aboutsummaryrefslogtreecommitdiffhomepage
path: root/plugins
diff options
context:
space:
mode:
authorGravatar Enrico Tassi <Enrico.Tassi@inria.fr>2018-07-18 17:21:01 +0200
committerGravatar Enrico Tassi <Enrico.Tassi@inria.fr>2018-07-18 17:21:01 +0200
commit8271b23dd0a26bba79c7d6dadd92d2329945675c (patch)
tree6d6b4faeda0fc272c1faaa7912406097ef055caa /plugins
parente5e3725fab9daa810a4c8a383886f1c5dc980e85 (diff)
parent8c43e795c772090b336c0f170a6e5dcab196125d (diff)
Merge PR #7897: Remove fourier plugin
Diffstat (limited to 'plugins')
-rw-r--r--plugins/fourier/Fourier.v20
-rw-r--r--plugins/fourier/Fourier_util.v222
-rw-r--r--plugins/fourier/fourier.ml204
-rw-r--r--plugins/fourier/fourierR.ml644
-rw-r--r--plugins/fourier/fourier_plugin.mlpack3
-rw-r--r--plugins/fourier/g_fourier.mlg22
-rw-r--r--plugins/micromega/Fourier.v5
-rw-r--r--plugins/micromega/Fourier_util.v31
8 files changed, 36 insertions, 1115 deletions
diff --git a/plugins/fourier/Fourier.v b/plugins/fourier/Fourier.v
deleted file mode 100644
index 07f32be8e..000000000
--- a/plugins/fourier/Fourier.v
+++ /dev/null
@@ -1,20 +0,0 @@
-(************************************************************************)
-(* * The Coq Proof Assistant / The Coq Development Team *)
-(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
-(* <O___,, * (see CREDITS file for the list of authors) *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(* * (see LICENSE file for the text of the license) *)
-(************************************************************************)
-
-(* "Fourier's method to solve linear inequations/equations systems.".*)
-
-Require Export Field.
-Require Export DiscrR.
-Require Export Fourier_util.
-Declare ML Module "fourier_plugin".
-
-Ltac fourier := abstract (compute [IZR IPR IPR_2] in *; fourierz; field; discrR).
-
-Ltac fourier_eq := apply Rge_antisym; fourier.
diff --git a/plugins/fourier/Fourier_util.v b/plugins/fourier/Fourier_util.v
deleted file mode 100644
index d3159698b..000000000
--- a/plugins/fourier/Fourier_util.v
+++ /dev/null
@@ -1,222 +0,0 @@
-(************************************************************************)
-(* * The Coq Proof Assistant / The Coq Development Team *)
-(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
-(* <O___,, * (see CREDITS file for the list of authors) *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(* * (see LICENSE file for the text of the license) *)
-(************************************************************************)
-
-Require Export Rbase.
-Comments "Lemmas used by the tactic Fourier".
-
-Open Scope R_scope.
-
-Lemma Rfourier_lt : forall x1 y1 a:R, x1 < y1 -> 0 < a -> a * x1 < a * y1.
-intros; apply Rmult_lt_compat_l; assumption.
-Qed.
-
-Lemma Rfourier_le : forall x1 y1 a:R, x1 <= y1 -> 0 < a -> a * x1 <= a * y1.
-red.
-intros.
-case H; auto with real.
-Qed.
-
-Lemma Rfourier_lt_lt :
- forall x1 y1 x2 y2 a:R,
- x1 < y1 -> x2 < y2 -> 0 < a -> x1 + a * x2 < y1 + a * y2.
-intros x1 y1 x2 y2 a H H0 H1; try assumption.
-apply Rplus_lt_compat.
-try exact H.
-apply Rfourier_lt.
-try exact H0.
-try exact H1.
-Qed.
-
-Lemma Rfourier_lt_le :
- forall x1 y1 x2 y2 a:R,
- x1 < y1 -> x2 <= y2 -> 0 < a -> x1 + a * x2 < y1 + a * y2.
-intros x1 y1 x2 y2 a H H0 H1; try assumption.
-case H0; intros.
-apply Rplus_lt_compat.
-try exact H.
-apply Rfourier_lt; auto with real.
-rewrite H2.
-rewrite (Rplus_comm y1 (a * y2)).
-rewrite (Rplus_comm x1 (a * y2)).
-apply Rplus_lt_compat_l.
-try exact H.
-Qed.
-
-Lemma Rfourier_le_lt :
- forall x1 y1 x2 y2 a:R,
- x1 <= y1 -> x2 < y2 -> 0 < a -> x1 + a * x2 < y1 + a * y2.
-intros x1 y1 x2 y2 a H H0 H1; try assumption.
-case H; intros.
-apply Rfourier_lt_le; auto with real.
-rewrite H2.
-apply Rplus_lt_compat_l.
-apply Rfourier_lt; auto with real.
-Qed.
-
-Lemma Rfourier_le_le :
- forall x1 y1 x2 y2 a:R,
- x1 <= y1 -> x2 <= y2 -> 0 < a -> x1 + a * x2 <= y1 + a * y2.
-intros x1 y1 x2 y2 a H H0 H1; try assumption.
-case H0; intros.
-red.
-left; try assumption.
-apply Rfourier_le_lt; auto with real.
-rewrite H2.
-case H; intros.
-red.
-left; try assumption.
-rewrite (Rplus_comm x1 (a * y2)).
-rewrite (Rplus_comm y1 (a * y2)).
-apply Rplus_lt_compat_l.
-try exact H3.
-rewrite H3.
-red.
-right; try assumption.
-auto with real.
-Qed.
-
-Lemma Rlt_zero_pos_plus1 : forall x:R, 0 < x -> 0 < 1 + x.
-intros x H; try assumption.
-rewrite Rplus_comm.
-apply Rle_lt_0_plus_1.
-red; auto with real.
-Qed.
-
-Lemma Rlt_mult_inv_pos : forall x y:R, 0 < x -> 0 < y -> 0 < x * / y.
