aboutsummaryrefslogtreecommitdiffhomepage
path: root/pretyping/typing.ml
diff options
context:
space:
mode:
authorGravatar Pierre-Marie Pédrot <pierre-marie.pedrot@inria.fr>2016-11-11 00:29:02 +0100
committerGravatar Pierre-Marie Pédrot <pierre-marie.pedrot@inria.fr>2017-02-14 17:27:27 +0100
commitca993b9e7765ac58f70740818758457c9367b0da (patch)
treea813ef9a194638afbb09cefe1d1e2bce113a9d84 /pretyping/typing.ml
parentc2855a3387be134d1220f301574b743572a94239 (diff)
Making judgment type generic over the type of inner constrs.
This allows to factorize code and prevents the unnecessary use of back and forth conversions between the various types of terms. Note that functions from typing may now raise errors as PretypeError rather than TypeError, because they call the proper wrapper. I think that they were wrongly calling the kernel because of an overlook of open modules.
Diffstat (limited to 'pretyping/typing.ml')
-rw-r--r--pretyping/typing.ml191
1 files changed, 131 insertions, 60 deletions
diff --git a/pretyping/typing.ml b/pretyping/typing.ml
index c948f9b9a..17adea5f2 100644
--- a/pretyping/typing.ml
+++ b/pretyping/typing.ml
@@ -6,20 +6,31 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
+module CVars = Vars
+
open Pp
open CErrors
open Util
open Term
+open EConstr
open Vars
open Environ
open Reductionops
-open Type_errors
open Inductive
open Inductiveops
open Typeops
open Arguments_renaming
+open Pretype_errors
open Context.Rel.Declaration
+let local_assum (na, t) =
+ let inj = EConstr.Unsafe.to_constr in
+ LocalAssum (na, inj t)
+
+let local_def (na, b, t) =
+ let inj = EConstr.Unsafe.to_constr in
+ LocalDef (na, inj b, inj t)
+
let push_rec_types pfix env =
let (i, c, t) = pfix in
let inj c = EConstr.Unsafe.to_constr c in
@@ -31,57 +42,57 @@ let meta_type evd mv =
with Not_found -> anomaly (str "unknown meta ?" ++ str (Nameops.string_of_meta mv)) in
meta_instance evd ty
-let constant_type_knowing_parameters env cst jl =
- let paramstyp = Array.map (fun j -> lazy j.uj_type) jl in
+let constant_type_knowing_parameters env sigma cst jl =
+ let paramstyp = Array.map (fun j -> lazy (EConstr.to_constr sigma j.uj_type)) jl in
EConstr.of_constr (type_of_constant_knowing_parameters_in env cst paramstyp)
-let inductive_type_knowing_parameters env (ind,u) jl =
+let inductive_type_knowing_parameters env sigma (ind,u) jl =
let mspec = lookup_mind_specif env ind in
- let paramstyp = Array.map (fun j -> lazy j.uj_type) jl in
+ let paramstyp = Array.map (fun j -> lazy (EConstr.to_constr sigma j.uj_type)) jl in
EConstr.of_constr (Inductive.type_of_inductive_knowing_parameters env (mspec,u) paramstyp)
let e_type_judgment env evdref j =
- match EConstr.kind !evdref (EConstr.of_constr (whd_all env !evdref (EConstr.of_constr j.uj_type))) with
+ match EConstr.kind !evdref (EConstr.of_constr (whd_all env !evdref j.uj_type)) with
| Sort s -> {utj_val = j.uj_val; utj_type = s }
| Evar ev ->
let (evd,s) = Evardefine.define_evar_as_sort env !evdref ev in
evdref := evd; { utj_val = j.uj_val; utj_type = s }
- | _ -> error_not_type env j
+ | _ -> error_not_a_type env !evdref j
let e_assumption_of_judgment env evdref j =
- try EConstr.of_constr (e_type_judgment env evdref j).utj_val
- with TypeError _ ->
- error_assumption env j
+ try (e_type_judgment env evdref j).utj_val
+ with Type_errors.TypeError _ | PretypeError _ ->
