cases niln of
- niln => True
- | (consn (S O) _ _) => False
- | _ => True end.
-
-Type <[n:nat][_:(listn n)]Prop>Cases niln of
- niln => True
- | (consn (S (S O)) _ _) => False
- | _ => True end.
-
-
-Type <[n,m:nat][h:(Le n m)]nat>Cases (LeO O) of
- (LeO _) => O
- | (LeS (S x) _ _) => x
- | _ => (S O) end.
-
-Type <[n,m:nat][h:(Le n m)]nat>Cases (LeO O) of
- (LeO _) => O
- | (LeS (S x) (S y) _) => x
- | _ => (S O) end.
-
-Type <[n,m:nat][h:(Le n m)]nat>Cases (LeO O) of
- (LeO _) => O
- | (LeS ((S x) as b) (S y) _) => b
- | _ => (S O) end.
-
-
-
-Parameter ff: (n,m:nat)~n=m -> ~(S n)=(S m).
-Parameter discr_r : (n:nat) ~(O=(S n)).
-Parameter discr_l : (n:nat) ~((S n)=O).
-
-Type
-[n:nat]
- <[n:nat]n=O\/~n=O>Cases n of
- O => (or_introl ? ~O=O (refl_equal ? O))
- | (S x) => (or_intror (S x)=O ? (discr_l x))
- end.
-
-
-Fixpoint eqdec [n:nat] : (m:nat) n=m \/ ~n=m :=
-[m:nat]
- <[n,m:nat] n=m \/ ~n=m>Cases n m of
- O O => (or_introl ? ~O=O (refl_equal ? O))
-
- | O (S x) => (or_intror O=(S x) ? (discr_r x))
-
- | (S x) O => (or_intror ? ~(S x)=O (discr_l x))
-
- | (S x) (S y) =>
- <(S x)=(S y)\/~(S x)=(S y)>Cases (eqdec x y) of
- (or_introl h) => (or_introl ? ~(S x)=(S y) (f_equal nat nat S x y h))
- | (or_intror h) => (or_intror (S x)=(S y) ? (ff x y h))
- end
- end.
-
-Reset eqdec.
-
-Fixpoint eqdec [n:nat] : (m:nat) n=m \/ ~n=m :=
-<[n:nat] (m:nat)n=m \/ ~n=m>Cases n of
- O => [m:nat] <[m:nat]O=m\/~O=m>Cases m of
- O => (or_introl ? ~O=O (refl_equal nat O))
- |(S x) => (or_intror O=(S x) ? (discr_r x))
- end
- | (S x) => [m:nat]
- <[m:nat](S x)=m\/~(S x)=m>Cases m of
- O => (or_intror (S x)=O ? (discr_l x))
- | (S y) =>
- <(S x)=(S y)\/~(S x)=(S y)>Cases (eqdec x y) of
- (or_introl h) => (or_introl ? ~(S x)=(S y) (f_equal ? ? S x y h))
- | (or_intror h) => (or_intror (S x)=(S y) ? (ff x y h))
- end
- end
- end.
-
-
-Inductive empty : (n:nat)(listn n)-> Prop :=
- intro_empty: (empty O niln).
-
-Parameter inv_empty : (n,a:nat)(l:(listn n)) ~(empty (S n) (consn n a l)).
-
-Type
-[n:nat] [l:(listn n)]
- <[n:nat] [l:(listn n)](empty n l) \/ ~(empty n l)>Cases l of
- niln => (or_introl ? ~(empty O niln) intro_empty)
- | ((consn n a y) as b) => (or_intror (empty (S n) b) ? (inv_empty n a y))
- end.
-
-Reset ff.
-Parameter ff: (n,m:nat)~n=m -> ~(S n)=(S m).
-Parameter discr_r : (n:nat) ~(O=(S n)).
-Parameter discr_l : (n:nat) ~((S n)=O).
-
-Type
-[n:nat]
- <[n:nat]n=O\/~n=O>Cases n of
- O => (or_introl ? ~O=O (refl_equal ? O))
- | (S x) => (or_intror (S x)=O ? (discr_l x))
- end.