-intros x y H H0; try assumption.
-replace 0 with (x * 0).
-apply Rmult_lt_compat_l; auto with real.
-ring.
-Qed.
-
-Lemma Rlt_zero_1 : 0 < 1.
-exact Rlt_0_1.
-Qed.
-
-Lemma Rle_zero_pos_plus1 : forall x:R, 0 <= x -> 0 <= 1 + x.
-intros x H; try assumption.
-case H; intros.
-red.
-left; try assumption.
-apply Rlt_zero_pos_plus1; auto with real.
-rewrite <- H0.
-replace (1 + 0) with 1.
-red; left.
-exact Rlt_zero_1.
-ring.
-Qed.
-
-Lemma Rle_mult_inv_pos : forall x y:R, 0 <= x -> 0 < y -> 0 <= x * / y.
-intros x y H H0; try assumption.
-case H; intros.
-red; left.
-apply Rlt_mult_inv_pos; auto with real.
-rewrite <- H1.
-red; right; ring.
-Qed.
-
-Lemma Rle_zero_1 : 0 <= 1.
-red; left.
-exact Rlt_zero_1.
-Qed.
-
-Lemma Rle_not_lt : forall n d:R, 0 <= n * / d -> ~ 0 < - n * / d.
-intros n d H; red; intros H0; try exact H0.
-generalize (Rgt_not_le 0 (n * / d)).
-intros H1; elim H1; try assumption.
-replace (n * / d) with (- - (n * / d)).
-replace 0 with (- -0).
-replace (- (n * / d)) with (- n * / d).
-replace (-0) with 0.
-red.
-apply Ropp_gt_lt_contravar.
-red.
-exact H0.
-ring.
-ring.
-ring.
-ring.
-Qed.
-
-Lemma Rnot_lt0 : forall x:R, ~ 0 < 0 * x.
-intros x; try assumption.
-replace (0 * x) with 0.
-apply Rlt_irrefl.
-ring.
-Qed.
-
-Lemma Rlt_not_le_frac_opp : forall n d:R, 0 < n * / d -> ~ 0 <= - n * / d.
-intros n d H; try assumption.
-apply Rgt_not_le.
-replace 0 with (-0).
-replace (- n * / d) with (- (n * / d)).
-apply Ropp_lt_gt_contravar.
-try exact H.
-ring.
-ring.
-Qed.
-
-Lemma Rnot_lt_lt : forall x y:R, ~ 0 < y - x -> ~ x < y.
-unfold not; intros.
-apply H.
-apply Rplus_lt_reg_l with x.
-replace (x + 0) with x.
-replace (x + (y - x)) with y.
-try exact H0.
-ring.
-ring.
-Qed.
-
-Lemma Rnot_le_le : forall x y:R, ~ 0 <= y - x -> ~ x <= y.
-unfold not; intros.
-apply H.
-case H0; intros.
-left.
-apply Rplus_lt_reg_l with x.
-replace (x + 0) with x.
-replace (x + (y - x)) with y.
-try exact H1.
-ring.
-ring.
-right.
-rewrite H1; ring.
-Qed.
-
-Lemma Rfourier_gt_to_lt : forall x y:R, y > x -> x < y.
-unfold Rgt; intros; assumption.
-Qed.
-
-Lemma Rfourier_ge_to_le : forall x y:R, y >= x -> x <= y.
-intros x y; exact (Rge_le y x).
-Qed.
-
-Lemma Rfourier_eqLR_to_le : forall x y:R, x = y -> x <= y.
-exact Req_le.
-Qed.
-
-Lemma Rfourier_eqRL_to_le : forall x y:R, y = x -> x <= y.
-exact Req_le_sym.
-Qed.
-
-Lemma Rfourier_not_ge_lt : forall x y:R, (x >= y -> False) -> x < y.
-exact Rnot_ge_lt.
-Qed.
-
-Lemma Rfourier_not_gt_le : forall x y:R, (x > y -> False) -> x <= y.
-exact Rnot_gt_le.
-Qed.
-
-Lemma Rfourier_not_le_gt : forall x y:R, (x <= y -> False) -> x > y.
-exact Rnot_le_lt.
-Qed.
-
-Lemma Rfourier_not_lt_ge : forall x y:R, (x < y -> False) -> x >= y.
-exact Rnot_lt_ge.
-Qed.
diff --git a/plugins/fourier/fourier.ml b/plugins/fourier/fourier.ml
deleted file mode 100644
index bee2b3b58..000000000
--- a/plugins/fourier/fourier.ml
+++ /dev/null
@@ -1,204 +0,0 @@
-(************************************************************************)
-(* * The Coq Proof Assistant / The Coq Development Team *)
-(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
-(* <O___,, * (see CREDITS file for the list of authors) *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(* * (see LICENSE file for the text of the license) *)
-(************************************************************************)
-
-(* Méthode d'élimination de Fourier *)
-(* Référence:
-Auteur(s) : Fourier, Jean-Baptiste-Joseph
-
-Titre(s) : Oeuvres de Fourier [Document électronique]. Tome second. Mémoires publiés dans divers recueils / publ. par les soins de M. Gaston Darboux,...
-
-Publication : Numérisation BnF de l'édition de Paris : Gauthier-Villars, 1890
-
-Pages: 326-327
-
-http://gallica.bnf.fr/
-*)
-
-(* Un peu de calcul sur les rationnels...
-Les opérations rendent des rationnels normalisés,
-i.e. le numérateur et le dénominateur sont premiers entre eux.
