aboutsummaryrefslogtreecommitdiffhomepage
path: root/pretyping
diff options
context:
space:
mode:
authorGravatar Gaëtan Gilbert <gaetan.gilbert@skyskimmer.net>2018-04-26 15:31:46 +0200
committerGravatar Gaëtan Gilbert <gaetan.gilbert@skyskimmer.net>2018-05-14 13:25:56 +0200
commit0bae2ad1082e6bf7ef24ae4767d6f7cfd8c1a973 (patch)
treeeaea966d99ed667819d4db9dfae912ef1e49e1c1 /pretyping
parentc22ac10752c12bcb23402ad29a73f2d9699248a6 (diff)
Typing implementation doesn't use evdref.
Diffstat (limited to 'pretyping')
-rw-r--r--pretyping/typing.ml371
1 files changed, 179 insertions, 192 deletions
diff --git a/pretyping/typing.ml b/pretyping/typing.ml
index 5477d804a..6bd75c93d 100644
--- a/pretyping/typing.ml
+++ b/pretyping/typing.ml
@@ -37,72 +37,72 @@ let inductive_type_knowing_parameters env sigma (ind,u) jl =
let paramstyp = Array.map (fun j -> lazy (EConstr.to_constr ~abort_on_undefined_evars:false sigma j.uj_type)) jl in
Inductive.type_of_inductive_knowing_parameters env (mspec,u) paramstyp
-let e_type_judgment env evdref j =
- match EConstr.kind !evdref (whd_all env !evdref j.uj_type) with
- | Sort s -> {utj_val = j.uj_val; utj_type = ESorts.kind !evdref s }
+let type_judgment env sigma j =
+ match EConstr.kind sigma (whd_all env sigma j.uj_type) with
+ | Sort s -> sigma, {utj_val = j.uj_val; utj_type = ESorts.kind sigma s }
| Evar ev ->
- let (evd,s) = Evardefine.define_evar_as_sort env !evdref ev in
- evdref := evd; { utj_val = j.uj_val; utj_type = s }
- | _ -> error_not_a_type env !evdref j
-
-let e_assumption_of_judgment env evdref j =
- try (e_type_judgment env evdref j).utj_val
+ let (sigma,s) = Evardefine.define_evar_as_sort env sigma ev in
+ sigma, { utj_val = j.uj_val; utj_type = s }
+ | _ -> error_not_a_type env sigma j
+
+let assumption_of_judgment env sigma j =
+ try
+ let sigma, j = type_judgment env sigma j in
+ sigma, j.utj_val
with Type_errors.TypeError _ | PretypeError _ ->
- error_assumption env !evdref j
+ error_assumption env sigma j
-let e_judge_of_applied_inductive_knowing_parameters env evdref funj ind argjv =
- let rec apply_rec n typ = function
+let judge_of_applied_inductive_knowing_parameters env sigma funj ind argjv =
+ let rec apply_rec sigma n typ = function
| [] ->
- { uj_val = mkApp (j_val funj, Array.map j_val argjv);
- uj_type =
- let ar = inductive_type_knowing_parameters env !evdref ind argjv in
- hnf_prod_appvect env !evdref (EConstr.of_constr ar) (Array.map j_val argjv) }
+ sigma, { uj_val = mkApp (j_val funj, Array.map j_val argjv);
+ uj_type =
+ let ar = inductive_type_knowing_parameters env sigma ind argjv in
+ hnf_prod_appvect env sigma (EConstr.of_constr ar) (Array.map j_val argjv) }
| hj::restjl ->
- let (c1,c2) =
- match EConstr.kind !evdref (whd_all env !evdref typ) with
- | Prod (_,c1,c2) -> (c1,c2)
+ let sigma, (c1,c2) =
+ match EConstr.kind sigma (whd_all env sigma typ) with
+ | Prod (_,c1,c2) -> sigma, (c1,c2)
| Evar ev ->
- let (evd',t) = Evardefine.define_evar_as_product !evdref ev in
- evdref := evd';
- let (_,c1,c2) = destProd evd' t in
- (c1,c2)
+ let (sigma,t) = Evardefine.define_evar_as_product sigma ev in
+ let (_,c1,c2) = destProd sigma t in
+ sigma, (c1,c2)
| _ ->
- error_cant_apply_not_functional env !evdref funj argjv
+ error_cant_apply_not_functional env sigma funj argjv
in
- begin match Evarconv.cumul env !evdref hj.uj_type c1 with