-
-
-Fixpoint eqdec [n:nat] : (m:nat) n=m \/ ~n=m :=
-[m:nat]
- <[n,m:nat] n=m \/ ~n=m>Cases n m of
- O O => (or_introl ? ~O=O (refl_equal ? O))
-
- | O (S x) => (or_intror O=(S x) ? (discr_r x))
-
- | (S x) O => (or_intror ? ~(S x)=O (discr_l x))
-
- | (S x) (S y) =>
- <(S x)=(S y)\/~(S x)=(S y)>Cases (eqdec x y) of
- (or_introl h) => (or_introl ? ~(S x)=(S y) (f_equal nat nat S x y h))
- | (or_intror h) => (or_intror (S x)=(S y) ? (ff x y h))
- end
- end.
-Reset eqdec.
-
-Fixpoint eqdec [n:nat] : (m:nat) n=m \/ ~n=m :=
-<[n:nat] (m:nat)n=m \/ ~n=m>Cases n of
- O => [m:nat] <[m:nat]O=m\/~O=m>Cases m of
- O => (or_introl ? ~O=O (refl_equal nat O))
- |(S x) => (or_intror O=(S x) ? (discr_r x))
- end
- | (S x) => [m:nat]
- <[m:nat](S x)=m\/~(S x)=m>Cases m of
- O => (or_intror (S x)=O ? (discr_l x))
- | (S y) =>
- <(S x)=(S y)\/~(S x)=(S y)>Cases (eqdec x y) of
- (or_introl h) => (or_introl ? ~(S x)=(S y) (f_equal ? ? S x y h))
- | (or_intror h) => (or_intror (S x)=(S y) ? (ff x y h))
- end
- end
- end.
-
-
-(* ================================================== *)
-(* Pour tester parametres *)
-(* ================================================== *)
-
-
-Inductive Empty [A:Set] : (List A)-> Prop :=
- intro_Empty: (Empty A (Nil A)).
-
-Parameter inv_Empty : (A:Set)(a:A)(x:(List A)) ~(Empty A (Cons A a x)).
-
-
-Type
- <[l:(List nat)](Empty nat l) \/ ~(Empty nat l)>Cases (Nil nat) of
- Nil => (or_introl ? ~(Empty nat (Nil nat)) (intro_Empty nat))
- | (Cons a y) => (or_intror (Empty nat (Cons nat a y)) ?
- (inv_Empty nat a y))
- end.
-
-
-(* ================================================== *)
-(* Sur les listes *)
-(* ================================================== *)
-
-
-Inductive empty : (n:nat)(listn n)-> Prop :=
- intro_empty: (empty O niln).
-
-Parameter inv_empty : (n,a:nat)(l:(listn n)) ~(empty (S n) (consn n a l)).
-
-Type
-[n:nat] [l:(listn n)]
- <[n:nat] [l:(listn n)](empty n l) \/ ~(empty n l)>Cases l of
- niln => (or_introl ? ~(empty O niln) intro_empty)
- | ((consn n a y) as b) => (or_intror (empty (S n) b) ? (inv_empty n a y))
- end.
-
-(* ===================================== *)
-(* Test parametros: *)
-(* ===================================== *)
-
-Inductive eqlong : (List nat)-> (List nat)-> Prop :=
- eql_cons : (n,m:nat)(x,y:(List nat))
- (eqlong x y) -> (eqlong (Cons nat n x) (Cons nat m y))
-| eql_nil : (eqlong (Nil nat) (Nil nat)).
-
-
-Parameter V1 : (eqlong (Nil nat) (Nil nat))\/ ~(eqlong (Nil nat) (Nil nat)).
-Parameter V2 : (a:nat)(x:(List nat))
- (eqlong (Nil nat) (Cons nat a x))\/ ~(eqlong (Nil nat)(Cons nat a x)).
-Parameter V3 : (a:nat)(x:(List nat))
- (eqlong (Cons nat a x) (Nil nat))\/ ~(eqlong (Cons nat a x) (Nil nat)).