-*)
-type rational = {num:int;
- den:int}
-;;
-let print_rational x =
- print_int x.num;
- print_string "/";
- print_int x.den
-;;
-
-let rec pgcd x y = if y = 0 then x else pgcd y (x mod y);;
-
-
-let r0 = {num=0;den=1};;
-let r1 = {num=1;den=1};;
-
-let rnorm x = let x = (if x.den<0 then {num=(-x.num);den=(-x.den)} else x) in
- if x.num=0 then r0
- else (let d=pgcd x.num x.den in
- let d= (if d<0 then -d else d) in
- {num=(x.num)/d;den=(x.den)/d});;
-
-let rop x = rnorm {num=(-x.num);den=x.den};;
-
-let rplus x y = rnorm {num=x.num*y.den + y.num*x.den;den=x.den*y.den};;
-
-let rminus x y = rnorm {num=x.num*y.den - y.num*x.den;den=x.den*y.den};;
-
-let rmult x y = rnorm {num=x.num*y.num;den=x.den*y.den};;
-
-let rinv x = rnorm {num=x.den;den=x.num};;
-
-let rdiv x y = rnorm {num=x.num*y.den;den=x.den*y.num};;
-
-let rinf x y = x.num*y.den < y.num*x.den;;
-let rinfeq x y = x.num*y.den <= y.num*x.den;;
-
-(* {coef;hist;strict}, où coef=[c1; ...; cn; d], représente l'inéquation
-c1x1+...+cnxn < d si strict=true, <= sinon,
-hist donnant les coefficients (positifs) d'une combinaison linéaire qui permet d'obtenir l'inéquation à partir de celles du départ.
-*)
-
-type ineq = {coef:rational list;
- hist:rational list;
- strict:bool};;
-
-let pop x l = l:=x::(!l);;
-
-(* sépare la liste d'inéquations s selon que leur premier coefficient est
-négatif, nul ou positif. *)
-let partitionne s =
- let lpos=ref [] in
- let lneg=ref [] in
- let lnul=ref [] in
- List.iter (fun ie -> match ie.coef with
- [] -> raise (Failure "empty ineq")
- |(c::r) -> if rinf c r0
- then pop ie lneg
- else if rinf r0 c then pop ie lpos
- else pop ie lnul)
- s;
- [!lneg;!lnul;!lpos]
-;;
-(* initialise les histoires d'une liste d'inéquations données par leurs listes de coefficients et leurs strictitudes (!):
-(add_hist [(equation 1, s1);...;(équation n, sn)])
-=
-[{équation 1, [1;0;...;0], s1};
- {équation 2, [0;1;...;0], s2};
- ...
- {équation n, [0;0;...;1], sn}]
-*)
-let add_hist le =
- let n = List.length le in
- let i = ref 0 in
- List.map (fun (ie,s) ->
- let h = ref [] in
- for _k = 1 to (n - (!i) - 1) do pop r0 h; done;
- pop r1 h;
- for _k = 1 to !i do pop r0 h; done;
- i:=!i+1;
- {coef=ie;hist=(!h);strict=s})
- le
-;;
-(* additionne deux inéquations *)
-let ie_add ie1 ie2 = {coef=List.map2 rplus ie1.coef ie2.coef;
- hist=List.map2 rplus ie1.hist ie2.hist;
- strict=ie1.strict || ie2.strict}
-;;
-(* multiplication d'une inéquation par un rationnel (positif) *)
-let ie_emult a ie = {coef=List.map (fun x -> rmult a x) ie.coef;
- hist=List.map (fun x -> rmult a x) ie.hist;
- strict= ie.strict}
-;;
-(* on enlève le premier coefficient *)
-let ie_tl ie = {coef=List.tl ie.coef;hist=ie.hist;strict=ie.strict}
-;;
-(* le premier coefficient: "tête" de l'inéquation *)
-let hd_coef ie = List.hd ie.coef
-;;
-
-(* calcule toutes les combinaisons entre inéquations de tête négative et inéquations de tête positive qui annulent le premier coefficient.
-*)
-let deduce_add lneg lpos =
- let res=ref [] in
- List.iter (fun i1 ->
- List.iter (fun i2 ->
- let a = rop (hd_coef i1) in
- let b = hd_coef i2 in
- pop (ie_tl (ie_add (ie_emult b i1)
- (ie_emult a i2))) res)
- lpos)
- lneg;
- !res
-;;
-(* élimination de la première variable à partir d'une liste d'inéquations:
-opération qu'on itère dans l'algorithme de Fourier.
-*)
-let deduce1 s =
- match (partitionne s) with
- [lneg;lnul;lpos] ->
- let lnew = deduce_add lneg lpos in
- (List.map ie_tl lnul)@lnew
- |_->assert false
-;;
-(* algorithme de Fourier: on élimine successivement toutes les variables.
-*)
-let deduce lie =
- let n = List.length (fst (List.hd lie)) in
- let lie=ref (add_hist lie) in
- for _i = 1 to n - 1 do
- lie:= deduce1 !lie;
- done;
- !lie
-;;
-
-(* donne [] si le système a des solutions,
-sinon donne [c,s,lc]
-où lc est la combinaison linéaire des inéquations de départ
-qui donne 0 < c si s=true
- ou 0 <= c sinon
-cette inéquation étant absurde.
-*)
-
-exception Contradiction of (rational * bool * rational list) list
-
-let unsolvable lie =
- let lr = deduce lie in
- let check = function
- | {coef=[c];hist=lc;strict=s} ->
- if (rinf c r0 && (not s)) || (rinfeq c r0 && s)
- then raise (Contradiction [c,s,lc])
- |_->assert false
- in
- try List.iter check lr; []
- with Contradiction l -> l
-
-(* Exemples:
-
-let test1=[[r1;r1;r0],true;[rop r1;r1;r1],false;[r0;rop r1;rop r1],false];;
-deduce test1;;
-unsolvable test1;;
-
-let test2=[
-[r1;r1;r0;r0;r0],false;
-[r0;r1;r1;r0;r0],false;
-[r0;r0;r1;r1;r0],false;
-[r0;r0;r0;r1;r1],false;
-[r1;r0;r0;r0;r1],false;
-[rop r1;rop r1;r0;r0;r0],false;
-[r0;rop r1;rop r1;r0;r0],false;
-[r0;r0;rop r1;rop r1;r0],false;
-[r0;r0;r0;rop r1;rop r1],false;
-[rop r1;r0;r0;r0;rop r1],false
-];;
-deduce test2;;
-unsolvable test2;;
-
-*)
diff --git a/plugins/fourier/fourierR.ml b/plugins/fourier/fourierR.ml
deleted file mode 100644
index 96be1d893..000000000
--- a/plugins/fourier/fourierR.ml
+++ /dev/null
@@ -1,644 +0,0 @@
-(************************************************************************)
-(* * The Coq Proof Assistant / The Coq Development Team *)
-(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
-(* <O___,, * (see CREDITS file for the list of authors) *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(* * (see LICENSE file for the text of the license) *)
-(************************************************************************)
-
-
-
-(* La tactique Fourier ne fonctionne de manière sûre que si les coefficients
-des inéquations et équations sont entiers. En attendant la tactique Field.