- | Some sigma -> evdref := sigma;
- apply_rec (n+1) (subst1 hj.uj_val c2) restjl
+ begin match Evarconv.cumul env sigma hj.uj_type c1 with
+ | Some sigma ->
+ apply_rec sigma (n+1) (subst1 hj.uj_val c2) restjl
| None ->
- error_cant_apply_bad_type env !evdref (n, c1, hj.uj_type) funj argjv
+ error_cant_apply_bad_type env sigma (n, c1, hj.uj_type) funj argjv
end
in
- apply_rec 1 funj.uj_type (Array.to_list argjv)
+ apply_rec sigma 1 funj.uj_type (Array.to_list argjv)
-let e_judge_of_apply env evdref funj argjv =
- let rec apply_rec n typ = function
+let judge_of_apply env sigma funj argjv =
+ let rec apply_rec sigma n typ = function
| [] ->
- { uj_val = mkApp (j_val funj, Array.map j_val argjv);
- uj_type = typ }
+ sigma, { uj_val = mkApp (j_val funj, Array.map j_val argjv);
+ uj_type = typ }
| hj::restjl ->
- let (c1,c2) =
- match EConstr.kind !evdref (whd_all env !evdref typ) with
- | Prod (_,c1,c2) -> (c1,c2)
+ let sigma, (c1,c2) =
+ match EConstr.kind sigma (whd_all env sigma typ) with
+ | Prod (_,c1,c2) -> sigma, (c1,c2)
| Evar ev ->
- let (evd',t) = Evardefine.define_evar_as_product !evdref ev in
- evdref := evd';
- let (_,c1,c2) = destProd evd' t in
- (c1,c2)
+ let (sigma,t) = Evardefine.define_evar_as_product sigma ev in
+ let (_,c1,c2) = destProd sigma t in
+ sigma, (c1,c2)
| _ ->
- error_cant_apply_not_functional env !evdref funj argjv
+ error_cant_apply_not_functional env sigma funj argjv
in
- begin match Evarconv.cumul env !evdref hj.uj_type c1 with
- | Some sigma -> evdref := sigma;
- apply_rec (n+1) (subst1 hj.uj_val c2) restjl
+ begin match Evarconv.cumul env sigma hj.uj_type c1 with
+ | Some sigma ->
+ apply_rec sigma (n+1) (subst1 hj.uj_val c2) restjl
| None ->
- error_cant_apply_bad_type env !evdref (n, c1, hj.uj_type) funj argjv
+ error_cant_apply_bad_type env sigma (n, c1, hj.uj_type) funj argjv
end
in
- apply_rec 1 funj.uj_type (Array.to_list argjv)
+ apply_rec sigma 1 funj.uj_type (Array.to_list argjv)
let check_branch_types env sigma (ind,u) cj (lfj,explft) =
if not (Int.equal (Array.length lfj) (Array.length explft)) then
@@ -118,32 +118,34 @@ let max_sort l =
if Sorts.List.mem InType l then InType else
if Sorts.List.mem InSet l then InSet else InProp
-let e_is_correct_arity env evdref c pj ind specif params =
- let arsign = make_arity_signature env !evdref true (make_ind_family (ind,params)) in
+let is_correct_arity env sigma c pj ind specif params =
+ let arsign = make_arity_signature env sigma true (make_ind_family (ind,params)) in
let allowed_sorts = elim_sorts specif in
- let error () = Pretype_errors.error_elim_arity env !evdref ind allowed_sorts c pj None in
- let rec srec env pt ar =
- let pt' = whd_all env !evdref pt in
- match EConstr.kind !evdref pt', ar with
+ let error () = Pretype_errors.error_elim_arity env sigma ind allowed_sorts c pj None in
+ let rec srec env sigma pt ar =
+ let pt' = whd_all env sigma pt in
+ match EConstr.kind sigma pt', ar with
| Prod (na1,a1,t), (LocalAssum (_,a1'))::ar' ->
- begin match Evarconv.cumul env !evdref a1 a1' with
+ begin match Evarconv.cumul env sigma a1 a1' with
| None -> error ()
- | Some sigma -> evdref := sigma;
- srec (push_rel (LocalAssum (na1,a1)) env) t ar'
+ | Some sigma ->
+ srec (push_rel (LocalAssum (na1,a1)) env) sigma t ar'
end
| Sort s, [] ->
- let s = ESorts.kind !evdref s in
+ let s = ESorts.kind sigma s in