-Parameter V4 : (a:nat)(x:(List nat))(b:nat)(y:(List nat))
- (eqlong (Cons nat a x)(Cons nat b y))
- \/ ~(eqlong (Cons nat a x) (Cons nat b y)).
-
-Type
- <[x,y:(List nat)](eqlong x y)\/~(eqlong x y)>Cases (Nil nat) (Nil nat) of
- Nil Nil => V1
- | Nil (Cons a x) => (V2 a x)
- | (Cons a x) Nil => (V3 a x)
- | (Cons a x) (Cons b y) => (V4 a x b y)
- end.
-
-
-Type
-[x,y:(List nat)]
- <[x,y:(List nat)](eqlong x y)\/~(eqlong x y)>Cases x y of
- Nil Nil => V1
- | Nil (Cons a x) => (V2 a x)
- | (Cons a x) Nil => (V3 a x)
- | (Cons a x) (Cons b y) => (V4 a x b y)
- end.
-
-
-(* ===================================== *)
-
-Inductive Eqlong : (n:nat) (listn n)-> (m:nat) (listn m)-> Prop :=
- Eql_cons : (n,m:nat )(x:(listn n))(y:(listn m)) (a,b:nat)
- (Eqlong n x m y)
- ->(Eqlong (S n) (consn n a x) (S m) (consn m b y))
-| Eql_niln : (Eqlong O niln O niln).
-
-
-Parameter W1 : (Eqlong O niln O niln)\/ ~(Eqlong O niln O niln).
-Parameter W2 : (n,a:nat)(x:(listn n))
- (Eqlong O niln (S n)(consn n a x)) \/ ~(Eqlong O niln (S n) (consn n a x)).
-Parameter W3 : (n,a:nat)(x:(listn n))
- (Eqlong (S n) (consn n a x) O niln) \/ ~(Eqlong (S n) (consn n a x) O niln).
-Parameter W4 : (n,a:nat)(x:(listn n)) (m,b:nat)(y:(listn m))
- (Eqlong (S n)(consn n a x) (S m) (consn m b y))
- \/ ~(Eqlong (S n)(consn n a x) (S m) (consn m b y)).
-
-Type
- <[n:nat][x:(listn n)][m:nat][y:(listn m)]
- (Eqlong n x m y)\/~(Eqlong n x m y)>Cases niln niln of
- niln niln => W1
- | niln (consn n a x) => (W2 n a x)
- | (consn n a x) niln => (W3 n a x)
- | (consn n a x) (consn m b y) => (W4 n a x m b y)
- end.
-
-
-Type
-[n,m:nat][x:(listn n)][y:(listn m)]
- <[n:nat][x:(listn n)][m:nat][y:(listn m)]
- (Eqlong n x m y)\/~(Eqlong n x m y)>Cases x y of
- niln niln => W1
- | niln (consn n a x) => (W2 n a x)
- | (consn n a x) niln => (W3 n a x)
- | (consn n a x) (consn m b y) => (W4 n a x m b y)
- end.
-
-
-Parameter Inv_r : (n,a:nat)(x:(listn n)) ~(Eqlong O niln (S n) (consn n a x)).
-Parameter Inv_l : (n,a:nat)(x:(listn n)) ~(Eqlong (S n) (consn n a x) O niln).
-Parameter Nff : (n,a:nat)(x:(listn n)) (m,b:nat)(y:(listn m))
- ~(Eqlong n x m y)
- -> ~(Eqlong (S n) (consn n a x) (S m) (consn m b y)).
-
-
-
-Fixpoint Eqlongdec [n:nat; x:(listn n)] : (m:nat)(y:(listn m))
- (Eqlong n x m y)\/~(Eqlong n x m y)
-:= [m:nat][y:(listn m)]
- <[n:nat][x:(listn n)][m:nat][y:(listn m)]
- (Eqlong n x m y)\/~(Eqlong n x m y)>Cases x y of
- niln niln => (or_introl ? ~(Eqlong O niln O niln) Eql_niln)
-
- | niln ((consn n a x) as L) =>
- (or_intror (Eqlong O niln (S n) L) ? (Inv_r n a x))
-
- | ((consn n a x) as L) niln =>
- (or_intror (Eqlong (S n) L O niln) ? (Inv_l n a x))
-
-
- | ((consn n a x) as L1) ((consn m b y) as L2) =>
- <(Eqlong (S n) L1 (S m) L2) \/~(Eqlong (S n) L1 (S m) L2)>
- Cases (Eqlongdec n x m y) of
- (or_introl h) =>
- (or_introl ? ~(Eqlong (S n) L1 (S m) L2)(Eql_cons n m x y a b h))
- | (or_intror h) =>
- (or_intror (Eqlong (S n) L1 (S m) L2) ? (Nff n a x m b y h))
- end
- end.