-*)
-
-open Constr
-open Tactics
-open Names
-open Globnames
-open Fourier
-open Contradiction
-open Proofview.Notations
-
-(******************************************************************************
-Opérations sur les combinaisons linéaires affines.
-La partie homogène d'une combinaison linéaire est en fait une table de hash
-qui donne le coefficient d'un terme du calcul des constructions,
-qui est zéro si le terme n'y est pas.
-*)
-
-module Constrhash = Hashtbl.Make(Constr)
-
-type flin = {fhom: rational Constrhash.t;
- fcste:rational};;
-
-let flin_zero () = {fhom=Constrhash.create 50;fcste=r0};;
-
-let flin_coef f x = try Constrhash.find f.fhom x with Not_found -> r0;;
-
-let flin_add f x c =
- let cx = flin_coef f x in
- Constrhash.replace f.fhom x (rplus cx c);
- f
-;;
-let flin_add_cste f c =
- {fhom=f.fhom;
- fcste=rplus f.fcste c}
-;;
-
-let flin_one () = flin_add_cste (flin_zero()) r1;;
-
-let flin_plus f1 f2 =
- let f3 = flin_zero() in
- Constrhash.iter (fun x c -> let _=flin_add f3 x c in ()) f1.fhom;
- Constrhash.iter (fun x c -> let _=flin_add f3 x c in ()) f2.fhom;
- flin_add_cste (flin_add_cste f3 f1.fcste) f2.fcste;
-;;
-
-let flin_minus f1 f2 =
- let f3 = flin_zero() in
- Constrhash.iter (fun x c -> let _=flin_add f3 x c in ()) f1.fhom;
- Constrhash.iter (fun x c -> let _=flin_add f3 x (rop c) in ()) f2.fhom;
- flin_add_cste (flin_add_cste f3 f1.fcste) (rop f2.fcste);
-;;
-let flin_emult a f =
- let f2 = flin_zero() in
- Constrhash.iter (fun x c -> let _=flin_add f2 x (rmult a c) in ()) f.fhom;
- flin_add_cste f2 (rmult a f.fcste);
-;;
-
-(*****************************************************************************)
-
-type ineq = Rlt | Rle | Rgt | Rge
-
-let string_of_R_constant kn =
- match Constant.repr3 kn with
- | ModPath.MPfile dir, sec_dir, id when
- sec_dir = DirPath.empty &&
- DirPath.to_string dir = "Coq.Reals.Rdefinitions"
- -> Label.to_string id
- | _ -> "constant_not_of_R"
-
-let rec string_of_R_constr c =
- match Constr.kind c with
- Cast (c,_,_) -> string_of_R_constr c
- |Const (c,_) -> string_of_R_constant c
- | _ -> "not_of_constant"
-
-exception NoRational
-
-let rec rational_of_constr c =
- match Constr.kind c with
- | Cast (c,_,_) -> (rational_of_constr c)
- | App (c,args) ->
- (match (string_of_R_constr c) with
- | "Ropp" ->
- rop (rational_of_constr args.(0))
- | "Rinv" ->
- rinv (rational_of_constr args.(0))
- | "Rmult" ->
- rmult (rational_of_constr args.(0))
- (rational_of_constr args.(1))
- | "Rdiv" ->
- rdiv (rational_of_constr args.(0))
- (rational_of_constr args.(1))
- | "Rplus" ->
- rplus (rational_of_constr args.(0))
- (rational_of_constr args.(1))
- | "Rminus" ->
- rminus (rational_of_constr args.(0))
- (rational_of_constr args.(1))
- | _ -> raise NoRational)
- | Const (kn,_) ->
- (match (string_of_R_constant kn) with
- "R1" -> r1
- |"R0" -> r0
- | _ -> raise NoRational)
- | _ -> raise NoRational
-;;
-
-exception NoLinear
-
-let rec flin_of_constr c =
- try(
- match Constr.kind c with
- | Cast (c,_,_) -> (flin_of_constr c)
- | App (c,args) ->
- (match (string_of_R_constr c) with
- "Ropp" ->
- flin_emult (rop r1) (flin_of_constr args.(0))
- | "Rplus"->
- flin_plus (flin_of_constr args.(0))
- (flin_of_constr args.(1))
- | "Rminus"->
- flin_minus (flin_of_constr args.(0))
- (flin_of_constr args.(1))
- | "Rmult"->
- (try
- let a = rational_of_constr args.(0) in
- try
- let b = rational_of_constr args.(1) in
- flin_add_cste (flin_zero()) (rmult a b)
- with NoRational ->
- flin_add (flin_zero()) args.(1) a
- with NoRational ->
- flin_add (flin_zero()) args.(0)
- (rational_of_constr args.(1)))
- | "Rinv"->
- let a = rational_of_constr args.(0) in
- flin_add_cste (flin_zero()) (rinv a)
- | "Rdiv"->
- (let b = rational_of_constr args.(1) in
- try
- let a = rational_of_constr args.(0) in
- flin_add_cste (flin_zero()) (rdiv a b)
- with NoRational ->
- flin_add (flin_zero()) args.(0) (rinv b))
- |_-> raise NoLinear)
- | Const (c,_) ->
- (match (string_of_R_constant c) with
- "R1" -> flin_one ()
- |"R0" -> flin_zero ()
- |_-> raise NoLinear)
- |_-> raise NoLinear)
- with NoRational | NoLinear -> flin_add (flin_zero()) c r1
-;;
-
-let flin_to_alist f =
- let res=ref [] in
- Constrhash.iter (fun x c -> res:=(c,x)::(!res)) f;
- !res
-;;
-
-(* Représentation des hypothèses qui sont des inéquations ou des équations.
