aboutsummaryrefslogtreecommitdiffhomepage
path: root/plugins/setoid_ring
diff options
context:
space:
mode:
authorGravatar Matthieu Sozeau <mattam@mattam.org>2012-10-10 15:35:36 -0400
committerGravatar Matthieu Sozeau <mattam@mattam.org>2014-05-06 09:58:53 +0200
commita4043608f704f026de7eb5167a109ca48e00c221 (patch)
tree938b6b8cb8d6d5dbaf7be3c62abcc8fdfcd45fc2 /plugins/setoid_ring
parenta2a249211c2ac1e18eff0d4f28e5afc98c137f97 (diff)
This commit adds full universe polymorphism and fast projections to Coq.
Add [Polymorphic] and [Monomorphic] local flag for definitions as well as [Set Universe Polymorphism] global flag to make all following definitions polymorphic. Mainly syntax for now. First part of the big changes to the kernel: - Const, Ind, Construct now come with a universe level instance - It is used for type inference in the kernel, which now also takes a graph as input: actually a set of local universe variables and their constraints. Type inference just checks that the constraints are enough to satisfy its own rules. - Remove polymorphic_arity and _knowing_parameters everywhere: we don't need full applications for polymorphism to apply anymore, as we generate fresh variables at each constant/inductive/constructor application. However knowing_parameters variants might be reinstated later for optimization. - New structures exported in univ.mli: - universe_list for universe level instances - universe_context(_set) for the local universe constraints, also recording which variables will be local and hence generalized after inference if defining a polymorphic ind/constant. - this patch makes coq stop compiling at indtypes.ml Adapt kernel, library, pretyping, tactics and toplevel to universe polymorphism. Various degrees of integration, places where I was not sure what to do or just postponed bigger reorganizations of the code are marked with FIXMEs. Main changes: - Kernel now checks constraints and does not infer them anymore. - The inference functions produce a context of constraints that were checked during inference, useful to do double-checking of the univ. poly. code but might be removed later. - Constant, Inductive entries now have a universe context (local variables and constraints) associated to them. - Printing, debugging functions for the new structures are also implemented. - Now stopping at Logic.v - Lots of new code in kernel/univ.ml that should be reviewed. - kernel/indtypes probably does not do what's right when inferring inductive type constraints. - Adapted evd to use the new universe context structure. - Did not deal with unification/evar_conv. - Add externalisation code for universe level instances. - Support for polymorphism in pretyping/command and proofs/proofview etc. Needed wrapping of [fresh_.._instance] through the evar_map, which contains the local state of universes during type-checking. - Correct the inductive scheme generation to support polymorphism as well. - Have to review kernel code for correctness, and especially rework the computation of universe constraints for inductives. Stops somewhat later in Logic.v - Fix naming of local/toplevel universes to be correctly done at typechecking time: local variables have no dirpath. - Add code to do substitution of universes in modules, not finished yet. - Move fresh_* functions out of kernel, it won't ever build a universe level again! - Adapt a lot of new_Type to use the correct dirpath and declare the new types in the evar_map so we keep track of them. - A bit of code factorization (evd_comb moved, pretype_global). - Refactor more code - Adapt plugins code (sometimes wrong, marked with FIXME) - Fix cases generating unneeded universe (not sure it's ok though) - Fix scheme generation for good, might have opportunity to cleanup the terms later. Init compiles now (which means rewrite, inversion, elim etc.. work as well). - Unsolved issue of pretyping to lower sorts properly (to Prop for example). This has to do with the (Retyping.get_type_of) giving algebraic universes that would appear on the right of constraints. This makes checking for dangling universes at the end of pretyping fail, hence the check in kernel/univ was removed. It should come back when we have a fix for this. - Correctly (?) compute the levels of inductive types. Removed old code pertaining to universe polymorphism. Note that we generate constraint variables for the conclusion of inductive types invariably. - Shrink constraints before going to the kernel, combine substitution of the smaller universe set with normalization of evars (maybe not done everywhere, only ordinary inductives, definitions and proofs) - More API reworks overall. tclPUSHCONTEXT can be used to add fresh universes to the proof goal (used in a few places to get the right instance. - Quick fix for auto that won't work in the long run. It should always have been restricted to take constant references as input, without any loss of generality over constrs. Fix some plugins and insertion of non-polymorphic constants in a module. Now stops in relation classes. Cleanup and move code from kernel to library and from pretyping to library too. Now there is a unique universe counter declared in library/universes.ml along with all the functions to generate new universes and get fresh constant/inductive terms. - Various function renamings - One important change in kernel/univ.ml: now [sup] can be applied to Prop. - Adapt records/classes to universe polymorphism - Now stops in EqDepFacts due to imprecise universe polymorphism. Forgot to git add those files. interp_constr returns the universe context The context is then pushed through the environment (or proof goal sigma). - Fix insertion of constants/inductives in env, pushing constraints to the global env for non-polymorphic ones. - Add Prop as a universe level