if not (Sorts.List.mem (Sorts.family s) allowed_sorts)
then error ()
+ else sigma
| Evar (ev,_), [] ->
- let evd, s = Evd.fresh_sort_in_family env !evdref (max_sort allowed_sorts) in
- evdref := Evd.define ev (mkSort s) evd
+ let sigma, s = Evd.fresh_sort_in_family env sigma (max_sort allowed_sorts) in
+ let sigma = Evd.define ev (mkSort s) sigma in
+ sigma
| _, (LocalDef _ as d)::ar' ->
- srec (push_rel d env) (lift 1 pt') ar'
+ srec (push_rel d env) sigma (lift 1 pt') ar'
| _ ->
error ()
in
- srec env pj.uj_type (List.rev arsign)
+ srec env sigma pj.uj_type (List.rev arsign)
let lambda_applist_assum sigma n c l =
let rec app n subst t l =
@@ -156,29 +158,29 @@ let lambda_applist_assum sigma n c l =
| _ -> anomaly (Pp.str "Not enough lambda/let's.") in
app n [] c l
-let e_type_case_branches env evdref (ind,largs) pj c =
+let type_case_branches env sigma (ind,largs) pj c =
let specif = lookup_mind_specif env (fst ind) in
let nparams = inductive_params specif in
let (params,realargs) = List.chop nparams largs in
let p = pj.uj_val in
let params = List.map EConstr.Unsafe.to_constr params in
- let () = e_is_correct_arity env evdref c pj ind specif params in
- let lc = build_branches_type ind specif params (EConstr.to_constr ~abort_on_undefined_evars:false !evdref p) in
+ let sigma = is_correct_arity env sigma c pj ind specif params in
+ let lc = build_branches_type ind specif params (EConstr.to_constr ~abort_on_undefined_evars:false sigma p) in
let lc = Array.map EConstr.of_constr lc in
let n = (snd specif).Declarations.mind_nrealdecls in
- let ty = whd_betaiota !evdref (lambda_applist_assum !evdref (n+1) p (realargs@[c])) in
- (lc, ty)
+ let ty = whd_betaiota sigma (lambda_applist_assum sigma (n+1) p (realargs@[c])) in
+ sigma, (lc, ty)
-let e_judge_of_case env evdref ci pj cj lfj =
+let judge_of_case env sigma ci pj cj lfj =
let ((ind, u), spec) =
- try find_mrectype env !evdref cj.uj_type
- with Not_found -> error_case_not_inductive env !evdref cj in
- let indspec = ((ind, EInstance.kind !evdref u), spec) in
+ try find_mrectype env sigma cj.uj_type
+ with Not_found -> error_case_not_inductive env sigma cj in
+ let indspec = ((ind, EInstance.kind sigma u), spec) in
let _ = check_case_info env (fst indspec) ci in
- let (bty,rslty) = e_type_case_branches env evdref indspec pj cj.uj_val in
- evdref := check_branch_types env !evdref (fst indspec) cj (lfj,bty);
- { uj_val = mkCase (ci, pj.uj_val, cj.uj_val, Array.map j_val lfj);
- uj_type = rslty }
+ let sigma, (bty,rslty) = type_case_branches env sigma indspec pj cj.uj_val in
+ let sigma = check_branch_types env sigma (fst indspec) cj (lfj,bty) in
+ sigma, { uj_val = mkCase (ci, pj.uj_val, cj.uj_val, Array.map j_val lfj);
+ uj_type = rslty }
let check_type_fixpoint ?loc env sigma lna lar vdefj =
let lt = Array.length vdefj in
@@ -203,19 +205,19 @@ let check_allowed_sort env sigma ind c p =
error_elim_arity env sigma ind sorts c pj
(Some(ksort,s,Type_errors.error_elim_explain ksort s))
-let e_judge_of_cast env evdref cj k tj =
+let judge_of_cast env sigma cj k tj =
let expected_type = tj.utj_val in
- match Evarconv.cumul env !evdref cj.uj_type expected_type with
+ match Evarconv.cumul env sigma cj.uj_type expected_type with
| None ->
- error_actual_type_core env !evdref cj expected_type;
- | Some sigma -> evdref := sigma;
- { uj_val = mkCast (cj.uj_val, k, expected_type);