-
-(* ============================================== *)
-(* To test compilation of dependent case *)
-(* Multiple Patterns *)
-(* ============================================== *)
-Inductive skel: Type :=
- PROP: skel
- | PROD: skel->skel->skel.
-
-Parameter Can : skel -> Type.
-Parameter default_can : (s:skel) (Can s).
-
-Type [s1,s2:skel]
-[s1,s2:skel]<[s1:skel][_:skel](Can s1)>Cases s1 s2 of
- PROP PROP => (default_can PROP)
-| (PROD x y) PROP => (default_can (PROD x y))
-| (PROD x y) _ => (default_can (PROD x y))
-| PROP _ => (default_can PROP)
-end.
-
-(* to test bindings in nested Cases *)
-(* ================================ *)
-Inductive Pair : Set :=
- pnil : Pair |
- pcons : Pair -> Pair -> Pair.
-
-Type [p,q:Pair]Cases p of
- (pcons _ x) =>
- Cases q of
- (pcons _ (pcons _ x)) => True
- | _ => False
- end
-| _ => False
-end.
-
-
-Type [p,q:Pair]Cases p of
- (pcons _ x) =>
- Cases q of
- (pcons _ (pcons _ x)) =>
- Cases q of
- (pcons _ (pcons _ (pcons _ x))) => x
- | _ => pnil
- end
- | _ => pnil
- end
-| _ => pnil
-end.
-
-Type
- [n:nat]
- [l:(listn (S n))]
- <[z:nat](listn (pred z))>Cases l of
- niln => niln
- | (consn n _ l) =>
- <[m:nat](listn m)>Cases l of
- niln => niln
- | b => b
- end
- end.
-
-
-
-(* Test de la syntaxe avec nombres *)
-Require Arith.
-Type [n]Cases n of 2 => true | _ => false end.
-
-Require ZArith.
-Type [n]Cases n of `0` => true | _ => false end.
diff --git a/test-suite/ideal-features/CasesDep.v b/test-suite/ideal-features/CasesDep.v
deleted file mode 100644
index 3a0c36b6d..000000000
--- a/test-suite/ideal-features/CasesDep.v
+++ /dev/null
@@ -1,374 +0,0 @@
-
-(* -------------------------------------------------------------------- *)
-(* Example to test patterns matching on dependent families *) (* This exemple extracted from the developement done by Nacira Chabane *)
-(* (equipe Paris 6) *)
-(* -------------------------------------------------------------------- *)
-
-
-Require Prelude.
-Require Logic_TypeSyntax.
-Require Logic_Type.
-
-
-Section Orderings.
- Variable U: Type.
-
- Definition Relation := U -> U -> Prop.
-
- Variable R: Relation.
-
- Definition Reflexive : Prop := (x: U) (R x x).
-
- Definition Transitive : Prop := (x,y,z: U) (R x y) -> (R y z) -> (R x z).
-
- Definition Symmetric : Prop := (x,y: U) (R x y) -> (R y x).
-
- Definition Antisymmetric : Prop :=
- (x,y: U) (R x y) -> (R y x) -> x==y.
-
- Definition contains : Relation -> Relation -> Prop :=
- [R,R': Relation] (x,y: U) (R' x y) -> (R x y).
- Definition same_relation : Relation -> Relation -> Prop :=
- [R,R': Relation] (contains R R') /\ (contains R' R).
-Inductive Equivalence : Prop :=
- Build_Equivalence:
- Reflexive -> Transitive -> Symmetric -> Equivalence.