to do proper type inference with sorts. It is allowed to take [sup] of [Prop] now. - New nf_evar based on new Evd.map(_undefined) - In proofs/logic.ml: conv_leq_goal might create some constraints that are now recorded. - Adapt Program code to universes. Merge with latest trunk + fixes -Use new constr_of_global from universes - fix eqschemes to use polymorphic universes - begin fixing cctac but f_equal still fails - fix [simpl] and rest of tacred - all the eq_constr with mkConst foo should be fixed as well, only partially done - Fix term hashing function to recognize equal terms up to universe instances. - Fix congruence closure to equate terms that differ only in universe instances, these will be resolved by constraints. Add a set of undefined universe variables to unification. Universe variables can now be declared rigid or flexible (unifiable). Flexible variables are resolved at the end of typechecking by instantiating them to their glb, adding upper bound constraints associated to them. Also: - Add polymorphic flag for inductives. - Fix cooking partially - Fix kernel/univ.ml to do normalization of universe expressions at the end of substitution. Correct classes/structures universe inference - Required a bit of extension in Univ to handle Max properly (sup u (u+1)) was returning (max(u,u+1)) for example. - Try a version where substitution of universe expressions for universe levels is allowed at the end of unification. By an invariant this should only instantiate with max() types that are morally "on the right" only. This is controlled using a rigidity attribute of universe variables, also allowing to properly do unification w.r.t. universes during typechecking/inference. - Currently fails in Vectors/Fin.v because case compilation generates "flexible" universes that actually appear in the term... Fix unification of universe variables. - Fix choice of canonical universe in presence of universe constraints, and do so by relying on a trichotomy for universe variables: rigid (won't be substituted), flexible (might be if not substituted by an algebraic) and flexible_alg (always substituted). - Fix romega code and a few more plugins, most of the standard library goes through now. - Had to define some inductives as Polymorphic explicitly to make proofs go through, more to come, and definitions should be polymorphic too, otherwise inconsistencies appear quickly (two uses of the same polymorphic ind through monomorphic functions (like nth on lists of Props and nats) will fix the monomorphic function's universe with eq constraints that are incompatible). - Correct universe polymorphism handling for fixpoint/cofixpoint definitions. - Fix romega to use the right universes for list constructors. - Fix internalization/externalization to deal properly with the implicit parsing of params. - Fix fourier tactic w.r.t. GRefs - Fix substitution saturation of universes. - Fix number syntax plugin. - Fix setoid_ring to take its coefficients in a Set rather than a Type, avoiding a large number of useless universe constraints. - Fix minor checker decl - Fix btauto w.r.t. GRef - Fix proofview to normalize universes in the original types as well. - Fix definitions of projections to not take two universes at the same level, but at different levels instead, avoiding unnecessary constraints that could lower the level of one component depending on the use of the other component. Fix simpl fst, snd to use @fst @snd as they have maximal implicits now. - More simpl snd, fst fixes. - Try to make the nth theory of lists polymorphic. Check with Enrico if this change is ok. Case appearing in RingMicromega's call to congruence l417, through a call to refine -> the_conv_x_leq. Compile everything. - "Fix" checker by deactivating code related to polymorphism, should be updated. - Make most of List.v polymorphic to help with following definitions. - When starting a lemma, normalize w.r.t. universes, so that the types get a fixed universe, not refinable later. - In record, don't assign a fully flexible universe variable to the record type if it is a definitional typeclass, as translate_constant doesn't expect an algebraic universe in the type of a constant. It certainly should though. - Fix micromega code. Fix after rebase. Update printing functions to print the polymorphic status of definitions and their universe context. Refine printing of universe contexts - Fix printer for universe constraints - Rework normalization of constraints to separate the Union-Find result from computation of lubs/glbs. Keep universe contexts of inductives/constants in entries for correct substitution inside modules. Abstract interface to get an instantiation of an inductive with its universe substitution in the kernel (no substitution if the inductive is not polymorphic, even if mind_universes is non-empty). Make fst and snd polymorphic, fix instances in RelationPairs to use different universes for the two elements of a pair. - Fix bug in nf_constraints: was removing Set <= constraints, but should remove Prop <= constraints only. - Make proj1_sig, projT1... polymorphic to avoid weird universe unifications, giving rise to universe inconsistenties. Adapt auto hints to polymorphic references. Really produce polymorphic hints... second try - Remove algebraic universes that can't appear in the goal when taking the type of a lemma to start. Proper handling of universe contexts in clenv and auto so that polymorphic hints are really refreshed at each application. Fix erroneous shadowing of sigma variable. - Make apparent the universe context used in pretyping, including information about flexibility of universe variables. - Fix induction to generate a fresh constant instance with flexible universe variables. Add function to do conversion w.r.t. an evar map and its local