+ error_assumption env !evdref j
let e_judge_of_apply env evdref funj argjv =
let open EConstr in
let rec apply_rec n typ = function
| [] ->
- { uj_val = Constr.mkApp (j_val funj, Array.map j_val argjv);
- uj_type = EConstr.Unsafe.to_constr typ }
+ { uj_val = mkApp (j_val funj, Array.map j_val argjv);
+ uj_type = typ }
| hj::restjl ->
match EConstr.kind !evdref (EConstr.of_constr (whd_all env !evdref typ)) with
| Prod (_,c1,c2) ->
- if Evarconv.e_cumul env evdref (EConstr.of_constr hj.uj_type) c1 then
- apply_rec (n+1) (Vars.subst1 (EConstr.of_constr hj.uj_val) c2) restjl
+ if Evarconv.e_cumul env evdref hj.uj_type c1 then
+ apply_rec (n+1) (subst1 hj.uj_val c2) restjl
else
- error_cant_apply_bad_type env (n, EConstr.Unsafe.to_constr c1, hj.uj_type) funj argjv
+ error_cant_apply_bad_type env !evdref (n, c1, hj.uj_type) funj argjv
| Evar ev ->
let (evd',t) = Evardefine.define_evar_as_product !evdref ev in
evdref := evd';
let (_,_,c2) = destProd evd' t in
- apply_rec (n+1) (Vars.subst1 (EConstr.of_constr hj.uj_val) c2) restjl
+ apply_rec (n+1) (subst1 hj.uj_val c2) restjl
| _ ->
- error_cant_apply_not_functional env funj argjv
+ error_cant_apply_not_functional env !evdref funj argjv
in
- apply_rec 1 (EConstr.of_constr funj.uj_type) (Array.to_list argjv)
+ apply_rec 1 funj.uj_type (Array.to_list argjv)
let e_check_branch_types env evdref (ind,u) cj (lfj,explft) =
if not (Int.equal (Array.length lfj) (Array.length explft)) then
- error_number_branches env cj (Array.length explft);
+ error_number_branches env !evdref cj (Array.length explft);
for i = 0 to Array.length explft - 1 do
- if not (Evarconv.e_cumul env evdref (EConstr.of_constr lfj.(i).uj_type) (EConstr.of_constr explft.(i))) then
- error_ill_formed_branch env cj.uj_val ((ind,i+1),u) lfj.(i).uj_type explft.(i)
+ if not (Evarconv.e_cumul env evdref lfj.(i).uj_type explft.(i)) then
+ error_ill_formed_branch env !evdref cj.uj_val ((ind,i+1),u) lfj.(i).uj_type explft.(i)
done
let max_sort l =
@@ -92,13 +103,13 @@ let e_is_correct_arity env evdref c pj ind specif params =
let open EConstr in
let arsign = make_arity_signature env true (make_ind_family (ind,params)) in
let allowed_sorts = elim_sorts specif in
- let error () = error_elim_arity env ind allowed_sorts c pj None in
+ let error () = Pretype_errors.error_elim_arity env !evdref ind allowed_sorts c pj None in
let rec srec env pt ar =
let pt' = EConstr.of_constr (whd_all env !evdref pt) in
match EConstr.kind !evdref pt', ar with
| Prod (na1,a1,t), (LocalAssum (_,a1'))::ar' ->
if not (Evarconv.e_cumul env evdref a1 (EConstr.of_constr a1')) then error ();
- srec (push_rel (LocalAssum (na1,EConstr.Unsafe.to_constr a1)) env) t ar'
+ srec (push_rel (local_assum (na1,a1)) env) t ar'
| Sort s, [] ->
if not (Sorts.List.mem (Sorts.family s) allowed_sorts)
then error ()
@@ -106,27 +117,43 @@ let e_is_correct_arity env evdref c pj ind specif params =
let evd, s = Evd.fresh_sort_in_family env !evdref (max_sort allowed_sorts) in
evdref := Evd.define ev (Constr.mkSort s) evd
| _, (LocalDef _ as d)::ar' ->
- srec (push_rel d env) (Vars.lift 1 pt') ar'
+ srec (push_rel d env) (lift 1 pt') ar'
| _ ->
error ()
in
- srec env (EConstr.of_constr pj.uj_type) (List.rev arsign)
+ srec env pj.uj_type (List.rev arsign)
+
+let lambda_applist_assum sigma n c l =
+ let open EConstr in
+ let rec app n subst t l =
+ if Int.equal n 0 then