-
- Inductive PER : Prop :=
- Build_PER: Symmetric -> Transitive -> PER.
-
-End Orderings.
-
-(***** Setoid *******)
-
-Inductive Setoid : Type
- := Build_Setoid : (S:Type)(R:(Relation S))(Equivalence ? R) -> Setoid.
-
-Definition elem := [A:Setoid] let (S,R,e)=A in S.
-
-Grammar command command1 :=
- elem [ "|" command0($s) "|"] -> [ <<(elem $s)>>].
-
-Definition equal := [A:Setoid]
- <[s:Setoid](Relation |s|)>let (S,R,e)=A in R.
-
-Grammar command command1 :=
- equal [ command0($c) "=" "%" "S" command0($c2) ] ->
- [ <<(equal ? $c $c2)>>].
-
-
-Axiom prf_equiv : (A:Setoid)(Equivalence |A| (equal A)).
-Axiom prf_refl : (A:Setoid)(Reflexive |A| (equal A)).
-Axiom prf_sym : (A:Setoid)(Symmetric |A| (equal A)).
-Axiom prf_trans : (A:Setoid)(Transitive |A| (equal A)).
-
-Section Maps.
-Variables A,B: Setoid.
-
-Definition Map_law := [f:|A| -> |B|]
- (x,y:|A|) x =%S y -> (f x) =%S (f y).
-
-Inductive Map : Type :=
- Build_Map : (f:|A| -> |B|)(p:(Map_law f))Map.
-
-Definition explicit_ap := [m:Map] <|A| -> |B|>Match m with
- [f:?][p:?]f end.
-
-Axiom pres : (m:Map)(Map_law (explicit_ap m)).
-
-Definition ext := [f,g:Map]
- (x:|A|) (explicit_ap f x) =%S (explicit_ap g x).
-
-Axiom Equiv_map_eq : (Equivalence Map ext).
-
-Definition Map_setoid := (Build_Setoid Map ext Equiv_map_eq).
-
-End Maps.
-
-Syntactic Definition ap := (explicit_ap ? ?).
-
-Grammar command command8 :=
- map_setoid [ command7($c1) "=>" command8($c2) ]
- -> [ <<(Map_setoid $c1 $c2)>>].
-
-
-Definition ap2 := [A,B,C:Setoid][f:|(A=>(B=>C))|][a:|A|] (ap (ap f a)).
-
-
-(***** posint ******)
-
-Inductive posint : Type
- := Z : posint | Suc : posint -> posint.
-
-Require Logic_Type.
-
-Axiom f_equal : (A,B:Type)(f:A->B)(x,y:A) x==y -> (f x)==(f y).
-Axiom eq_Suc : (n,m:posint) n==m -> (Suc n)==(Suc m).
-
-(* The predecessor function *)
-
-Definition pred : posint->posint
- := [n:posint](<posint>Case n of (* Z *) Z
- (* Suc u *) [u:posint]u end).
-
-Axiom pred_Sucn : (m:posint) m==(pred (Suc m)).
-Axiom eq_add_Suc : (n,m:posint) (Suc n)==(Suc m) -> n==m.
-Axiom not_eq_Suc : (n,m:posint) ~(n==m) -> ~((Suc n)==(Suc m)).
-
-
-Definition IsSuc : posint->Prop
- := [n:posint](<Prop>Case n of (* Z *) False
- (* Suc p *) [p:posint]True end).
-Definition IsZero :posint->Prop :=
- [n:posint]<Prop>Match n with
- True
- [p:posint][H:Prop]False end.
-
-Axiom Z_Suc : (n:posint) ~(Z==(Suc n)).
-Axiom Suc_Z: (n:posint) ~(Suc n)==Z.
-Axiom n_Sucn : (n:posint) ~(n==(Suc n)).
-Axiom Sucn_n : (n:posint) ~(Suc n)==n.
-Axiom eqT_symt : (a,b:posint) ~(a==b)->~(b==a).
-
-
-(******* Dsetoid *****)
-
-Definition Decidable :=[A:Type][R:(Relation A)]
- (x,y:A)(R x y) \/ ~(R x y).