universes. - Fix define_evar_as_sort to not forget constraints coming from the refinement. - Do not nf_constraints while we don't have the whole term at hand to substitute in. - Move substitution of full universes to Universes - Normalize universes inside an evar_map when doing nf_evar_map_universes. - Normalize universes at each call to interp_ltac (potentially expensive) Do not normalize all evars at each call to interp_gen in tactics: rather incrementally normalize the terms at hand, supposing the normalization of universes will concern only those appearing in it (dangerous but much more efficient). Do not needlessly generate new universes constraints for projections of records. Correct polymorphic discharge of section variables. Fix autorewrite w.r.t. universes: polymorphic rewrite hints get fresh universe instances at each application. Fix r2l rewrite scheme to support universe polymorphism Fix a bug in l2r_forward scheme and fix congruence scheme to handle polymorphism correctly. Second try at fixing autorewrite, cannot do without pushing the constraints and the set of fresh universe variables into the proof context. - tclPUSHCONTEXT allow to set the ctx universe variables as flexible or rigid - Fix bug in elimschemes, not taking the right sigma Wrong sigma used in leibniz_rewrite Avoid recomputation of bounds for equal universes in normalization of constraints, only the canonical one need to be computed. Make coercions work with universe polymorphic projections. Fix eronneous bound in universes constraint solving. Make kernel reduction and term comparison strictly aware of universe instances, with variants for relaxed comparison that output constraints. Otherwise some constraints that should appear during pretyping don't and we generate unnecessary constraints/universe variables. Have to adapt a few tactics to this new behavior by making them universe aware. - Fix elimschemes to minimize universe variables - Fix coercions to not forget the universe constraints generated by an application - Change universe substitutions to maps instead of assoc lists. - Fix absurd tactic to handle univs properly - Make length and app polymorphic in List, unification sets their levels otherwise. Move to modules for namespace management instead of long names in universe code. More putting things into modules. Change evar_map structure to support an incremental substitution of universes (populated from Eq constraints), allowing safe and fast inference of precise levels, without computing lubs. - Add many printers and reorganize code - Extend nf_evar to normalize universe variables according to the substitution. - Fix ChoiceFacts.v in Logic, no universe inconsistencies anymore. But Diaconescu still has one (something fixes a universe to Set). - Adapt omega, functional induction to the changes. Fix congruence, eq_constr implem, discharge of polymorphic inductives. Fix merge in auto. The [-parameters-matter] option (formerly relevant_equality). Add -parameters-matter to coqc Do compute the param levels at elaboration time if parameters_matter. - Fix generalize tactic - add ppuniverse_subst - Start fixing normalize_universe_context w.r.t. normalize_univ_variables. - Fix HUGE bug in Ltac interpretation not folding the sigma correctly if interpreting a tactic application to multiple arguments. - Fix bug in union of universe substitution. - rename parameters-matter to indices-matter - Fix computation of levels from indices not parameters. - Fixing parsing so that [Polymorphic] can be applied to gallina extensions. - When elaborating definitions, make the universes from the type rigid when checking the term: they should stay abstracted. - Fix typeclasses eauto's handling of universes for exact hints. Rework all the code for infering the levels of inductives and checking their allowed eliminations sorts. This is based on the computation of a natural level for an inductive type I. The natural level [nat] of [I : args -> sort := c1 : A1 -> I t1 .. cn : An -> I tn] is computed by taking the max of the levels of the args (if indices matter) and the levels of the constructor arguments. The declared level [decl] of I is [sort], which might be Prop, Set or some Type u (u fresh or not). If [decl >= nat && not (decl = Prop && n >= 2)], the level of the inductive is [decl], otherwise, _smashing_ occured. If [decl] is impredicative (Prop or Set when Set is impredicative), we accept the declared level, otherwise it's an error. To compute the allowed elimination sorts, we have the following situations: - No smashing occured: all sorts are allowed. (Recall props that are not smashed are Empty/Unitary props) - Some smashing occured: - if [decl] is Type, we allow all eliminations (above or below [decl], not sure why this is justified in general). - if [decl] is Set, we used smashing for impredicativity, so only small sorts are allowed (Prop, Set). - if [decl] is Prop, only logical sorts are allowed: I has either large universes inside it or more than 1 constructor. This does not treat the case where only a Set appeared in I which was previously accepted it seems. All the standard library works with these changes. Still have to cleanup kernel/indtypes.ml. It is a good time to have a whiskey with OJ. Thanks to Peter Lumsdaine for bug reporting: - fix externalisation of universe instances (still appearing when no Printing Universes) - add [convert] and [convert_leq] tactics that keep track of evars and universe constraints. - use them in [exact_check]. Fix odd behavior in inductive type declarations allowing to silently lower a Type i parameter to Set for squashing a naturally Type i inductive to Set. Reinstate the LargeNonPropInductiveNotInType exception. Fix the is_small function not dealing properly with aliases of Prop/Set in Type. Add check_leq