-*)
-type hineq={hname:constr; (* le nom de l'hypothèse *)
- htype:string; (* Rlt, Rgt, Rle, Rge, eqTLR ou eqTRL *)
- hleft:constr;
- hright:constr;
- hflin:flin;
- hstrict:bool}
-;;
-
-(* Transforme une hypothese h:t en inéquation flin<0 ou flin<=0
-*)
-
-exception NoIneq
-
-let ineq1_of_constr (h,t) =
- let h = EConstr.Unsafe.to_constr h in
- let t = EConstr.Unsafe.to_constr t in
- match (Constr.kind t) with
- | App (f,args) ->
- (match Constr.kind f with
- | Const (c,_) when Array.length args = 2 ->
- let t1= args.(0) in
- let t2= args.(1) in
- (match (string_of_R_constant c) with
- |"Rlt" -> [{hname=h;
- htype="Rlt";
- hleft=t1;
- hright=t2;
- hflin= flin_minus (flin_of_constr t1)
- (flin_of_constr t2);
- hstrict=true}]
- |"Rgt" -> [{hname=h;
- htype="Rgt";
- hleft=t2;
- hright=t1;
- hflin= flin_minus (flin_of_constr t2)
- (flin_of_constr t1);
- hstrict=true}]
- |"Rle" -> [{hname=h;
- htype="Rle";
- hleft=t1;
- hright=t2;
- hflin= flin_minus (flin_of_constr t1)
- (flin_of_constr t2);
- hstrict=false}]
- |"Rge" -> [{hname=h;
- htype="Rge";
- hleft=t2;
- hright=t1;
- hflin= flin_minus (flin_of_constr t2)
- (flin_of_constr t1);
- hstrict=false}]
- |_-> raise NoIneq)
- | Ind ((kn,i),_) ->
- if not (GlobRef.equal (IndRef(kn,i)) Coqlib.glob_eq) then raise NoIneq;
- let t0= args.(0) in
- let t1= args.(1) in
- let t2= args.(2) in
- (match (Constr.kind t0) with
- | Const (c,_) ->
- (match (string_of_R_constant c) with
- | "R"->
- [{hname=h;
- htype="eqTLR";
- hleft=t1;
- hright=t2;
- hflin= flin_minus (flin_of_constr t1)
- (flin_of_constr t2);
- hstrict=false};
- {hname=h;
- htype="eqTRL";
- hleft=t2;
- hright=t1;
- hflin= flin_minus (flin_of_constr t2)
- (flin_of_constr t1);
- hstrict=false}]
- |_-> raise NoIneq)
- |_-> raise NoIneq)
- |_-> raise NoIneq)
- |_-> raise NoIneq
-;;
-
-(* Applique la méthode de Fourier à une liste d'hypothèses (type hineq)
-*)
-
-let fourier_lineq lineq1 =
- let nvar=ref (-1) in
- let hvar=Constrhash.create 50 in (* la table des variables des inéquations *)
- List.iter (fun f ->
- Constrhash.iter (fun x _ -> if not (Constrhash.mem hvar x) then begin
- nvar:=(!nvar)+1;
- Constrhash.add hvar x (!nvar)
- end)
- f.hflin.fhom)
- lineq1;
- let sys= List.map (fun h->
- let v=Array.make ((!nvar)+1) r0 in
- Constrhash.iter (fun x c -> v.(Constrhash.find hvar x)<-c)
- h.hflin.fhom;
- ((Array.to_list v)@[rop h.hflin.fcste],h.hstrict))
- lineq1 in
- unsolvable sys
-;;
-
-(*********************************************************************)
-(* Defined constants *)
-
-let get = Lazy.force
-let cget = get
-let eget c = EConstr.of_constr (Lazy.force c)
-let constant path s = UnivGen.constr_of_global @@
- Coqlib.coq_reference "Fourier" path s
-
-(* Standard library *)
-open Coqlib
-let coq_sym_eqT = lazy (build_coq_eq_sym ())
-let coq_False = lazy (UnivGen.constr_of_global @@ build_coq_False ())
-let coq_not = lazy (UnivGen.constr_of_global @@ build_coq_not ())
-let coq_eq = lazy (UnivGen.constr_of_global @@ build_coq_eq ())
-
-(* Rdefinitions *)
-let constant_real = constant ["Reals";"Rdefinitions"]
-
-let coq_Rlt = lazy (constant_real "Rlt")
-let coq_Rgt = lazy (constant_real "Rgt")
-let coq_Rle = lazy (constant_real "Rle")
-let coq_Rge = lazy (constant_real "Rge")
-let coq_R = lazy (constant_real "R")
-let coq_Rminus = lazy (constant_real "Rminus")
-let coq_Rmult = lazy (constant_real "Rmult")
-let coq_Rplus = lazy (constant_real "Rplus")
-let coq_Ropp = lazy (constant_real "Ropp")
-let coq_Rinv = lazy (constant_real "Rinv")
-let coq_R0 = lazy (constant_real "R0")
-let coq_R1 = lazy (constant_real "R1")
-
-(* RIneq *)
-let coq_Rinv_1 = lazy (constant ["Reals";"RIneq"] "Rinv_1")
-
-(* Fourier_util *)
-let constant_fourier = constant ["fourier";"Fourier_util"]
-
-let coq_Rlt_zero_1 = lazy (constant_fourier "Rlt_zero_1")
-let coq_Rlt_zero_pos_plus1 = lazy (constant_fourier "Rlt_zero_pos_plus1")
-let coq_Rle_zero_pos_plus1 = lazy (constant_fourier "Rle_zero_pos_plus1")
-let coq_Rlt_mult_inv_pos = lazy (constant_fourier "Rlt_mult_inv_pos")
-let coq_Rle_zero_zero = lazy (constant_fourier "Rle_zero_zero")
