diff options
author | pottier <pottier@85f007b7-540e-0410-9357-904b9bb8a0f7> | 2010-07-27 14:40:39 +0000 |
---|---|---|
committer | pottier <pottier@85f007b7-540e-0410-9357-904b9bb8a0f7> | 2010-07-27 14:40:39 +0000 |
commit | f611879a40204025e6f14ab46836a244607fc416 (patch) | |
tree | 9503a6d7562c102ede85d578fe2643ebfc1aa82a /plugins | |
parent | 6687f07e8e5e4d61034f9e7d61284be571bc528d (diff) |
nstaz pour les anneaux integres et les setoides, R Z et Q
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@13336 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'plugins')
-rw-r--r-- | plugins/nsatz/NsatzR.v | 1 | ||||
-rw-r--r-- | plugins/nsatz/Nsatz_domain.v | 357 |
2 files changed, 230 insertions, 128 deletions
diff --git a/plugins/nsatz/NsatzR.v b/plugins/nsatz/NsatzR.v index d8d1a91b4..2009dc16d 100644 --- a/plugins/nsatz/NsatzR.v +++ b/plugins/nsatz/NsatzR.v @@ -396,7 +396,6 @@ Ltac nsatzR := nsatzRpv 6%N 1%Z (@nil R) (@nil R). Ltac nsatzRradical radicalmax := nsatzRpv radicalmax 1%Z (@nil R) (@nil R). Ltac nsatzRparameters lparam := nsatzRpv 6%N 1%Z lparam (@nil R). -Tactic Notation "nsatz" := nsatzR. Tactic Notation "nsatz" "with" "lexico" := nsatzRpv 6%N 2%Z (@nil R) (@nil R). Tactic Notation "nsatz" "with" "lexico" "sugar":= diff --git a/plugins/nsatz/Nsatz_domain.v b/plugins/nsatz/Nsatz_domain.v index 933a4b51c..ee430becf 100644 --- a/plugins/nsatz/Nsatz_domain.v +++ b/plugins/nsatz/Nsatz_domain.v @@ -22,10 +22,10 @@ Require Import BinPos. Require Import BinList. Require Import Znumtheory. Require Import Ring_polynom Ring_tac InitialRing. +Require Export Morphisms Setoid Bool. Declare ML Module "nsatz_plugin". - Class Zero (A : Type) := {zero : A}. Notation "0" := zero. Class One (A : Type) := {one : A}. @@ -43,22 +43,34 @@ Class Ring (R:Type) := { ring0: R; ring1: R; ring_plus: R->R->R; ring_mult: R->R->R; ring_sub: R->R->R; ring_opp: R->R; + ring_eq : R -> R -> Prop; ring_ring: ring_theory ring0 ring1 ring_plus ring_mult ring_sub - ring_opp (@eq R)}. + ring_opp ring_eq; + ring_setoid: Equivalence ring_eq; + ring_plus_comp: Proper (ring_eq==>ring_eq==>ring_eq) ring_plus; + ring_mult_comp: Proper (ring_eq==>ring_eq==>ring_eq) ring_mult; + ring_sub_comp: Proper (ring_eq==>ring_eq==>ring_eq) ring_sub; + ring_opp_comp: Proper (ring_eq==>ring_eq) ring_opp +}. Class Domain (R : Type) := { domain_ring:> Ring R; domain_axiom_product: - forall x y, ring_mult x y = ring0 -> x = ring0 \/ y = ring0; - domain_axiom_one_zero: ring1 <> ring0}. - -Ltac ring2 := simpl; ring. + forall x y, ring_eq (ring_mult x y) ring0 -> (ring_eq x ring0) \/ (ring_eq y ring0); + domain_axiom_one_zero: not (ring_eq ring1 ring0)}. Section domain. Variable R: Type. Variable Rd: Domain R. + +Existing Instance ring_setoid. +Existing Instance ring_plus_comp. +Existing Instance ring_mult_comp. +Existing Instance ring_sub_comp. +Existing Instance ring_opp_comp. + Add Ring Rr: (@ring_ring R (@domain_ring R