in Evd and use it to decide if we're trying to squash an inductive naturally in some Type to Set. - Fix handling of universe polymorphism in typeclasses Class/Instance declarations. - Don't allow lowering a rigid Type universe to Set silently. - Move Ring/Field back to Type. It was silently putting R in Set due to the definition of ring_morph. - Rework inference of universe levels for inductive definitions. - Make fold_left/right polymorphic on both levels A and B (the list's type). They don't have to be at the same level. Handle selective Polymorphic/Monomorphic flag right for records. Remove leftover command Fix after update with latest trunk. Backport patches on HoTT/coq to rebased version of universe polymorphism. - Fix autorewrite wrong handling of universe-polymorphic rewrite rules. Fixes part of issue #7. - Fix the [eq_constr_univs] and add an [leq_constr_univs] to avoid eager equation of universe levels that could just be inequal. Use it during kernel conversion. Fixes issue #6. - Fix a bug in unification that was failing too early if a choice in unification of universes raised an inconsistency. - While normalizing universes, remove Prop in the le part of Max expressions. - Stop rigidifying the universes on the right hand side of a : in definitions. - Now Hints can be declared polymorphic or not. In the first case they must be "refreshed" (undefined universes are renamed) at each application. - Have to refresh the set of universe variables associated to a hint when it can be used multiple times in a single proof to avoid fixing a level... A better & less expensive solution should exist. - Do not include the levels of let-ins as part of records levels. - Fix a NotConvertible uncaught exception to raise a more informative error message. - Better substitution of algebraics in algebraics (for universe variables that can be algebraics). - Fix issue #2, Context was not properly normalizing the universe context. - Fix issue with typeclasses that were not catching UniverseInconsistencies raised by unification, resulting in early failure of proof-search. - Let the result type of definitional classes be an algebraic. - Adapt coercions to universe polymorphic flag (Identity Coercion etc..) - Move away a dangerous call in autoinstance that added constraints for every polymorphic definitions once in the environment for no use. Forgot one part of the last patch on coercions. - Adapt auto/eauto to polymorphic hints as well. - Factor out the function to refresh a clenv w.r.t. undefined universes. Use leq_univ_poly in evarconv to avoid fixing universes. Disallow polymorphic hints based on a constr as it is not possible to infer their universe context. Only global references can be made polymorphic. Fixes issue #8. Fix SearchAbout bug (issue #10). Fix program w.r.t. universes: the universe context of a definition changes according to the successive refinements due to typechecking obligations. This requires the Proof modules to return the generated universe substitution when finishing a proof, and this information is passed in the closing hook. The interface is not very clean, will certainly change in the future. - Better treatment of polymorphic hints in auto: terms can be polymorphic now, we refresh their context as well. - Needs a little change in test-pattern that seems breaks multiary uses of destruct in NZDiv.v, l495. FIX to do. Fix [make_pattern_test] to keep the universe information around and still allow tactics to take multiple patterns at once. - Fix printing of universe instances that should not be factorized blindly - Fix handling of the universe context in program definitions by allowing the hook at the end of an interactive proof to give back the refined universe context, before it is transformed in the kernel. - Fix a bug in evarconv where solve_evar_evar was not checking types of instances, resulting in a loss of constraints in unification of universes and a growing number of useless parametric universes. - Move from universe_level_subst to universe_subst everywhere. - Changed representation of universes for a canonical one - Adapt the code so that universe variables might be substituted by arbitrary universes (including algebraics). Not used yet except for polymorphic universe variables instances. - Adapt code to new constraint structure. - Fix setoid rewrite handling of evars that was forgetting the initial universe substitution ! - Fix code that was just testing conversion instead of keeping the resulting universe constraints around in the proof engine. - Make a version of reduction/fconv that deals with the more general set of universe constraints. - [auto using] should use polymorphic versions of the constants. - When starting a proof, don't forget about the algebraic universes in the universe context. Rationalize substitution and normalization functions for universes. Also change back the structure of universes to avoid considering levels n+k as pure levels: they are universe expressions like max. Everything is factored out in the Universes and Univ modules now and the normalization functions can be efficient in the sense that they can cache the normalized universes incrementally. - Adapt normalize_context code to new normalization/substitution functions. - Set more things to be polymorphic, e.g. in Ring or SetoidList for the rest of the code to work properly while the constraint generation code is not adapted. And temporarily extend the universe constraint code in univ to solve max(is) = max(js) by first-order unification (these constraints should actually be implied not enforced). - Fix romega plugin to use the right universes for polymorphic lists. - Fix auto not refreshing the poly hints correctly. - Proper postponing of universe constraints during unification, avoid making arbitrary choices. - Fix