- uj_type = expected_type }
+ error_actual_type_core env sigma cj expected_type;
+ | Some sigma ->
+ sigma, { uj_val = mkCast (cj.uj_val, k, expected_type);
+ uj_type = expected_type }
-let enrich_env env evdref =
+let enrich_env env sigma =
let penv = Environ.pre_env env in
let penv' = Pre_env.({ penv with env_stratification =
- { penv.env_stratification with env_universes = Evd.universes !evdref } }) in
+ { penv.env_stratification with env_universes = Evd.universes sigma } }) in
Environ.env_of_pre_env penv'
let check_fix env sigma pfix =
@@ -280,182 +282,167 @@ let judge_of_letin env name defj typj j =
(* cstr must be in n.f. w.r.t. evars and execute returns a judgement
where both the term and type are in n.f. *)
-let rec execute env evdref cstr =
- let cstr = whd_evar !evdref cstr in
- match EConstr.kind !evdref cstr with
+let rec execute env sigma cstr =
+ let cstr = whd_evar sigma cstr in
+ match EConstr.kind sigma cstr with
| Meta n ->
- { uj_val = cstr; uj_type = meta_type !evdref n }
+ sigma, { uj_val = cstr; uj_type = meta_type sigma n }
| Evar ev ->
- let ty = EConstr.existential_type !evdref ev in
- let jty = execute env evdref ty in
- let jty = e_assumption_of_judgment env evdref jty in
- { uj_val = cstr; uj_type = jty }
+ let ty = EConstr.existential_type sigma ev in
+ let sigma, jty = execute env sigma ty in
+ let sigma, jty = assumption_of_judgment env sigma jty in
+ sigma, { uj_val = cstr; uj_type = jty }
| Rel n ->
- judge_of_relative env n
+ sigma, judge_of_relative env n
| Var id ->
- judge_of_variable env id
+ sigma, judge_of_variable env id
| Const (c, u) ->
- let u = EInstance.kind !evdref u in
- make_judge cstr (EConstr.of_constr (rename_type_of_constant env (c, u)))
+ let u = EInstance.kind sigma u in
+ sigma, make_judge cstr (EConstr.of_constr (rename_type_of_constant env (c, u)))
| Ind (ind, u) ->
- let u = EInstance.kind !evdref u in
- make_judge cstr (EConstr.of_constr (rename_type_of_inductive env (ind, u)))
+ let u = EInstance.kind sigma u in
+ sigma, make_judge cstr (EConstr.of_constr (rename_type_of_inductive env (ind, u)))
| Construct (cstruct, u) ->
- let u = EInstance.kind !evdref u in
- make_judge cstr (EConstr.of_constr (rename_type_of_constructor env (cstruct, u)))
+ let u = EInstance.kind sigma u in
+ sigma, make_judge cstr (EConstr.of_constr (rename_type_of_constructor env (cstruct, u)))
| Case (ci,p,c,lf) ->
- let cj = execute env evdref c in
- let pj = execute env evdref p in
- let lfj = execute_array env evdref lf in
- e_judge_of_case env evdref ci pj cj lfj
+ let sigma, cj = execute env sigma c in
+ let sigma, pj = execute env sigma p in
+ let sigma, lfj = execute_array env sigma lf in
+ judge_of_case env sigma ci pj cj lfj
| Fix ((vn,i as vni),recdef) ->
- let (_,tys,_ as recdef') = execute_recdef env evdref recdef in
+ let sigma, (_,tys,_ as recdef') = execute_recdef env sigma recdef in
let fix = (vni,recdef') in
- check_fix env !evdref fix;
- make_judge (mkFix fix) tys.(i)
+ check_fix env sigma fix;
+ sigma, make_judge (mkFix fix) tys.(i)
| CoFix (i,recdef) ->
- let (_,tys,_ as recdef') = execute_recdef env evdref recdef in
+ let sigma, (_,tys,_ as recdef') = execute_recdef env sigma recdef in
let cofix = (i,recdef') in
- check_cofix env !evdref cofix;
- make_judge (mkCoFix cofix) tys.(i)
+ check_cofix env sigma cofix;
+ sigma, make_judge (mkCoFix cofix) tys.(i)
| Sort s ->