Rd)). Instance zero_ring : Zero R := {zero := ring0}. @@ -68,24 +80,27 @@ Instance multiplication_ring : Multiplication R := {multiplication x y := ring_m Instance subtraction_ring : Subtraction R := {subtraction x y := ring_sub x y}. Instance opposite_ring : Opposite R := {opposite x := ring_opp x}. -Lemma psos_r1b: forall x y:R, x - y = 0 -> x = y. -intros x y H; replace x with ((x - y) + y); - [rewrite H | idtac]; ring2. -Qed. +Infix "==" := ring_eq (at level 70, no associativity). -Lemma psos_r1: forall x y, x = y -> x - y = 0. -intros x y H; rewrite H; ring2. +Lemma psos_r1b: forall x y:R, x - y == 0 -> x == y. +intros x y H; setoid_replace x with ((x - y) + y); simpl; + [setoid_rewrite H | idtac]; simpl; ring. Qed. +Lemma psos_r1: forall x y, x == y -> x - y == 0. +intros x y H; simpl; setoid_rewrite H; simpl; ring. +Qed. -Lemma nsatzR_diff: forall x y:R, x<>y -> x - y<>0. +Lemma nsatzR_diff: forall x y:R, not (x == y) -> not (x - y == 0). intros. intro; apply H. -replace x with ((x - y) + y) by ring2. -rewrite H0; ring2. +simpl; setoid_replace x with ((x - y) + y). simpl. +setoid_rewrite H0. +simpl; ring. +simpl. simpl; ring. Qed. -(* code de Benjamin *) +(* adpatation du code de Benjamin aux setoides *) Require Import ZArith. Definition PolZ := Pol Z. @@ -136,35 +151,36 @@ Definition PEevalR : list R -> PEZ -> R := Lemma P0Z_correct : forall l, PhiR l P0Z = 0. Proof. trivial. Qed. -Lemma Rext: ring_eq_ext ring_plus ring_mult ring_opp eq. -apply mk_reqe. intros. rewrite H; rewrite H0; trivial. - intros. rewrite H; rewrite H0; trivial. -intros. rewrite H; trivial. Qed. +Lemma Rext: ring_eq_ext ring_plus ring_mult ring_opp ring_eq. +apply mk_reqe. intros. setoid_rewrite H; rewrite H0; ring. + intros. setoid_rewrite H; setoid_rewrite H0; ring. +intros. setoid_rewrite H; ring. Qed. -Lemma Rset : Setoid_Theory R eq. -apply Eqsth. +Lemma Rset : Setoid_Theory R ring_eq. +apply ring_setoid. Qed. Lemma PolZadd_correct : forall P' P l, - PhiR l (PolZadd P P') = ((PhiR l P) + (PhiR l P')). + PhiR l (PolZadd P P') == ((PhiR l P) + (PhiR l P')). Proof. +simpl. refine (Padd_ok Rset Rext (Rth_ARth Rset Rext (@ring_ring _ (@domain_ring _ Rd))) (gen_phiZ_morph Rset Rext (@ring_ring _ (@domain_ring _ Rd)))). Qed. Lemma PolZmul_correct : forall P P' l, - PhiR l (PolZmul P P') = ((PhiR l P) * (PhiR l P')). + PhiR l (PolZmul P P') == ((PhiR l P) * (PhiR l P')). Proof. refine (Pmul_ok Rset Rext (Rth_ARth Rset Rext (@ring_ring _ (@domain_ring _ Rd))) (gen_phiZ_morph Rset Rext (@ring_ring _ (@domain_ring _ Rd)))). Qed. Lemma R_power_theory - : power_theory 1 ring_mult eq Nnat.nat_of_N pow. -apply mkpow_th. unfold pow. intros. rewrite Nnat.N_of_nat_of_N. trivial. Qed. + : power_theory 1 ring_mult ring_eq Nnat.nat_of_N pow. +apply mkpow_th. unfold pow. intros. rewrite Nnat.N_of_nat_of_N. ring. Qed. Lemma norm_correct : - forall (l : list R) (pe : PEZ), PEevalR l pe = PhiR l (norm pe). + forall (l : list R) (pe : PEZ), PEevalR l pe == PhiR l (norm pe). Proof. intros;apply (norm_aux_spec Rset Rext (Rth_ARth Rset Rext (@ring_ring _ (@domain_ring _ Rd))) (gen_phiZ_morph Rset Rext (@ring_ring _ (@domain_ring _ Rd))) R_power_theory) @@ -174,7 +190,7 @@ Qed. Lemma PolZeq_correct : forall P P' l, PolZeq P P' = true -> - PhiR l P = PhiR l P'. + PhiR l P == PhiR l P'. Proof. intros;apply (Peq_ok Rset Rext (gen_phiZ_morph Rset Rext (@ring_ring _ (@domain_ring _ Rd))));trivial. @@ -183,17 +199,19 @@ Qed. Fixpoint Cond0 (A:Type) (Interp:A->R) (l:list A) : Prop := match l with | List.nil => True - | a::l => Interp a = 0 /\ Cond0 A Interp l + | a::l => Interp a == 0 /\ Cond0 A Interp l end. Lemma mult_l_correct : forall l la lp, Cond0 PolZ (PhiR l) lp -> - PhiR l (mult_l la lp) = 0. + PhiR l (mult_l la lp) == 0. Proof. - induction la;simpl;intros;trivial. - destruct lp;trivial. + induction la;simpl;intros. ring. + destruct lp;trivial. simpl. ring. simpl in H;destruct H. - rewrite PolZadd_correct, PolZmul_correct, H, IHla;[ring2 | trivial]. + setoid_rewrite PolZadd_correct. + simpl. setoid_rewrite PolZmul_correct. simpl. setoid_rewrite H. + setoid_rewrite IHla. unfold zero. simpl. ring. trivial. Qed. Lemma compute_list_correct : forall l lla lp, @@ -209,7 +227,7 @@ Lemma check_correct : forall l lpe qe certif, check lpe qe certif = true -> Cond0 PEZ (PEevalR l) lpe -> - PEevalR l qe = 0. + PEevalR l qe == 0. Proof. unfold check;intros l lpe qe (lla, lq) H2 H1. apply PolZeq_correct with (l:=l) in H2. @@ -221,53 +239,53 @@ Proof. rewrite <- norm_correct;auto. Qed. -(* fin du code de Benjamin *) +(* fin *) -Lemma pow_not_zero: forall p n, pow p n = 0 -> p = 0. -induction n. unfold pow; simpl. intros. absurd (1 = 0). +Lemma pow_not_zero: forall p n, pow p n == 0 -> p == 0. +induction n. unfold pow; simpl. intros. absurd (1 == 0). simpl. apply domain_axiom_one_zero. - trivial. replace (pow p (S n)) with (p * (pow p n)). intros. + trivial. setoid_replace (pow p (S n)) with (p * (pow p n)). intros. case (@domain_axiom_product _ _ _ _ H). trivial. trivial. unfold pow; simpl. -clear IHn. induction n; try ring2. simpl. - rewrite pow_pos_Psucc. trivial. exact Rset. - intros. rewrite H; rewrite H0; trivial. - intros. ring2. intros. ring2. Qed. +clear IHn. induction n; simpl; try ring. + rewrite pow_pos_Psucc. ring. exact Rset. + intros. setoid_rewrite H; setoid_rewrite H0; ring. + intros. simpl; ring. intros. simpl; ring. Qed. -Lemma Rdomain_pow: forall c p r, ~c= 0 -> c * (pow p r)= 0 -> p = ring0. -intros. case (@domain_axiom_product _ _ _ _ H0). intros; absurd (c = 0); auto. +Lemma Rdomain_pow: forall c p r, ~c == ring0 -> ring_mult c (pow p r) == ring0 -> p == ring0. +intros. case (@domain_axiom_product _ _ _ _ H0). intros; absurd (c == ring0); auto. intros. apply pow_not_zero with r. trivial. Qed. -Definition R2:= 1 + 1. +Definition R2:= ring_plus ring1 ring1. Fixpoint IPR p {struct p}: R := match