nf_evars_and* to keep the substitution around for later normalizations. - Do add simplified universe constraints coming from unification during typechecking. - Fix solve_by_tac in obligations to handle universes right, and the corresponding substitution function. Test global universe equality early during simplication of constraints. Better hashconsing, but still not good on universe lists. - Add postponing of "lub" constraints that should not be checked early, they are implied by the others. - Fix constructor tactic to use a fresh constructor instance avoiding fixing universes. - Use [eq_constr_universes] instead of [eq_constr_univs] everywhere, this is the comparison function that doesn't care about the universe instances. - Almost all the library compiles in this new setting, but some more tactics need to be adapted. - Reinstate hconsing. - Keep Prop <= u constraints that can be used to set the level of a universe metavariable. Add better hashconsing and unionfind in normalisation of constraints. Fix a few problems in choose_canonical, normalization and substitution functions. Fix after merge Fixes after rebase with latest Coq trunk, everything compiles again, albeit slowly in some cases. - Fix module substitution and comparison of table keys in conversion using the wrong order (should always be UserOrd now) - Cleanup in universes, removing commented code. - Fix normalization of universe context which was assigning global levels to local ones. Should always be the other way! - Fix universe implementation to implement sorted cons of universes preserving order. Makes Univ.sup correct again, keeping universe in normalized form. - In evarconv.ml, allow again a Fix to appear as head of a weak-head normal form (due to partially applied fixpoints). - Catch anomalies of conversion as errors in reductionops.ml, sad but necessary as eta-expansion might build ill-typed stacks like FProd, [shift;app Rel 1], as it expands not only if the other side is rigid. - Fix module substitution bug in auto.ml - Fix case compilation: impossible cases compilation was generating useless universe levels. Use an IDProp constant instead of the polymorphic identity to not influence the level of the original type when building the case construct for the return type. - Simplify normalization of universe constraints. - Compute constructor levels of records correctly. Fall back to levels for universe instances, avoiding issues of unification. Add more to the test-suite for universe polymorphism. Fix after rebase with trunk Fix substitution of universes inside fields/params of records to be made after all normalization is done and the level of the record has been computed. Proper sharing of lower bounds with fixed universes. Conflicts: library/universes.ml library/universes.mli Constraints were not enforced in compilation of cases Fix after rebase with trunk - Canonical projections up to universes - Fix computation of class/record universe levels to allow squashing to Prop/Set in impredicative set mode. - Fix descend_in_conjunctions to properly instantiate projections with universes - Avoid Context-bound variables taking extra universes in their associated universe context. - Fix evar_define using the wrong direction when refreshing a universe under cumulativity - Do not instantiate a local universe with some lower bound to a global one just because they have the same local glb (they might not have the same one globally). - Was loosing some global constraints during normalization (brought again by the kernel), fixed now. - Proper [abstract] with polymorphic lemmas (polymorphic if the current proof is). - Fix silly bug in autorewrite: any hint after the first one was always monomorphic. - Fix fourier after rebase - Refresh universes when checking types of metas in unification (avoid (sup (sup univ))). - Speedup a script in FSetPositive.v Rework definitions in RelationClasses and Morphisms to share universe levels as much as possible. This factorizes many useless x <= RelationClasses.foo constraints in code that uses setoid rewriting. Slight incompatible change in the implicits for Reflexivity and Irreflexivity as well. - Share even more universes in Morphisms using a let. - Use splay_prod instead of splay_prod_assum which doesn't reduce let's to find a relation in setoid_rewrite - Fix [Declare Instance] not properly dealing with let's in typeclass contexts. Fixes in inductiveops, evarutil. Patch by Yves Bertot to allow naming universes in inductive definitions. Fixes in tacinterp not propagating evars correctly. Fix for issue #27: lowering a Type to Prop is allowed during inference (resulting in a Type (* Set *)) but kernel reduction was wrongly refusing the equation [Type (*Set*) = Set]. Fix in interface of canonical structures: an instantiated polymorphic projection is not needed to lookup a structure, just the projection name is enough (reported by C. Cohen). Move from universe inference to universe checking in the kernel. All tactics have to be adapted so that they carry around their generated constraints (living in their sigma), which is mostly straightforward. The more important changes are when refering to Coq constants, the tactics code is adapted so that primitive eq, pairing and sigma types might be polymorphic. Fix another few places in tacinterp and evarconv/evarsolve where the sigma was not folded correctly. - Fix discharge adding spurious global constraints on polymorphic universe variables appearing in assumptions. - Fixes in inductiveops not taking into account universe polymorphic inductives. WIP on checked universe polymorphism, it is clearly incompatible with the previous usage of polymorphic inductives + non-polymorphic definitions on them as universe levels now appear in the inductive type, and add equality constraints