-let coq_Rle_zero_1 = lazy (constant_fourier "Rle_zero_1")
-let coq_Rle_mult_inv_pos = lazy (constant_fourier "Rle_mult_inv_pos")
-let coq_Rnot_lt0 = lazy (constant_fourier "Rnot_lt0")
-let coq_Rle_not_lt = lazy (constant_fourier "Rle_not_lt")
-let coq_Rfourier_gt_to_lt = lazy (constant_fourier "Rfourier_gt_to_lt")
-let coq_Rfourier_ge_to_le = lazy (constant_fourier "Rfourier_ge_to_le")
-let coq_Rfourier_eqLR_to_le = lazy (constant_fourier "Rfourier_eqLR_to_le")
-let coq_Rfourier_eqRL_to_le = lazy (constant_fourier "Rfourier_eqRL_to_le")
-
-let coq_Rfourier_not_ge_lt = lazy (constant_fourier "Rfourier_not_ge_lt")
-let coq_Rfourier_not_gt_le = lazy (constant_fourier "Rfourier_not_gt_le")
-let coq_Rfourier_not_le_gt = lazy (constant_fourier "Rfourier_not_le_gt")
-let coq_Rfourier_not_lt_ge = lazy (constant_fourier "Rfourier_not_lt_ge")
-let coq_Rfourier_lt = lazy (constant_fourier "Rfourier_lt")
-let coq_Rfourier_le = lazy (constant_fourier "Rfourier_le")
-let coq_Rfourier_lt_lt = lazy (constant_fourier "Rfourier_lt_lt")
-let coq_Rfourier_lt_le = lazy (constant_fourier "Rfourier_lt_le")
-let coq_Rfourier_le_lt = lazy (constant_fourier "Rfourier_le_lt")
-let coq_Rfourier_le_le = lazy (constant_fourier "Rfourier_le_le")
-let coq_Rnot_lt_lt = lazy (constant_fourier "Rnot_lt_lt")
-let coq_Rnot_le_le = lazy (constant_fourier "Rnot_le_le")
-let coq_Rlt_not_le_frac_opp = lazy (constant_fourier "Rlt_not_le_frac_opp")
-
-(******************************************************************************
-Construction de la preuve en cas de succès de la méthode de Fourier,
-i.e. on obtient une contradiction.
-*)
-let is_int x = (x.den)=1
-;;
-
-(* fraction = couple (num,den) *)
-let rational_to_fraction x= (x.num,x.den)
-;;
-
-(* traduction -3 -> (Ropp (Rplus R1 (Rplus R1 R1)))
-*)
-let int_to_real n =
- let nn=abs n in
- if nn=0
- then get coq_R0
- else
- (let s=ref (get coq_R1) in
- for _i = 1 to (nn-1) do s:=mkApp (get coq_Rplus,[|get coq_R1;!s|]) done;
- if n<0 then mkApp (get coq_Ropp, [|!s|]) else !s)
-;;
-(* -1/2 -> (Rmult (Ropp R1) (Rinv (Rplus R1 R1)))
-*)
-let rational_to_real x =
- let (n,d)=rational_to_fraction x in
- mkApp (get coq_Rmult,
- [|int_to_real n;mkApp(get coq_Rinv,[|int_to_real d|])|])
-;;
-
-(* preuve que 0<n*1/d
-*)
-let tac_zero_inf_pos gl (n,d) =
- let get = eget in
- let tacn=ref (apply (get coq_Rlt_zero_1)) in
- let tacd=ref (apply (get coq_Rlt_zero_1)) in
- for _i = 1 to n - 1 do
- tacn:=(Tacticals.New.tclTHEN (apply (get coq_Rlt_zero_pos_plus1)) !tacn); done;
- for _i = 1 to d - 1 do
- tacd:=(Tacticals.New.tclTHEN (apply (get coq_Rlt_zero_pos_plus1)) !tacd); done;
- (Tacticals.New.tclTHENS (apply (get coq_Rlt_mult_inv_pos)) [!tacn;!tacd])
-;;
-
-(* preuve que 0<=n*1/d
-*)
-let tac_zero_infeq_pos gl (n,d)=
- let get = eget in
- let tacn=ref (if n=0
- then (apply (get coq_Rle_zero_zero))
- else (apply (get coq_Rle_zero_1))) in
- let tacd=ref (apply (get coq_Rlt_zero_1)) in
- for _i = 1 to n - 1 do
- tacn:=(Tacticals.New.tclTHEN (apply (get coq_Rle_zero_pos_plus1)) !tacn); done;
- for _i = 1 to d - 1 do
- tacd:=(Tacticals.New.tclTHEN (apply (get coq_Rlt_zero_pos_plus1)) !tacd); done;
- (Tacticals.New.tclTHENS (apply (get coq_Rle_mult_inv_pos)) [!tacn;!tacd])
-;;
-
-(* preuve que 0<(-n)*(1/d) => False
-*)
-let tac_zero_inf_false gl (n,d) =
- let get = eget in
-if n=0 then (apply (get coq_Rnot_lt0))
- else
- (Tacticals.New.tclTHEN (apply (get coq_Rle_not_lt))
- (tac_zero_infeq_pos gl (-n,d)))
-;;
-
-(* preuve que 0<=(-n)*(1/d) => False
-*)
-let tac_zero_infeq_false gl (n,d) =
- let get = eget in
- (Tacticals.New.tclTHEN (apply (get coq_Rlt_not_le_frac_opp))
- (tac_zero_inf_pos gl (-n,d)))
-;;
-
-let exact = exact_check;;
-
-let tac_use h =
- let get = eget in
- let tac = exact (EConstr.of_constr h.hname) in
- match h.htype with
- "Rlt" -> tac
- |"Rle" -> tac
- |"Rgt" -> (Tacticals.New.tclTHEN (apply (get coq_Rfourier_gt_to_lt)) tac)
- |"Rge" -> (Tacticals.New.tclTHEN (apply (get coq_Rfourier_ge_to_le)) tac)
- |"eqTLR" -> (Tacticals.New.tclTHEN (apply (get coq_Rfourier_eqLR_to_le)) tac)
- |"eqTRL" -> (Tacticals.New.tclTHEN (apply (get coq_Rfourier_eqRL_to_le)) tac)