- begin match ESorts.kind !evdref s with
+ begin match ESorts.kind sigma s with
| Prop c ->
- judge_of_prop_contents c
+ sigma, judge_of_prop_contents c
| Type u ->
- judge_of_type u
+ sigma, judge_of_type u
end
| Proj (p, c) ->
- let cj = execute env evdref c in
- judge_of_projection env !evdref p cj
+ let sigma, cj = execute env sigma c in
+ sigma, judge_of_projection env sigma p cj
| App (f,args) ->
- let jl = execute_array env evdref args in
- (match EConstr.kind !evdref f with
+ let sigma, jl = execute_array env sigma args in
+ (match EConstr.kind sigma f with
| Ind (ind, u) when EInstance.is_empty u && Environ.template_polymorphic_ind ind env ->
- let fj = execute env evdref f in
- e_judge_of_applied_inductive_knowing_parameters env evdref fj (ind, u) jl
+ let sigma, fj = execute env sigma f in
+ judge_of_applied_inductive_knowing_parameters env sigma fj (ind, u) jl
| _ ->
(* No template polymorphism *)
- let fj = execute env evdref f in
- e_judge_of_apply env evdref fj jl)
+ let sigma, fj = execute env sigma f in
+ judge_of_apply env sigma fj jl)
| Lambda (name,c1,c2) ->
- let j = execute env evdref c1 in
- let var = e_type_judgment env evdref j in
+ let sigma, j = execute env sigma c1 in
+ let sigma, var = type_judgment env sigma j in
let env1 = push_rel (LocalAssum (name, var.utj_val)) env in
- let j' = execute env1 evdref c2 in
- judge_of_abstraction env1 name var j'
+ let sigma, j' = execute env1 sigma c2 in
+ sigma, judge_of_abstraction env1 name var j'
| Prod (name,c1,c2) ->
- let j = execute env evdref c1 in
- let varj = e_type_judgment env evdref j in
+ let sigma, j = execute env sigma c1 in
+ let sigma, varj = type_judgment env sigma j in
let env1 = push_rel (LocalAssum (name, varj.utj_val)) env in
- let j' = execute env1 evdref c2 in
- let varj' = e_type_judgment env1 evdref j' in
- judge_of_product env name varj varj'
+ let sigma, j' = execute env1 sigma c2 in
+ let sigma, varj' = type_judgment env1 sigma j' in
+ sigma, judge_of_product env name varj varj'
| LetIn (name,c1,c2,c3) ->
- let j1 = execute env evdref c1 in
- let j2 = execute env evdref c2 in
- let j2 = e_type_judgment env evdref j2 in
- let _ = e_judge_of_cast env evdref j1 DEFAULTcast j2 in
+ let sigma, j1 = execute env sigma c1 in
+ let sigma, j2 = execute env sigma c2 in
+ let sigma, j2 = type_judgment env sigma j2 in
+ let sigma, _ = judge_of_cast env sigma j1 DEFAULTcast j2 in
let env1 = push_rel (LocalDef (name, j1.uj_val, j2.utj_val)) env in
- let j3 = execute env1 evdref c3 in
- judge_of_letin env name j1 j2 j3
+ let sigma, j3 = execute env1 sigma c3 in
+ sigma, judge_of_letin env name j1 j2 j3
| Cast (c,k,t) ->
- let cj = execute env evdref c in
- let tj = execute env evdref t in
- let tj = e_type_judgment env evdref tj in
- e_judge_of_cast env evdref cj k tj
-
-and execute_recdef env evdref (names,lar,vdef) =
- let larj = execute_array env evdref lar in
- let lara = Array.map (e_assumption_of_judgment env evdref) larj in
+ let sigma, cj = execute env sigma c in
+ let sigma, tj = execute env sigma t in
+ let sigma, tj = type_judgment env sigma tj in
+ judge_of_cast env sigma cj k tj
+
+and execute_recdef env sigma (names,lar,vdef) =
+ let sigma, larj = execute_array env sigma lar in
+ let sigma, lara = Array.fold_left_map (assumption_of_judgment env) sigma larj in
let env1 = push_rec_types (names,lara,vdef) env in