+ if l == [] then substl subst t
+ else anomaly (Pp.str "Not enough arguments")
+ else match EConstr.kind sigma t, l with
+ | Lambda(_,_,c), arg::l -> app (n-1) (arg::subst) c l
+ | LetIn(_,b,_,c), _ -> app (n-1) (substl subst b::subst) c l
+ | _ -> anomaly (Pp.str "Not enough lambda/let's") in
+ app n [] c l
let e_type_case_branches env evdref (ind,largs) pj c =
let specif = lookup_mind_specif env (fst ind) in
let nparams = inductive_params specif in
let (params,realargs) = List.chop nparams largs in
let p = pj.uj_val in
+ let realargs = List.map EConstr.of_constr realargs in
let () = e_is_correct_arity env evdref c pj ind specif params in
- let lc = build_branches_type ind specif params p in
+ let lc = build_branches_type ind specif params (EConstr.to_constr !evdref p) in
+ let lc = Array.map EConstr.of_constr lc in
let n = (snd specif).Declarations.mind_nrealdecls in
- let ty = whd_betaiota !evdref (EConstr.of_constr (lambda_applist_assum (n+1) p (realargs@[c]))) in
+ let ty = whd_betaiota !evdref (lambda_applist_assum !evdref (n+1) p (realargs@[c])) in
+ let ty = EConstr.of_constr ty in
(lc, ty)
let e_judge_of_case env evdref ci pj cj lfj =
+ let open EConstr in
let indspec =
- try find_mrectype env !evdref (EConstr.of_constr cj.uj_type)
- with Not_found -> error_case_not_inductive env cj in
+ try find_mrectype env !evdref cj.uj_type
+ with Not_found -> error_case_not_inductive env !evdref cj in
let _ = check_case_info env (fst indspec) ci in
let (bty,rslty) = e_type_case_branches env evdref indspec pj cj.uj_val in
e_check_branch_types env evdref (fst indspec) cj (lfj,bty);
@@ -138,27 +165,28 @@ let check_type_fixpoint loc env evdref lna lar vdefj =
let lt = Array.length vdefj in
if Int.equal (Array.length lar) lt then
for i = 0 to lt-1 do
- if not (Evarconv.e_cumul env evdref (EConstr.of_constr (vdefj.(i)).uj_type)
- (Vars.lift lt lar.(i))) then
- Pretype_errors.error_ill_typed_rec_body ~loc env !evdref
- i lna vdefj (Array.map EConstr.Unsafe.to_constr lar)
+ if not (Evarconv.e_cumul env evdref (vdefj.(i)).uj_type
+ (lift lt lar.(i))) then
+ error_ill_typed_rec_body ~loc env !evdref
+ i lna vdefj lar
done
(* FIXME: might depend on the level of actual parameters!*)
let check_allowed_sort env sigma ind c p =
let pj = Retyping.get_judgment_of env sigma p in
- let ksort = family_of_sort (sort_of_arity env sigma (EConstr.of_constr pj.uj_type)) in
+ let ksort = family_of_sort (sort_of_arity env sigma pj.uj_type) in
let specif = Global.lookup_inductive (fst ind) in
let sorts = elim_sorts specif in
if not (List.exists ((==) ksort) sorts) then
let s = inductive_sort_family (snd specif) in
- error_elim_arity env ind sorts (EConstr.Unsafe.to_constr c) pj
- (Some(ksort,s,error_elim_explain ksort s))
+ error_elim_arity env sigma ind sorts c pj
+ (Some(ksort,s,Type_errors.error_elim_explain ksort s))
let e_judge_of_cast env evdref cj k tj =
+ let open EConstr in
let expected_type = tj.utj_val in
- if not (Evarconv.e_cumul env evdref (EConstr.of_constr cj.uj_type) (EConstr.of_constr expected_type)) then
- error_actual_type env cj expected_type;
+ if not (Evarconv.e_cumul env evdref cj.uj_type expected_type) then
+ error_actual_type_core env !evdref cj expected_type;
{ uj_val = mkCast (cj.uj_val, k, expected_type);
uj_type = expected_type }
@@ -178,11 +206,56 @@ let check_cofix env sigma pcofix =
let (idx, (ids, cs, ts)) = pcofix in