- |_->assert false
-;;
-
-(*
-let is_ineq (h,t) =
- match (Constr.kind t) with
- App (f,args) ->
- (match (string_of_R_constr f) with
- "Rlt" -> true
- | "Rgt" -> true
- | "Rle" -> true
- | "Rge" -> true
-(* Wrong:not in Rdefinitions: *) | "eqT" ->
- (match (string_of_R_constr args.(0)) with
- "R" -> true
- | _ -> false)
- | _ ->false)
- |_->false
-;;
-*)
-
-let list_of_sign s =
- let open Context.Named.Declaration in
- List.map (function LocalAssum (name, typ) -> name, typ
- | LocalDef (name, _, typ) -> name, typ)
- s;;
-
-let mkAppL a =
- let l = Array.to_list a in
- mkApp(List.hd l, Array.of_list (List.tl l))
-;;
-
-exception GoalDone
-
-(* Résolution d'inéquations linéaires dans R *)
-let rec fourier () =
- Proofview.Goal.nf_enter begin fun gl ->
- let concl = Proofview.Goal.concl gl in
- let sigma = Tacmach.New.project gl in
- Coqlib.check_required_library ["Coq";"fourier";"Fourier"];
- let goal = Termops.strip_outer_cast sigma concl in
- let goal = EConstr.Unsafe.to_constr goal in
- let fhyp=Id.of_string "new_hyp_for_fourier" in
- (* si le but est une inéquation, on introduit son contraire,
- et le but à prouver devient False *)
- try
- match (Constr.kind goal) with
- App (f,args) ->
- let get = eget in
- (match (string_of_R_constr f) with
- "Rlt" ->
- (Tacticals.New.tclTHEN
- (Tacticals.New.tclTHEN (apply (get coq_Rfourier_not_ge_lt))
- (intro_using fhyp))
- (fourier ()))
- |"Rle" ->
- (Tacticals.New.tclTHEN
- (Tacticals.New.tclTHEN (apply (get coq_Rfourier_not_gt_le))
- (intro_using fhyp))
- (fourier ()))
- |"Rgt" ->
- (Tacticals.New.tclTHEN
- (Tacticals.New.tclTHEN (apply (get coq_Rfourier_not_le_gt))
- (intro_using fhyp))
- (fourier ()))
- |"Rge" ->
- (Tacticals.New.tclTHEN
- (Tacticals.New.tclTHEN (apply (get coq_Rfourier_not_lt_ge))
- (intro_using fhyp))
- (fourier ()))
- |_-> raise GoalDone)
- |_-> raise GoalDone
- with GoalDone ->
- (* les hypothèses *)
- let hyps = List.map (fun (h,t)-> (EConstr.mkVar h,t))
- (list_of_sign (Proofview.Goal.hyps gl)) in
- let lineq =ref [] in
- List.iter (fun h -> try (lineq:=(ineq1_of_constr h)@(!lineq))
- with NoIneq -> ())
- hyps;
- (* lineq = les inéquations découlant des hypothèses *)
- if !lineq=[] then CErrors.user_err Pp.(str "No inequalities");
- let res=fourier_lineq (!lineq) in
- let tac=ref (Proofview.tclUNIT ()) in
- if res=[]
- then CErrors.user_err Pp.(str "fourier failed")
- (* l'algorithme de Fourier a réussi: on va en tirer une preuve Coq *)
- else (match res with
- [(cres,sres,lc)]->
- (* lc=coefficients multiplicateurs des inéquations
- qui donnent 0<cres ou 0<=cres selon sres *)
- (*print_string "Fourier's method can prove the goal...";flush stdout;*)
- let lutil=ref [] in
- List.iter
- (fun (h,c) ->
- if c<>r0
- then (lutil:=(h,c)::(!lutil)(*;
- print_rational(c);print_string " "*)))
- (List.combine (!lineq) lc);
- (* on construit la combinaison linéaire des inéquation *)
- (match (!lutil) with
- (h1,c1)::lutil ->
- let s=ref (h1.hstrict) in
- let t1=ref (mkAppL [|get coq_Rmult;
- rational_to_real c1;
- h1.hleft|]) in
- let t2=ref (mkAppL [|get coq_Rmult;
- rational_to_real c1;
- h1.hright|]) in
- List.iter (fun (h,c) ->
- s:=(!s)||(h.hstrict);
- t1:=(mkAppL [|get coq_Rplus;
- !t1;
- mkAppL [|get coq_Rmult;
- rational_to_real c;
- h.hleft|] |]);
- t2:=(mkAppL [|get coq_Rplus;
- !t2;
- mkAppL [|get coq_Rmult;
- rational_to_real c;
- h.hright|] |]))
- lutil;
- let ineq=mkAppL [|if (!s) then get coq_Rlt else get coq_Rle;
- !t1;
- !t2 |] in
- let tc=rational_to_real cres in
- (* puis sa preuve *)
- let get = eget in
- let tac1=ref (if h1.hstrict
- then (Tacticals.New.tclTHENS (apply (get coq_Rfourier_lt))
- [tac_use h1;
- tac_zero_inf_pos gl
- (rational_to_fraction c1)])
- else (Tacticals.New.tclTHENS (apply (get coq_Rfourier_le))
- [tac_use h1;
- tac_zero_inf_pos gl
- (rational_to_fraction c1)])) in
- s:=h1.hstrict;
- List.iter (fun (h,c)->
- (if (!s)
- then (if h.hstrict
- then tac1:=(Tacticals.New.tclTHENS (apply (get coq_Rfourier_lt_lt))
- [!tac1;tac_use h;
- tac_zero_inf_pos gl
- (rational_to_fraction c)])