- let vdefj = execute_array env1 evdref vdef in
+ let sigma, vdefj = execute_array env1 sigma vdef in
let vdefv = Array.map j_val vdefj in
- evdref := check_type_fixpoint env1 !evdref names lara vdefj;
- (names,lara,vdefv)
+ let sigma = check_type_fixpoint env1 sigma names lara vdefj in
+ sigma, (names,lara,vdefv)
-and execute_array env evdref = Array.map (execute env evdref)
+and execute_array env = Array.fold_left_map (execute env)
-let e_check env evdref c t =
- let env = enrich_env env evdref in
- let j = execute env evdref c in
- match Evarconv.cumul env !evdref j.uj_type t with
+let check env sigma c t =
+ let env = enrich_env env sigma in
+ let sigma, j = execute env sigma c in
+ match Evarconv.cumul env sigma j.uj_type t with
| None ->
- error_actual_type_core env !evdref j t
- | Some sigma -> evdref := sigma
+ error_actual_type_core env sigma j t
+ | Some sigma -> sigma
-let check env sigma c t =
- let evdref = ref sigma in
- e_check env evdref c t;
- !evdref
+let e_check env evdref c t =
+ evdref := check env !evdref c t
(* Type of a constr *)
-let unsafe_type_of env evd c =
- let evdref = ref evd in
- let env = enrich_env env evdref in
- let j = execute env evdref c in
- j.uj_type
+let unsafe_type_of env sigma c =
+ let env = enrich_env env sigma in
+ let sigma, j = execute env sigma c in
+ j.uj_type
(* Sort of a type *)
-let e_sort_of env evdref c =
- let env = enrich_env env evdref in
- let j = execute env evdref c in
- let a = e_type_judgment env evdref j in
- a.utj_type
-
let sort_of env sigma c =
- let evdref = ref sigma in
- let a = e_sort_of env evdref c in
- !evdref, a
+ let env = enrich_env env sigma in
+ let sigma, j = execute env sigma c in
+ let sigma, a = type_judgment env sigma j in
+ sigma, a.utj_type
+
+let e_sort_of env evdref c =
+ Evarutil.evd_comb1 (sort_of env) evdref c
(* Try to solve the existential variables by typing *)
-let type_of ?(refresh=false) env evd c =
- let evdref = ref evd in
- let env = enrich_env env evdref in
- let j = execute env evdref c in
+let type_of ?(refresh=false) env sigma c =
+ let env = enrich_env env sigma in
+ let sigma, j = execute env sigma c in
(* side-effect on evdref *)
if refresh then
- Evarsolve.refresh_universes ~onlyalg:true (Some false) env !evdref j.uj_type
- else !evdref, j.uj_type
+ Evarsolve.refresh_universes ~onlyalg:true (Some false) env sigma j.uj_type
+ else sigma, j.uj_type
-let e_type_of ?(refresh=false) env evdref c =
- let env = enrich_env env evdref in
- let j = execute env evdref c in
- (* side-effect on evdref *)
- if refresh then
- let evd, c = Evarsolve.refresh_universes ~onlyalg:true (Some false) env !evdref j.uj_type in
- let () = evdref := evd in
- c
- else j.uj_type
+let e_type_of ?refresh env evdref c =
+ Evarutil.evd_comb1 (type_of ?refresh env) evdref c
-let e_solve_evars env evdref c =
- let env = enrich_env env evdref in
- let c = (execute env evdref c).uj_val in
+let solve_evars env sigma c =
+ let env = enrich_env env sigma in
+ let sigma, j = execute env sigma c in
(* side-effect on evdref *)
- nf_evar !evdref c
+ sigma, nf_evar sigma j.uj_val
-let solve_evars env sigma c =
- let evdref = ref sigma in
- let c = e_solve_evars env evdref c in
- !evdref, c
+let e_solve_evars env evdref c =
+ Evarutil.evd_comb1 (solve_evars env) evdref c
let _ = Evarconv.set_solve_evars (fun env sigma c -> solve_evars env sigma c)