check_cofix env (idx, (ids, Array.map inj cs, Array.map inj ts))
-let make_judge c ty =
- make_judge (EConstr.Unsafe.to_constr c) (EConstr.Unsafe.to_constr ty)
-
(* The typing machine with universes and existential variables. *)
+let judge_of_prop =
+ { uj_val = EConstr.mkProp;
+ uj_type = EConstr.mkSort type1_sort }
+
+let judge_of_set =
+ { uj_val = EConstr.mkSet;
+ uj_type = EConstr.mkSort type1_sort }
+
+let judge_of_prop_contents = function
+ | Null -> judge_of_prop
+ | Pos -> judge_of_set
+
+let judge_of_type u =
+ let uu = Univ.Universe.super u in
+ { uj_val = EConstr.mkType u;
+ uj_type = EConstr.mkType uu }
+
+let judge_of_relative env v =
+ Termops.on_judgment EConstr.of_constr (judge_of_relative env v)
+
+let judge_of_variable env id =
+ Termops.on_judgment EConstr.of_constr (judge_of_variable env id)
+
+let judge_of_projection env sigma p cj =
+ let pb = lookup_projection p env in
+ let (ind,u), args =
+ try find_mrectype env sigma cj.uj_type
+ with Not_found -> error_case_not_inductive env sigma cj
+ in
+ let args = List.map EConstr.of_constr args in
+ let ty = EConstr.of_constr (CVars.subst_instance_constr u pb.Declarations.proj_type) in
+ let ty = substl (cj.uj_val :: List.rev args) ty in
+ {uj_val = EConstr.mkProj (p,cj.uj_val);
+ uj_type = ty}
+
+let judge_of_abstraction env name var j =
+ { uj_val = mkLambda (name, var.utj_val, j.uj_val);
+ uj_type = mkProd (name, var.utj_val, j.uj_type) }
+
+let judge_of_product env name t1 t2 =
+ let s = sort_of_product env t1.utj_type t2.utj_type in
+ { uj_val = mkProd (name, t1.utj_val, t2.utj_val);
+ uj_type = mkSort s }
+
+let judge_of_letin env name defj typj j =
+ { uj_val = mkLetIn (name, defj.uj_val, typj.utj_val, j.uj_val) ;
+ uj_type = subst1 defj.uj_val j.uj_type }
+
(* cstr must be in n.f. w.r.t. evars and execute returns a judgement
where both the term and type are in n.f. *)
let rec execute env evdref cstr =
@@ -190,13 +263,13 @@ let rec execute env evdref cstr =
let cstr = EConstr.of_constr (whd_evar !evdref (EConstr.Unsafe.to_constr cstr)) in
match EConstr.kind !evdref cstr with
| Meta n ->
- { uj_val = EConstr.Unsafe.to_constr cstr; uj_type = meta_type !evdref n }
+ { uj_val = cstr; uj_type = EConstr.of_constr (meta_type !evdref n) }
| Evar ev ->
let ty = EConstr.existential_type !evdref ev in
let jty = execute env evdref ty in
let jty = e_assumption_of_judgment env evdref jty in
- { uj_val = EConstr.Unsafe.to_constr cstr; uj_type = EConstr.Unsafe.to_constr jty }
+ { uj_val = cstr; uj_type = jty }
| Rel n ->
judge_of_relative env n
@@ -239,7 +312,7 @@ let rec execute env evdref cstr =
| Proj (p, c) ->
let cj = execute env evdref c in
- judge_of_projection env p (Evarutil.j_nf_evar !evdref cj)
+ judge_of_projection env !evdref p cj
| App (f,args) ->
let jl = execute_array env evdref args in
@@ -248,13 +321,11 @@ let rec execute env evdref cstr =
| Ind ind when Environ.template_polymorphic_pind ind env ->
(* Sort-polymorphism of inductive types *)
make_judge f
- (inductive_type_knowing_parameters env ind
- (Evarutil.jv_nf_evar !evdref jl))
+ (inductive_type_knowing_parameters env !evdref ind jl)
| Const cst when Environ.template_polymorphic_pconstant cst env ->
(* Sort-polymorphism of inductive types *)
make_judge f
- (constant_type_knowing_parameters env cst
- (Evarutil.jv_nf_evar !evdref jl))
+ (constant_type_knowing_parameters env !evdref cst jl)