- else tac1:=(Tacticals.New.tclTHENS (apply (get coq_Rfourier_lt_le))
- [!tac1;tac_use h;
- tac_zero_inf_pos gl
- (rational_to_fraction c)]))
- else (if h.hstrict
- then tac1:=(Tacticals.New.tclTHENS (apply (get coq_Rfourier_le_lt))
- [!tac1;tac_use h;
- tac_zero_inf_pos gl
- (rational_to_fraction c)])
- else tac1:=(Tacticals.New.tclTHENS (apply (get coq_Rfourier_le_le))
- [!tac1;tac_use h;
- tac_zero_inf_pos gl
- (rational_to_fraction c)])));
- s:=(!s)||(h.hstrict))
- lutil;
- let tac2= if sres
- then tac_zero_inf_false gl (rational_to_fraction cres)
- else tac_zero_infeq_false gl (rational_to_fraction cres)
- in
- tac:=(Tacticals.New.tclTHENS (cut (EConstr.of_constr ineq))
- [Tacticals.New.tclTHEN (change_concl
- (EConstr.of_constr (mkAppL [| cget coq_not; ineq|]
- )))
- (Tacticals.New.tclTHEN (apply (if sres then get coq_Rnot_lt_lt
- else get coq_Rnot_le_le))
- (Tacticals.New.tclTHENS (Equality.replace
- (EConstr.of_constr (mkAppL [|cget coq_Rminus;!t2;!t1|]
- ))
- (EConstr.of_constr tc))
- [tac2;
- (Tacticals.New.tclTHENS
- (Equality.replace
- (EConstr.of_constr (mkApp (cget coq_Rinv,
- [|cget coq_R1|])))
- (get coq_R1))
-(* en attendant Field, ça peut aider Ring de remplacer 1/1 par 1 ... *)
-
- [Tacticals.New.tclORELSE
- (* TODO : Ring.polynom []*) (Proofview.tclUNIT ())
- (Proofview.tclUNIT ());
- Tacticals.New.pf_constr_of_global (cget coq_sym_eqT) >>= fun symeq ->
- (Tacticals.New.tclTHEN (apply symeq)
- (apply (get coq_Rinv_1)))]
-
- )
- ]));
- !tac1]);
- tac:=(Tacticals.New.tclTHENS (cut (get coq_False))
- [Tacticals.New.tclTHEN intro (contradiction None);
- !tac])
- |_-> assert false) |_-> assert false
- );
-(* ((tclTHEN !tac (tclFAIL 1 (* 1 au hasard... *))) gl) *)
- !tac
-(* ((tclABSTRACT None !tac) gl) *)
- end
-;;
-
-(*
-let fourier_tac x gl =
- fourier gl
-;;
-
-let v_fourier = add_tactic "Fourier" fourier_tac
-*)
-
diff --git a/plugins/fourier/fourier_plugin.mlpack b/plugins/fourier/fourier_plugin.mlpack
deleted file mode 100644
index b6262f8ae..000000000
--- a/plugins/fourier/fourier_plugin.mlpack
+++ /dev/null
@@ -1,3 +0,0 @@
-Fourier
-FourierR
-G_fourier
diff --git a/plugins/fourier/g_fourier.mlg b/plugins/fourier/g_fourier.mlg
deleted file mode 100644
index 703e29f96..000000000
--- a/plugins/fourier/g_fourier.mlg
+++ /dev/null
@@ -1,22 +0,0 @@
-(************************************************************************)
-(* * The Coq Proof Assistant / The Coq Development Team *)
-(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
-(* <O___,, * (see CREDITS file for the list of authors) *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(* * (see LICENSE file for the text of the license) *)
-(************************************************************************)
-
-{
-
-open Ltac_plugin
-open FourierR
-
-}
-
-DECLARE PLUGIN "fourier_plugin"
-
-TACTIC EXTEND fourier
-| [ "fourierz" ] -> { fourier () }
-END
diff --git a/plugins/micromega/Fourier.v b/plugins/micromega/Fourier.v
new file mode 100644
index 000000000..0153de1da
--- /dev/null
+++ b/plugins/micromega/Fourier.v
@@ -0,0 +1,5 @@
+Require Import Lra.
+Require Export Fourier_util.
+
+#[deprecated(since = "8.9.0", note = "Use lra instead.")]
+Ltac fourier := lra.
diff --git a/plugins/micromega/Fourier_util.v b/plugins/micromega/Fourier_util.v
new file mode 100644
index 000000000..b62153dee
--- /dev/null
+++ b/plugins/micromega/Fourier_util.v
@@ -0,0 +1,31 @@
+Require Export Rbase.
+Require Import Lra.
+
+Open Scope R_scope.
+
+Lemma Rlt_mult_inv_pos : forall x y:R, 0 < x -> 0 < y -> 0 < x * / y.
+intros x y H H0; try assumption.
+replace 0 with (x * 0).
+apply Rmult_lt_compat_l; auto with real.
+ring.
+Qed.
+
+Lemma Rlt_zero_pos_plus1 : forall x:R, 0 < x -> 0 < 1 + x.
+intros x H; try assumption.
+rewrite Rplus_comm.
+apply Rle_lt_0_plus_1.
+red; auto with real.
+Qed.
+
+Lemma Rle_zero_pos_plus1 : forall x:R, 0 <= x -> 0 <= 1 + x.
+ intros; lra.
+Qed.
+
+Lemma Rle_mult_inv_pos : forall x y:R, 0 <= x -> 0 < y -> 0 <= x * / y.
+intros x y H H0; try assumption.
+case H; intros.
+red; left.
+apply Rlt_mult_inv_pos; auto with real.
+rewrite <- H1.
+red; right; ring.
+Qed.