p with - xH => 1 - | xO xH => 1 + 1 - | xO p1 => R2 + (IPR p1) - | xI xH => 1 + (1 + 1) - | xI p1 => 1 + (R2 * (IPR p1)) + xH => ring1 + | xO xH => ring_plus ring1 ring1 + | xO p1 => ring_mult R2 (IPR p1) + | xI xH => ring_plus ring1 (ring_plus ring1 ring1) + | xI p1 => ring_plus ring1 (ring_mult R2 (IPR p1)) end. Definition IZR1 z := - match z with Z0 => 0 + match z with Z0 => ring0 | Zpos p => IPR p - | Zneg p => -(IPR p) + | Zneg p => ring_opp(IPR p) end. Fixpoint interpret3 t fv {struct t}: R := match t with | (PEadd t1 t2) => let v1 := interpret3 t1 fv in - let v2 := interpret3 t2 fv in (v1 + v2) + let v2 := interpret3 t2 fv in (ring_plus v1 v2) | (PEmul t1 t2) => let v1 := interpret3 t1 fv in - let v2 := interpret3 t2 fv in (v1 * v2) + let v2 := interpret3 t2 fv in (ring_mult v1 v2) | (PEsub t1 t2) => let v1 := interpret3 t1 fv in - let v2 := interpret3 t2 fv in (v1 - v2) + let v2 := interpret3 t2 fv in (ring_sub v1 v2) | (PEopp t1) => - let v1 := interpret3 t1 fv in (- v1) + let v1 := interpret3 t1 fv in (ring_opp v1) | (PEpow t1 t2) => let v1 := interpret3 t1 fv in pow v1 (Nnat.nat_of_N t2) | (PEc t1) => (IZR1 t1) @@ -279,14 +297,11 @@ End domain. Ltac equalities_to_goal := lazymatch goal with - | H: (@eq _ ?x 0) |- _ => try revert H - | H: (@eq _ 0 ?x) |- _ => - try generalize (sym_equal H); clear H - | H: (@eq _ ?x ?y) |- _ => + | H: (@ring_eq _ _ ?x ?y) |- _ => try generalize (@psos_r1 _ _ _ _ H); clear H end. -Ltac nsatz_domain_begin tacsimpl:= +Ltac nsatz_domain_begin tacsimpl := intros; try apply (@psos_r1b _ _); repeat equalities_to_goal; @@ -295,7 +310,7 @@ Ltac nsatz_domain_begin tacsimpl:= Ltac generalise_eq_hyps:= repeat (match goal with - |h : (?p = ?q)|- _ => revert h + |h : (@ring_eq _ _ ?p ?q)|- _ => revert h end). Ltac lpol_goal t := @@ -328,9 +343,13 @@ Ltac rev l := | (cons ?x ?l) => let l' := rev l in append1 x l' end. -Ltac nsatz_call_n info nparam p rr lp kont := + + +Ltac nsatz_call_n info nparam p rr lp kont := + (*idtac "Trying power: " rr;*) let ll := constr:(PEc info :: PEc nparam :: PEpow p rr :: lp) in nsatz_compute ll; + (*idtac "done";*) match goal with | |- (?c::PEpow _ ?r::?lq0)::?lci0 = _ -> _ => intros _; @@ -344,7 +363,6 @@ Ltac nsatz_call radicalmax info nparam p lp kont := lazymatch n with | 0%N => fail | _ => -(* idtac "Trying power: " n;*) (let r := eval compute in (Nminus radicalmax (Npred n)) in nsatz_call_n info nparam p r lp kont) || let n' := eval compute in (Npred n) in try_n n' @@ -392,28 +410,28 @@ Unset Implicit Arguments. Ltac lterm_goal g := match g with - ?b1 = ?b2 => constr:(b1::b2::nil) - | ?b1 = ?b2 -> ?g => let l := lterm_goal g in constr:(b1::b2::l) + ring_eq ?b1 ?b2 => constr:(b1::b2::nil) + | ring_eq ?b1 ?b2 -> ?g => let l := lterm_goal g in constr:(b1::b2::l) end. -Ltac reify_goal l le lb:= +Ltac reify_goal l le lb Rd:= match le with nil => idtac | ?e::?le1 => match lb with - ?b::?lb1 => + ?b::?lb1 => (* idtac "b="; idtac b;*) let x := fresh "B" in set (x:= b) at 1; - change x with (@interpret3 _ _ e l); - clear x; - reify_goal l le1 lb1 + change x with (@interpret3 _ Rd e l); + clear x; + reify_goal l le1 lb1 Rd end end. Ltac get_lpol g := match g with - (interpret3 _ _ ?p _) = _ => constr:(p::nil) - | (interpret3 _ _ ?p _) = _ -> ?g => + ring_eq (interpret3 _ _ ?p _) _ => constr:(p::nil) + | ring_eq (interpret3 _ _ ?p _) _ -> ?g => let l := get_lpol g in constr:(p::l) end. @@ -431,11 +449,11 @@ Ltac nsatz_domain_generic radicalmax info lparam lvar tacsimpl Rd := let nparam := eval compute in (Z_of_nat (List.length lparam)) in let fv := parametres_en_tete fv lparam in (*idtac "variables:"; idtac fv; - idtac "nparam:"; idtac nparam;*) + idtac "nparam:"; idtac nparam; *) match eval red in (li_reifyl (l:=fv) (lb:=lb)) with | (?fv, ?le) => - idtac "variables:";idtac fv; - reify_goal fv le lb; + (*idtac "variables:";idtac fv; idtac le; idtac lb;*) + reify_goal fv le lb Rd; match goal with |- ?g => let lp := get_lpol g in @@ -448,47 +466,94 @@ Ltac nsatz_domain_generic radicalmax info lparam lvar tacsimpl Rd := | ?p2::?lp2 => kont p2 lp2 | _ => idtac "polynomial not in the ideal" end in - tacsimpl; + tacsimpl; SplitPolyList ltac:(fun p lp => set (p21:=p) ; set (lp21:=lp); (*idtac "lp:"; idtac lp; *) nsatz_call radicalmax info nparam p lp ltac:(fun c r lq lci => - set (q := PEmul c (PEpow p21 r)); + set (q := PEmul c (PEpow p21 r)); let Hg := fresh "Hg" in - assert (Hg:check lp21 q (lci,lq) = true); + assert (Hg:check lp21 q (lci,lq) = true); [ (vm_compute;reflexivity) || idtac "invalid nsatz certificate" | let Hg2 := fresh "Hg" in - assert (Hg2: interpret3 _ _ q fv = ring0); + assert (Hg2: ring_eq (interpret3 _ Rd q fv) ring0); [ tacsimpl; apply (@check_correct _ Rd fv lp21 q (lci,lq) Hg); tacsimpl; repeat (split;[assumption|idtac]); exact I | simpl in Hg2; tacsimpl; - apply Rdomain_pow with (interpret3 _ _ c fv) (Nnat.nat_of_N r); tacsimpl; - [ apply domain_axiom_one_zero || idtac "could not prove discrimination result" - | exact Hg2] - ] + apply Rdomain_pow with (interpret3 _ Rd c fv) (Nnat.nat_of_N r); auto with domain; + tacsimpl; apply domain_axiom_one_zero + || (simpl) || idtac "could not prove discrimination result" + ] ] ) ) end end end end . -Ltac nsatz_domainpv radicalmax info lparam lvar tacsimpl rd:= - nsatz_domain_begin tacsimpl; +Ltac nsatz_domainpv pretac radicalmax info lparam lvar tacsimpl rd := + pretac; + nsatz_domain_begin tacsimpl; auto with domain; nsatz_domain_generic radicalmax info lparam lvar tacsimpl rd. Ltac nsatz_domain:= intros; match goal with - |- (@eq ?r _ _ ) => - let a := constr:(@Ireify_zero _ _ (@nil r)) in - match a with - (@Ireify_zero _ ?rd _) => - nsatz_domainpv 6%N 1%Z (@nil r) (@nil r) ltac:(simpl) rd - end + |- (@ring_eq _ (@domain_ring ?r ?rd) _ _ ) => + nsatz_domainpv ltac:idtac 6%N 1%Z (@nil r) (@nil r) ltac:(simpl) rd end. +(* Dans R *) +Require