aboutsummaryrefslogtreecommitdiffhomepage
path: root/pretyping/inductiveops.ml
diff options
context:
space:
mode:
authorGravatar Matej Kosik <m4tej.kosik@gmail.com>2016-01-29 10:13:12 +0100
committerGravatar Matej Kosik <m4tej.kosik@gmail.com>2016-02-09 15:58:17 +0100
commit34ef02fac1110673ae74c41c185c228ff7876de2 (patch)
treea688eb9e2c23fc5353391f0c8b4ba1d7ba327844 /pretyping/inductiveops.ml
parente9675e068f9e0e92bab05c030fb4722b146123b8 (diff)
CLEANUP: Context.{Rel,Named}.Declaration.t
Originally, rel-context was represented as: Context.rel_context = Names.Name.t * Constr.t option * Constr.t Now it is represented as: Context.Rel.t = LocalAssum of Names.Name.t * Constr.t | LocalDef of Names.Name.t * Constr.t * Constr.t Originally, named-context was represented as: Context.named_context = Names.Id.t * Constr.t option * Constr.t Now it is represented as: Context.Named.t = LocalAssum of Names.Id.t * Constr.t | LocalDef of Names.Id.t * Constr.t * Constr.t Motivation: (1) In "tactics/hipattern.ml4" file we define "test_strict_disjunction" function which looked like this: let test_strict_disjunction n lc = Array.for_all_i (fun i c -> match (prod_assum (snd (decompose_prod_n_assum n c))) with | [_,None,c] -> isRel c && Int.equal (destRel c) (n - i) | _ -> false) 0 lc Suppose that you do not know about rel-context and named-context. (that is the case of people who just started to read the source code) Merlin would tell you that the type of the value you are destructing by "match" is: 'a * 'b option * Constr.t (* worst-case scenario *) or Named.Name.t * Constr.t option * Constr.t (* best-case scenario (?) *) To me, this is akin to wearing an opaque veil. It is hard to figure out the meaning of the values you are looking at. In particular, it is hard to discover the connection between the value we are destructing above and the datatypes and functions defined in the "kernel/context.ml" file. In this case, the connection is there, but it is not visible (between the function above and the "Context" module). ------------------------------------------------------------------------ Now consider, what happens when the reader see the same function presented in the following form: let test_strict_disjunction n lc = Array.for_all_i (fun i c -> match (prod_assum (snd (decompose_prod_n_assum n c))) with | [LocalAssum (_,c)] -> isRel c && Int.equal (destRel c) (n - i) | _ -> false) 0 lc If the reader haven't seen "LocalAssum" before, (s)he can use Merlin to jump to the corresponding definition and learn more. In this case, the connection is there, and it is directly visible (between the function above and the "Context" module). (2) Also, if we already have the concepts such as: - local declaration - local assumption - local definition and we describe these notions meticulously in the Reference Manual, then it is a real pity not to reinforce the connection of the actual code with the abstract description we published.
Diffstat (limited to 'pretyping/inductiveops.ml')
-rw-r--r--pretyping/inductiveops.ml11
1 files changed, 6 insertions, 5 deletions
diff --git a/pretyping/inductiveops.ml b/pretyping/inductiveops.ml
index bb38c72f2..80f1988a9 100644
--- a/pretyping/inductiveops.ml
+++ b/pretyping/inductiveops.ml
@@ -17,6 +17,7 @@ open Declarations
open Declareops
open Environ
open Reductionops
+open Context.Rel.Declaration
(* The following three functions are similar to the ones defined in
Inductive, but they expect an env *)
@@ -389,7 +390,7 @@ let make_arity_signature env dep indf =
if dep then
(* We need names everywhere *)
Namegen.name_context env
- ((Anonymous,None,build_dependent_inductive env indf)::arsign)
+ ((LocalAssum (Anonymous,build_dependent_inductive env indf))::arsign)
(* Costly: would be better to name once for all at definition time *)
else
(* No need to enforce names *)
@@ -459,7 +460,7 @@ let is_predicate_explicitly_dep env pred arsign =
let rec srec env pval arsign =
let pv' = whd_betadeltaiota env Evd.empty pval in
match kind_of_term pv', arsign with
- | Lambda (na,t,b), (_,None,_)::arsign ->
+ | Lambda (na,t,b), (LocalAssum _)::arsign ->
srec (push_rel_assum (na,t) env) b arsign
| Lambda (na,_,t), _ ->
@@ -539,11 +540,11 @@ let arity_of_case_predicate env (ind,params) dep k =
that appear in the type of the inductive by the sort of the
conclusion, and the other ones by fresh universes. *)
let rec instantiate_universes env evdref scl is = function
- | (_,Some _,_ as d)::sign, exp ->
+ | (LocalDef _ as d)::sign, exp ->
d :: instantiate_universes env evdref scl is (sign, exp)
| d::sign, None::exp ->
d :: instantiate_universes env evdref scl is (sign, exp)
- | (na,None,ty)::sign, Some l::exp ->
+ | (LocalAssum (na,ty))::sign, Some l::exp ->
let ctx,_ = Reduction.dest_arity env ty in
let u = Univ.Universe.make l in
let s =
@@ -557,7 +558,7 @@ let rec instantiate_universes env evdref scl is = function
let evm = Evd.set_leq_sort env evm s (Sorts.sort_of_univ u) in
evdref := evm; s
in
- (na,None,mkArity(ctx,s)):: instantiate_universes env evdref scl is (sign, exp)
+ (LocalAssum (na,mkArity(ctx,s))) :: instantiate_universes env evdref scl is (sign, exp)
| sign, [] -> sign (* Uniform parameters are exhausted *)
| [], _ -> assert false