| _ ->
execute env evdref f
in
@@ -263,14 +334,14 @@ let rec execute env evdref cstr =
| Lambda (name,c1,c2) ->
let j = execute env evdref c1 in
let var = e_type_judgment env evdref j in
- let env1 = push_rel (LocalAssum (name, var.utj_val)) env in
+ let env1 = push_rel (local_assum (name, var.utj_val)) env in
let j' = execute env1 evdref c2 in
judge_of_abstraction env1 name var j'
| Prod (name,c1,c2) ->
let j = execute env evdref c1 in
let varj = e_type_judgment env evdref j in
- let env1 = push_rel (LocalAssum (name, varj.utj_val)) env in
+ let env1 = push_rel (local_assum (name, varj.utj_val)) env in
let j' = execute env1 evdref c2 in
let varj' = e_type_judgment env1 evdref j' in
judge_of_product env name varj varj'
@@ -280,7 +351,7 @@ let rec execute env evdref cstr =
let j2 = execute env evdref c2 in
let j2 = e_type_judgment env evdref j2 in
let _ = e_judge_of_cast env evdref j1 DEFAULTcast j2 in
- let env1 = push_rel (LocalDef (name, j1.uj_val, j2.utj_val)) env in
+ let env1 = push_rel (local_def (name, j1.uj_val, j2.utj_val)) env in
let j3 = execute env1 evdref c3 in
judge_of_letin env name j1 j2 j3
@@ -295,7 +366,7 @@ and execute_recdef env evdref (names,lar,vdef) =
let lara = Array.map (e_assumption_of_judgment env evdref) larj in
let env1 = push_rec_types (names,lara,vdef) env in
let vdefj = execute_array env1 evdref vdef in
- let vdefv = Array.map (j_val %> EConstr.of_constr) vdefj in
+ let vdefv = Array.map j_val vdefj in
let _ = check_type_fixpoint Loc.ghost env1 evdref names lara vdefj in
(names,lara,vdefv)
@@ -304,8 +375,8 @@ and execute_array env evdref = Array.map (execute env evdref)
let e_check env evdref c t =
let env = enrich_env env evdref in
let j = execute env evdref c in
- if not (Evarconv.e_cumul env evdref (EConstr.of_constr j.uj_type) t) then
- error_actual_type env j (EConstr.to_constr !evdref t)
+ if not (Evarconv.e_cumul env evdref j.uj_type t) then
+ error_actual_type_core env !evdref j t
(* Type of a constr *)
@@ -313,7 +384,7 @@ let unsafe_type_of env evd c =
let evdref = ref evd in
let env = enrich_env env evdref in
let j = execute env evdref c in
- j.uj_type
+ EConstr.Unsafe.to_constr j.uj_type
(* Sort of a type *)
@@ -331,23 +402,23 @@ let type_of ?(refresh=false) env evd c =
let j = execute env evdref c in
(* side-effect on evdref *)
if refresh then
- Evarsolve.refresh_universes ~onlyalg:true (Some false) env !evdref (EConstr.of_constr j.uj_type)
- else !evdref, j.uj_type
+ Evarsolve.refresh_universes ~onlyalg:true (Some false) env !evdref j.uj_type
+ else !evdref, EConstr.Unsafe.to_constr j.uj_type
let e_type_of ?(refresh=false) env evdref c =
let env = enrich_env env evdref in
let j = execute env evdref c in
(* side-effect on evdref *)
if refresh then
- let evd, c = Evarsolve.refresh_universes ~onlyalg:true (Some false) env !evdref (EConstr.of_constr j.uj_type) in
+ let evd, c = Evarsolve.refresh_universes ~onlyalg:true (Some false) env !evdref j.uj_type in
let () = evdref := evd in
c
- else j.uj_type
+ else EConstr.Unsafe.to_constr j.uj_type
let e_solve_evars env evdref c =
let env = enrich_env env evdref in
let c = (execute env evdref c).uj_val in
(* side-effect on evdref *)
- nf_evar !evdref c
+ nf_evar !evdref (EConstr.Unsafe.to_constr c)
let _ = Evarconv.set_solve_evars (fun env evdref c -> EConstr.of_constr (e_solve_evars env evdref c))