between universes that were otherwise just in a cumulativity relation (not sure that was actually correct). Refined version of unification of universe instances for first-order unification, prefering unfolding to arbitrary identification of universes. Moved kernel to universe checking only. Adapt the code to properly infer constraints during typechecking and refinement (tactics) and only check constraints when adding constants/inductives to the environment. Exception made of module subtyping that needs inference of constraints... The kernel conversion (fconv) has two modes: checking only and inference, the later being used by modules only. Evarconv/unification make use of a different strategy for conversion of constants that prefer unfolding to blind unification of rigid universes. Likewise, conversion checking backtracks on different universe instances (modulo the constraints). - adapt congruence/funind/ring plugins to this new mode, forcing them to declare their constraints. - To avoid big performance penalty with reification, make ring/field non-polymorphic (non-linear explosion in run time to be investigated further). - pattern and change tactics need special treatment: as they are not _reduction_ but conversion functions, their operation requires to update an evar_map with new universe constraints. - Fix vm_compute to work better with universes. If the normal form is made only of constructors then the readback is correct. However a deeper change will be needed to treat substitution of universe instances when unfolding constants. Remove libtypes.ml Fix after merge. Fix after rebase with trunk. **** Add projections to the kernel, as optimized implementations of constants. - New constructor Proj expects a projection constant applied to its principal inductive argument. - Reduction machines shortcut the expansion to a case and directly project the right argument. - No need to keep parameters as part of the projection's arguments as they are inferable from the type of the principal argument. - ML code now compiles, debugging needed. Start debugging the implementation of projections. Externalisation should keep the information about projections. Internalization, pattern-matching, unification and reduction of projections. Fix some code that used to have _ for parameters that are no longer present in projections. Fixes in unification, reduction, term indexing, auto hints based on projections, add debug printers. Fix byte-compilation of projections, unification, congruence with projections. Adapt .v files using "@proj _ _ record" syntax, should come back on this later. Fix coercion insertion code to properly deal with projection coercions. Fix [simpl proj]... TODO [unfold proj], proj is not considered evaluable. - Fix whnf of projections, now respecting opacity information. - Fix conversion of projections to try first-order first and then incrementally unfold them. - Fix computation of implicit args for projections, simply dropping the information for parameters. - Fix a few scripts that relied on projections carrying their parameters (few at's, rewrites). - Fix unify_with_subterm to properly match under projections. - Fix bug in cooking of projections. - Add pattern PProj for projections. - A very strange bug appeared in BigZ.v, making coqtop segfault on the export of BigN... tofix Fixes after rebase with trunk. Everything compiles now, with efficient projections. Fixes after rebase with trunk (esp. reductionops). Remove warnings, backport patch from old univs+projs branch. Proper expansion of projections during unification. They are considered as maybe flexible keys in evarconv/unification. We try firstorder unification and otherwise expand them as necessary, completely mimicking the original behavior, when they were constants. Fix head_constr_bound interface, the arguments are never needed (they're outside their environment actually). [simpl] and [red]/[intro] should behave just like before now. Fix evarconv that was giving up on proj x = ?e problems too early. - Port patch by Maxime Denes implementing fast projections in the native conversion. - Backport patch to add eta-expansion for records. Do not raise an exception but simply fails if trying to do eta on an inductive that is not a record. Fix projections detyping/matching and unification.ml not always recovering on first-order universe inequalities. Correct eta-expansion for records, and change strategy for conversion with projections to favor reduction over first-order unification a little more. Fix a bug in Ltac pattern matching on projections. Fix evars_reset_evd to not recheck existing constraints in case it is just an update (performance improvement for typeclass resolution). - Respect Global/Transparent oracle during unification. Opaque means _never_ unfolded there. - Add empty universes as well as the initial universes (having Prop < Set). - Better display of universe inconsistencies. - Add Beta Ziliani's patch to go fast avoiding imitation when possible. - Allow instantiation by lower bound even if there are universes above - (tentative) In refinement, avoid incremental refinement of terms containing no holes and do it in one step (much faster on big terms). Turned on only if not a checked command. Remove dead code in univ/universes.ml and cleanup setup of hashconsing, for a small speed and memory footprint improvement. - Fix bug in unification using cumulativity when conversion should have been used. - Fix unification of evars having type Type, no longer forcing them to be equal (potentially more constraints): algorithm is now complete w.r.t. cumulativity. - In clenvtac, use refine_nocheck as we are guaranteed to get well-typed terms from unification now, including sufficient universe constraints. Small general speedup. - Fix inference of