Import Reals. +Require Import RealField. + +Instance Rri : Ring R := { + ring0 := 0%R; + ring1 := 1%R; + ring_plus := Rplus; + ring_mult := Rmult; + ring_sub := Rminus; + ring_opp := Ropp; + ring_eq := @eq R; + ring_ring := RTheory}. + +Lemma Raxiom_one_zero: 1%R <> 0%R. +discrR. +Qed. + +Instance Rdi : Domain R := { + domain_ring := Rri; + domain_axiom_product := Rmult_integral; + domain_axiom_one_zero := Raxiom_one_zero}. + +Hint Resolve ring_setoid ring_plus_comp ring_mult_comp ring_sub_comp ring_opp_comp: domain. + +Ltac replaceR:= +replace 0%R with (@ring0 _ (@domain_ring _ Rdi)) in *;[idtac|reflexivity]; +replace 1%R with (@ring1 _ (@domain_ring _ Rdi)) in *;[idtac|reflexivity]; +replace Rplus with (@ring_plus _ (@domain_ring _ Rdi)) in *;[idtac|reflexivity]; +replace Rmult with (@ring_mult _ (@domain_ring _ Rdi)) in *;[idtac|reflexivity]; +replace Rminus with (@ring_sub _ (@domain_ring _ Rdi)) in *;[idtac|reflexivity]; +replace Ropp with (@ring_opp _ (@domain_ring _ Rdi)) in *;[idtac|reflexivity]; +replace (@eq R) with (@ring_eq _ (@domain_ring _ Rdi)) in *;[idtac|reflexivity]. + +Ltac simplR:= + simpl; replaceR. + +Ltac pretacR:= + replaceR; + replace Rri with (@domain_ring _ Rdi) in *; [idtac | reflexivity]. + +Ltac nsatz_domainR:= + nsatz_domainpv ltac:pretacR 6%N 1%Z (@Datatypes.nil R) (@Datatypes.nil R) + ltac:simplR Rdi; + discrR. + + +Goal forall x y:R, x = y -> (x*x-x+1)%R = ((y*y-y)+1+0)%R. +nsatz_domainR. +Qed. (* Dans Z *) @@ -498,7 +563,8 @@ Instance Zri : Ring Z := { ring_plus := Zplus; ring_mult := Zmult; ring_sub := Zminus; - ring_opp := Zopp; + ring_opp := Zopp; + ring_eq := (@eq Z); ring_ring := Zth}. Lemma Zaxiom_one_zero: 1%Z <> 0%Z. @@ -510,50 +576,87 @@ Instance Zdi : Domain Z := { domain_axiom_product := Zmult_integral; domain_axiom_one_zero := Zaxiom_one_zero}. +Ltac replaceZ := +replace 0%Z with (@ring0 _ (@domain_ring _ Zdi)) in *;[idtac|reflexivity]; +replace 1%Z with (@ring1 _ (@domain_ring _ Zdi)) in *;[idtac|reflexivity]; +replace Zplus with (@ring_plus _ (@domain_ring _ Zdi)) in *;[idtac|reflexivity]; +replace Zmult with (@ring_mult _ (@domain_ring _ Zdi)) in *;[idtac|reflexivity]; +replace Zminus with (@ring_sub _ (@domain_ring _ Zdi)) in *;[idtac|reflexivity]; +replace Zopp with (@ring_opp _ (@domain_ring _ Zdi)) in *;[idtac|reflexivity]; +replace (@eq Z) with (@ring_eq _ (@domain_ring _ Zdi)) in *;[idtac|reflexivity]. Ltac simplZ:= - simpl; -replace 0%Z with (@ring0 _ (@domain_ring _ Zdi));[idtac|reflexivity]; -replace 1%Z with (@ring1 _ (@domain_ring _ Zdi));[idtac|reflexivity]; -replace Zplus with (@ring_plus _ (@domain_ring _ Zdi));[idtac|reflexivity]; -replace Zmult with (@ring_mult _ (@domain_ring _ Zdi));[idtac|reflexivity]; -replace Zminus with (@ring_sub _ (@domain_ring _ Zdi));[idtac|reflexivity]; -replace Zopp with (@ring_opp _ (@domain_ring _ Zdi));[idtac|reflexivity]. + simpl; replaceZ. -Ltac nsatz_domainZ:= nsatz_domainpv 