-
-
-Record DSetoid : Type :=
-{Set_of : Setoid;
- prf_decid : (Decidable |Set_of| (equal Set_of))}.
-
-(* example de Dsetoide d'entiers *)
-
-
-Axiom eqT_equiv : (Equivalence posint (eqT posint)).
-Axiom Eq_posint_deci : (Decidable posint (eqT posint)).
-
-(* Dsetoide des posint*)
-
-Definition Set_of_posint := (Build_Setoid posint (eqT posint) eqT_equiv).
-
-Definition Dposint := (Build_DSetoid Set_of_posint Eq_posint_deci).
-
-
-
-(**************************************)
-
-
-(* Definition des signatures *)
-(* une signature est un ensemble d'operateurs muni
- de l'arite de chaque operateur *)
-
-
-Section Sig.
-
-Record Signature :Type :=
-{Sigma : DSetoid;
- Arity : (Map (Set_of Sigma) (Set_of Dposint))}.
-
-Variable S:Signature.
-
-
-
-Variable Var : DSetoid.
-
-Mutual Inductive TERM : Type :=
- var : |(Set_of Var)| -> TERM
- | oper : (op: |(Set_of (Sigma S))| ) (LTERM (ap (Arity S) op)) -> TERM
-with
- LTERM : posint -> Type :=
- nil : (LTERM Z)
- | cons : TERM -> (n:posint)(LTERM n) -> (LTERM (Suc n)).
-
-
-
-(* -------------------------------------------------------------------- *)
-(* Examples *)
-(* -------------------------------------------------------------------- *)
-
-
-Parameter t1,t2: TERM.
-
-Type
- Cases t1 t2 of
- (var v1) (var v2) => True
-
- | (oper op1 l1) (oper op2 l2) => False
- | _ _ => False
- end.
-
-
-
-Parameter n2:posint.
-Parameter l1, l2:(LTERM n2).
-
-Type
- Cases l1 l2 of
- nil nil => True
- | (cons v m y) nil => False
- | _ _ => False
-end.
-
-
-Type Cases l1 l2 of
- nil nil => True
- | (cons u n x) (cons v m y) =>False
- | _ _ => False
-end.
-
-
-
-Fixpoint equalT [t1:TERM]:TERM->Prop :=
-[t2:TERM]
- Cases t1 t2 of
- (var v1) (var v2) => True
- | (oper op1 l1) (oper op2 l2) => False
- | _ _ => False
- end
-
-with EqListT [n1:posint;l1:(LTERM n1)]: (n2:posint)(LTERM n2)->Prop :=
-[n2:posint][l2:(LTERM n2)]
- Cases l1 l2 of
- nil nil => True
- | (cons t1 n1' l1') (cons t2 n2' l2') => False
- | _ _ => False
-end.
-
-
-Reset equalT.
-Reset EqListT.
-(* ------------------------------------------------------------------*)
-(* Initial exemple (without patterns) *)
-(*-------------------------------------------------------------------*)
-
-Fixpoint equalT [t1:TERM]:TERM->Prop :=
-<TERM->Prop>Case t1 of
- (*var*) [v1:|(Set_of Var)|][t2:TERM]
- <Prop>Case t2 of
- (*var*)[v2:|(Set_of Var)|] (v1 =%S v2)
- (*oper*)[op2:|(Set_of (Sigma S))|][_:(LTERM (ap (Arity S) op2))]False
- end
- (*oper*)[op1:|(Set_of (Sigma S))|]
- [l1:(LTERM (ap (Arity S) op1))][t2:TERM]
- <Prop>Case t2 of
- (*var*)[v2:|(Set_of Var)|]False
- (*oper*)[op2:|(Set_of (Sigma S))|]
- [l2:(LTERM (ap (Arity S) op2))]
- ((op1=%S op2)/\ (EqListT (ap (Arity S) op1) l1 (ap (Arity S) op2) l2))
- end
-end
-with EqListT [n1:posint;l1:(LTERM n1)]: (n2:posint)(LTERM n2)->Prop :=
-<[_:posint](n2:posint)(LTERM n2)->Prop>Case l1 of
- (*nil*) [n2:posint][l2:(LTERM n2)]
- <[_:posint]Prop>Case l2 of
- (*nil*)True
- (*cons*)[t2:TERM][n2':posint][l2':(LTERM n2')]False
- end
- (*cons*)[t1:TERM][n1':posint][l1':(LTERM n1')]
- [n2:posint][l2:(LTERM n2)]
- <[_:posint]Prop>Case l2 of
- (*nil*) False
- (*cons*)[t2:TERM][n2':posint][l2':(LTERM n2')]
- ((equalT t1 t2) /\ (EqListT n1' l1' n2' l2'))
- end
-end.