universe levels of inductive types to avoid smashing inadvertently from Set to Prop. - Fix computation of discharged hypotheses forgetting the arity in inductives. - Fix wrong order in printing of universe inconsistency explanation - Allow coercions between two polymorphic instances of the same inductive/constant. - Do evar normalization and saturation by classes before trying to use program coercion during pretyping. - In unification, force equalities of universes when unifying the same rigid head constants. - Fix omission of projections in constr_leq - Fix [admit] tactic's handling of normalized universes. Fix typing of projections not properly normalizing w.r.t. evars, resulting in anomaly sometimes. Adapt rewrite to work with computational relations (in Type), while maintaining backward compatibility with Propositional rewriting. Introduce a [diff] function on evar maps and universe contexts to properly deal with clause environments. Local hints in auto now store just the extension of the evar map they rely on, so merging them becomes efficient. This fixes an important performance issue in auto and typeclass resolution in presence of a large number of universe constraints. Change FSetPositive and MSetPositive to put their [elt] and [t] universes in Type to avoid restricting global universes to [Set]. This is due to [flip]s polymorphic type being fixed in monomorphic instances of Morphisms.v, and rewriting hence forcing unification of levels that could be left unrelated. - Try a fast_typeops implementation of kernel type inference that allocates less by not rebuilding the term, shows a little performance improvement, and less allocation. - Build universe inconsistency explanations lazily, avoiding huge blowup (x5) in check_constraints/merge_constraints in time and space (these are stressed in universe polymorphic mode). - Hashcons universe instances. Add interface file for fast_typeops Use monomorphic comparisons, little optimizations of hashconsing and comparison in univ.ml. Fix huge slowdown due to building huge error messages. Lazy is not enough to tame this completely. Fix last performance issue, due to abstracts building huge terms abstracting on parts of the section context. Was due to wrong handling of Let... Qed.s in abstract. Performance is a tiny bit better than the trunk now. First step at compatibility layer for projections. Compatibility mode for projections. c.(p), p c use primitive projs, while @p refers to an expansion [λ params c, c.(p)]. Recovers almost entire source compatibility with trunk scripts, except when mixing @p and p and doing syntactic matching (they're unifiable though). Add a [Set Primitive Projections] flag to set/unset the use of primitive projections, selectively for each record. Adapt code to handle both the legacy encoding and the primitive projections. Library is almost source-to-source compatible, except for syntactic operations relying on the presence of parameters. In primitive projections mode, @p refers to an expansion [λ params r. p.(r)]. More information in CHANGES (to be reformated/moved to reference manual). Backport changes from HoTT/coq: - Fix anomaly on uncatched NotASort in retyping. - Better recognition of evars that are subject to typeclass resolution. Fixes bug reported by J. Gross on coq-club. - Print universe polymorphism information for parameters as well. Fix interface for unsatisfiable constraints error, now a type error. Try making ring polymorphic again, with a big slowdown, to be investigated. Fix evar/universe leak in setoid rewrite. - Add profiling flag - Move setoid_ring back to non-polymorphic mode to compare perfs with trunk - Change unification to allow using infer_conv more often (big perf culprit), but semantics of backtracking on unification of constants is not properly implemented there. - Fix is_empty/union_evar_universe_context forgetting about some assignments. - Performance is now very close to the trunk from june, with projections deactivated.
Diffstat (limited to 'plugins/setoid_ring')
-rw-r--r--plugins/setoid_ring/Field_theory.v158
-rw-r--r--plugins/setoid_ring/InitialRing.v1
-rw-r--r--plugins/setoid_ring/Ring_polynom.v29
-rw-r--r--plugins/setoid_ring/Ring_theory.v5
-rw-r--r--plugins/setoid_ring/newring.ml4312
5 files changed, 352 insertions, 153 deletions
diff --git a/plugins/setoid_ring/Field_theory.v b/plugins/setoid_ring/Field_theory.v
index 3622c7fe9..2b9dce1b0 100644
--- a/plugins/setoid_ring/Field_theory.v
+++ b/plugins/setoid_ring/Field_theory.v
@@ -10,6 +10,7 @@ Require Ring.
Import Ring_polynom Ring_tac Ring_theory InitialRing Setoid List Morphisms.
Require Import ZArith_base.
Set Implicit Arguments.
+(* Set Universe Polymorphism. *)
Section MakeFieldPol.
@@ -278,6 +279,21 @@ apply radd_ext.
[ ring | now rewrite rdiv_simpl ].
Qed.
+Theorem rdiv3 r1 r2 r3 r4 :
+ ~ r2 == 0 ->
+ ~ r4 == 0 ->
+ r1 / r2 - r3 / r4 == (r1 * r4 - r3 * r2) / (r2 * r4).
+Proof.
+intros H2 H4.
+assert (~ r2 * r4 == 0) by (apply field_is_integral_domain; trivial).
+transitivity (r1 / r2 + - (r3 / r4)); auto.
+transitivity (r1 / r2 + - r3 / r4); auto.
+transitivity ((r1 * r4 + - r3 * r2) / (r2 * r4)).
+apply rdiv2; auto.
+f_equiv.
+transitivity (r1 * r4 + - (r3 * r2)); auto.
+Qed.
+
Theorem rdiv5 a b : - (a / b) == - a / b.
Proof.
now rewrite !rdiv_def, ropp_mul_l.
@@ -696,6 +712,7 @@ Fixpoint PEsimp (e : PExpr C) : PExpr C :=
| _ => e
end%poly.
+<<<<<<< .merge_file_5Z3Qpn
Theorem PEsimp_ok e : (PEsimp e === e)%poly.
Proof.
induction e; simpl.
@@ -708,6 +725,32 @@ induction e; simpl.
- rewrite NPEmul_ok. now f_equiv.
- rewrite NPEopp_ok. now f_equiv.
- rewrite NPEpow_ok. now f_equiv.
+=======
+Theorem PExpr_simp_correct:
+ forall l e, NPEeval l (PExpr_simp e) == NPEeval l e.
+clear eq_sym.
+intros l e; elim e; simpl; auto.
+intros e1 He1 e2 He2.