6%N 1%Z (@nil Z) (@nil Z) ltac:simplZ Zdi. +Ltac pretacZ := +replaceZ; +replace Zri with (@domain_ring _ Zdi) in *; [idtac | reflexivity]. +Ltac nsatz_domainZ:= +nsatz_domainpv ltac:pretacZ 6%N 1%Z (@Datatypes.nil Z) (@Datatypes.nil Z) ltac:simplZ Zdi. -(* Dans R *) -Require Import Reals. -Require Import RealField. -Instance Rri : Ring R := { - ring0 := 0%R; - ring1 := 1%R; - ring_plus := Rplus; - ring_mult := Rmult; - ring_sub := Rminus; - ring_opp := Ropp; - ring_ring := RTheory}. +(* Dans Q *) +Require Import QArith. -Lemma Raxiom_one_zero: 1%R <> 0%R. -discrR. +Instance Qri : Ring Q := { + ring0 := 0%Q; + ring1 := 1%Q; + ring_plus := Qplus; + ring_mult := Qmult; + ring_sub := Qminus; + ring_opp := Qopp; + ring_eq := Qeq; + ring_ring := Qsrt}. + +Lemma Qaxiom_one_zero: not (Qeq 1%Q 0%Q). +discriminate. Qed. -Instance Rdi : Domain R := { - domain_ring := Rri; - domain_axiom_product := Rmult_integral; - domain_axiom_one_zero := Raxiom_one_zero}. +Instance Qdi : Domain Q := { + domain_ring := Qri; + domain_axiom_product := Qmult_integral; + domain_axiom_one_zero := Qaxiom_one_zero}. +Ltac replaceQ := +replace 0%Q with (@ring0 _ (@domain_ring _ Qdi)) in *;[idtac|reflexivity]; +replace 1%Q with (@ring1 _ (@domain_ring _ Qdi)) in *;[idtac|reflexivity]; +replace Qplus with (@ring_plus _ (@domain_ring _ Qdi)) in *;[idtac|reflexivity]; +replace Qmult with (@ring_mult _ (@domain_ring _ Qdi)) in *;[idtac|reflexivity]; +replace Qminus with (@ring_sub _ (@domain_ring _ Qdi)) in *;[idtac|reflexivity]; +replace Qopp with (@ring_opp _ (@domain_ring _ Qdi)) in *;[idtac|reflexivity]; +replace Qeq with (@ring_eq _ (@domain_ring _ Qdi)) in *;[idtac|reflexivity]. -Ltac simplR:= - simpl; -replace 0%R with (@ring0 _ (@domain_ring _ Rdi));[idtac|reflexivity]; -replace 1%R with (@ring1 _ (@domain_ring _ Rdi));[idtac|reflexivity]; -replace Rplus with (@ring_plus _ (@domain_ring _ Rdi));[idtac|reflexivity]; -replace Rmult with (@ring_mult _ (@domain_ring _ Rdi));[idtac|reflexivity]; -replace Rminus with (@ring_sub _ (@domain_ring _ Rdi));[idtac|reflexivity]; -replace Ropp with (@ring_opp _ (@domain_ring _ Rdi));[idtac|reflexivity]. +Ltac simplQ:= + simpl; replaceQ. -Ltac nsatz_domainR:= nsatz_domainpv 6%N 1%Z (@List.nil R) (@List.nil R) ltac:simplR Rdi. +Ltac pretacQ := +replaceQ; +replace Qri with (@domain_ring _ Qdi) in *; [idtac | reflexivity]. +Ltac nsatz_domainQ:= +nsatz_domainpv ltac:pretacQ 6%N 1%Z (@Datatypes.nil Q) (@Datatypes.nil Q) ltac:simplQ Qdi. + +(* tactique générique *) + +Ltac nsatz := + intros; + match goal with + | |- (@eq R _ _) => nsatz_domainR + | |- (@eq Z _ _) => nsatz_domainZ + | |- (@Qeq _ _) => nsatz_domainQ + | |- _ => nsatz_domain + end. +(* +Goal forall x y:Q, Qeq x y -> Qeq (x*x-x+1)%Q ((y*y-y)+1+0)%Q. +nsatz. +Qed. + +Goal forall x y:Z, x = y -> (x*x-x+1)%Z = ((y*y-y)+1+0)%Z. +nsatz. +Qed. + +Goal forall x y:R, x = y -> (x*x-x+1)%R = ((y*y-y)+1+0)%R. +nsatz. +Qed. +*) |