-
-
-(* ---------------------------------------------------------------- *)
-(* Version with simple patterns *)
-(* ---------------------------------------------------------------- *)
-Reset equalT.
-
-Fixpoint equalT [t1:TERM]:TERM->Prop :=
-Cases t1 of
- (var v1) => [t2:TERM]
- Cases t2 of
- (var v2) => (v1 =%S v2)
- | (oper op2 _) =>False
- end
-| (oper op1 l1) => [t2:TERM]
- Cases t2 of
- (var _) => False
- | (oper op2 l2) => (op1=%S op2)
- /\ (EqListT (ap (Arity S) op1) l1 (ap (Arity S) op2) l2)
- end
-end
-with EqListT [n1:posint;l1:(LTERM n1)]: (n2:posint)(LTERM n2)->Prop :=
-<[_:posint](n2:posint)(LTERM n2)->Prop>Cases l1 of
- nil => [n2:posint][l2:(LTERM n2)]
- Cases l2 of
- nil => True
- | _ => False
- end
-| (cons t1 n1' l1') => [n2:posint][l2:(LTERM n2)]
- Cases l2 of
- nil =>False
- | (cons t2 n2' l2') => (equalT t1 t2)
- /\ (EqListT n1' l1' n2' l2')
- end
-end.
-
-
-Reset equalT.
-
-Fixpoint equalT [t1:TERM]:TERM->Prop :=
-Cases t1 of
- (var v1) => [t2:TERM]
- Cases t2 of
- (var v2) => (v1 =%S v2)
- | (oper op2 _) =>False
- end
-| (oper op1 l1) => [t2:TERM]
- Cases t2 of
- (var _) => False
- | (oper op2 l2) => (op1=%S op2)
- /\ (EqListT (ap (Arity S) op1) l1 (ap (Arity S) op2) l2)
- end
-end
-with EqListT [n1:posint;l1:(LTERM n1)]: (n2:posint)(LTERM n2)->Prop :=
-[n2:posint][l2:(LTERM n2)]
-Cases l1 of
- nil =>
- Cases l2 of
- nil => True
- | _ => False
- end
-| (cons t1 n1' l1') => Cases l2 of
- nil =>False
- | (cons t2 n2' l2') => (equalT t1 t2)
- /\ (EqListT n1' l1' n2' l2')
- end
-end.
-
-(* ---------------------------------------------------------------- *)
-(* Version with multiple patterns *)
-(* ---------------------------------------------------------------- *)
-Reset equalT.
-
-Fixpoint equalT [t1:TERM]:TERM->Prop :=
-[t2:TERM]
- Cases t1 t2 of
- (var v1) (var v2) => (v1 =%S v2)
-
- | (oper op1 l1) (oper op2 l2) =>
- (op1=%S op2) /\ (EqListT (ap (Arity S) op1) l1 (ap (Arity S) op2) l2)
-
- | _ _ => False
- end
-
-with EqListT [n1:posint;l1:(LTERM n1)]: (n2:posint)(LTERM n2)->Prop :=
-[n2:posint][l2:(LTERM n2)]
- Cases l1 l2 of
- nil nil => True
- | (cons t1 n1' l1') (cons t2 n2' l2') => (equalT t1 t2)
- /\ (EqListT n1' l1' n2' l2')
- | _ _ => False
-end.
-
-
-(* ------------------------------------------------------------------ *)
-
-End Sig.