diff options
author | Pierre Letouzey <pierre.letouzey@inria.fr> | 2017-08-05 10:42:56 +0200 |
---|---|---|
committer | Pierre Letouzey <pierre.letouzey@inria.fr> | 2017-10-05 17:36:20 +0200 |
commit | c5aca4005faf74d99091ef29257cbed6a53a12d4 (patch) | |
tree | 223b852c5672d98565862f6e8afac2b212603bd9 /test-suite/bugs | |
parent | 8b5f7ad0722e5ed1b87589ae103a1c4c5974416f (diff) |
Extraction: reduce eta-redexes whose cores are atomic (solves indirectly BZ#4852)
This code simplification isn't that important, but it can trigger further
simplifications elsewhere, see for instance BZ#4852.
NB: normally, the extraction favors eta-expanded forms, since that's the usual
way to avoid issues about '_a type variables that cannot be generalized. But
the atomic eta-reductions done here shouldn't be problematic (no applications
put outside of functions).
Diffstat (limited to 'test-suite/bugs')
-rw-r--r-- | test-suite/bugs/closed/4852.v | 54 |
1 files changed, 54 insertions, 0 deletions
diff --git a/test-suite/bugs/closed/4852.v b/test-suite/bugs/closed/4852.v new file mode 100644 index 000000000..5068ed9b9 --- /dev/null +++ b/test-suite/bugs/closed/4852.v @@ -0,0 +1,54 @@ +(** BZ 4852 : unsatisfactory Extraction Implicit for a fixpoint defined via wf *) + +Require Import Coq.Lists.List. +Import ListNotations. +Require Import Omega. + +Definition wfi_lt := well_founded_induction_type Wf_nat.lt_wf. + +Tactic Notation "wfinduction" constr(term) "on" ne_hyp_list(Hs) "as" ident(H) := + let R := fresh in + let E := fresh in + remember term as R eqn:E; + revert E; revert Hs; + induction R as [R H] using wfi_lt; + intros; subst R. + +Hint Rewrite @app_comm_cons @app_assoc @app_length : app_rws. + +Ltac solve_nat := autorewrite with app_rws in *; cbn in *; omega. + +Notation "| x |" := (length x) (at level 11, no associativity, format "'|' x '|'"). + +Definition split_acc (ls : list nat) : forall acc1 acc2, + (|acc1| = |acc2| \/ |acc1| = S (|acc2|)) -> + { lss : list nat * list nat | + let '(ls1, ls2) := lss in |ls1++ls2| = |ls++acc1++acc2| /\ (|ls1| = |ls2| \/ |ls1| = S (|ls2|))}. +Proof. + induction ls as [|a ls IHls]. all:intros acc1 acc2 H. + { exists (acc1, acc2). cbn. intuition reflexivity. } + destruct (IHls (a::acc2) acc1) as [[ls1 ls2] (H1 & H2)]. 1:solve_nat. + exists (ls1, ls2). cbn. intuition solve_nat. +Defined. + +Definition join(ls : list nat) : { rls : list nat | |rls| = |ls| }. +Proof. + wfinduction (|ls|) on ls as IH. + case (split_acc ls [] []). 1:solve_nat. + intros (ls1 & ls2) (H1 & H2). + destruct ls2 as [|a ls2]. + - exists ls1. solve_nat. + - unshelve eelim (IH _ _ ls1 eq_refl). 1:solve_nat. intros rls1 H3. + unshelve eelim (IH _ _ ls2 eq_refl). 1:solve_nat. intros rls2 H4. + exists (a :: rls1 ++ rls2). solve_nat. +Defined. + +Require Import ExtrOcamlNatInt. +Extract Inlined Constant length => "List.length". +Extract Inlined Constant app => "List.append". + +Extraction Inline wfi_lt. +Extraction Implicit wfi_lt [1 3]. +Recursive Extraction join. (* was: Error: An implicit occurs after extraction *) +Extraction TestCompile join. + |