+transitivity (NPEeval l (PEadd (PExpr_simp e1) (PExpr_simp e2))); auto.
+apply NPEadd_correct.
+simpl; auto.
+intros e1 He1 e2 He2.
+transitivity (NPEeval l (PEsub (PExpr_simp e1) (PExpr_simp e2))). auto.
+apply NPEsub_correct.
+simpl; auto.
+intros e1 He1 e2 He2.
+transitivity (NPEeval l (PEmul (PExpr_simp e1) (PExpr_simp e2))); auto.
+apply NPEmul_correct.
+simpl; auto.
+intros e1 He1.
+transitivity (NPEeval l (PEopp (PExpr_simp e1))); auto.
+apply NPEopp_correct.
+simpl; auto.
+intros e1 He1 n;simpl.
+rewrite NPEpow_correct;simpl.
+repeat rewrite pow_th.(rpow_pow_N).
+rewrite He1;auto.
+>>>>>>> .merge_file_U4r9lJ
Qed.
@@ -961,6 +1004,7 @@ Fixpoint split_aux e1 p e2 {struct e1}: rsplit :=
end
end%poly.
+<<<<<<< .merge_file_5Z3Qpn
Lemma split_aux_ok1 e1 p e2 :
(let res := match isIn e1 p e2 1 with
| Some (N0,e3) => mk_rsplit 1 (e1 ^^ Npos p) e3
@@ -971,6 +1015,20 @@ Lemma split_aux_ok1 e1 p e2 :
e1 ^ Npos p === left res * common res
/\ e2 === right res * common res)%poly.
Proof.
+=======
+Lemma split_aux_correct_1 : forall l e1 p e2,
+ let res := match isIn e1 p e2 xH with
+ | Some (N0,e3) => mk_rsplit (PEc cI) (NPEpow e1 (Npos p)) e3
+ | Some (Npos q, e3) => mk_rsplit (NPEpow e1 (Npos q)) (NPEpow e1 (Npos (p - q))) e3
+ | None => mk_rsplit (NPEpow e1 (Npos p)) (PEc cI) e2
+ end in
+ NPEeval l (PEpow e1 (Npos p)) == NPEeval l (NPEmul (left res) (common res))
+ /\
+ NPEeval l e2 == NPEeval l (NPEmul (right res) (common res)).
+Proof.
+ intros. unfold res. clear res; generalize (isIn_correct l e1 p e2 xH).
+ destruct (isIn e1 p e2 1). destruct p0.
+>>>>>>> .merge_file_U4r9lJ
Opaque NPEpow NPEmul.
intros. unfold res;clear res; generalize (isIn_ok e1 p e2 xH).
destruct (isIn e1 p e2 1) as [([|p'],e')|]; simpl.
@@ -1090,6 +1148,7 @@ Eval compute
Theorem Pcond_Fnorm l e :
PCond l (condition (Fnorm e)) -> ~ (denum (Fnorm e))@l == 0.
Proof.
+<<<<<<< .merge_file_5Z3Qpn
induction e; simpl condition; rewrite ?PCond_cons, ?PCond_app;
simpl denum; intros (Hc1,Hc2) || intros Hc; rewrite ?NPEmul_ok.
- simpl. rewrite phi_1; exact rI_neq_rO.
@@ -1112,6 +1171,93 @@ induction e; simpl condition; rewrite ?PCond_cons, ?PCond_app;
+ apply split_nz_r, Hc1.
- rewrite NPEpow_ok. apply PEpow_nz, IHe, Hc.
Qed.
+=======
+ induction p;simpl.
+ intro Hp;assert (H1 := @rmul_reg_l _ (pow_pos rmul x p * pow_pos rmul x p) 0 H).
+ apply IHp.
+ rewrite (@rmul_reg_l _ (pow_pos rmul x p) 0 IHp).
+ reflexivity.
+ rewrite H1. ring. rewrite Hp;ring.
+ intro Hp;apply IHp. rewrite (@rmul_reg_l _ (pow_pos rmul x p) 0 IHp).
+ reflexivity. rewrite Hp;ring. trivial.
+Qed.
+
+Theorem Pcond_Fnorm:
+ forall l e,
+ PCond l (condition (Fnorm e)) -> ~ NPEeval l ((Fnorm e).(denum)) == 0.
+intros l e; elim e.
+ simpl; intros _ _; rewrite (morph1 CRmorph); exact rI_neq_rO.
+ simpl; intros _ _; rewrite (morph1 CRmorph); exact rI_neq_rO.
+ intros e1 Hrec1 e2 Hrec2 Hcond.
+ simpl in Hcond.
+ simpl @denum.
+ rewrite NPEmul_correct.
+ simpl.
+ apply field_is_integral_domain.
+ intros HH; case Hrec1; auto.
+ apply PCond_app_inv_l with (1 := Hcond).
+ rewrite (split_correct_l l (denum (Fnorm e1)) (denum (Fnorm e2))).
+ rewrite NPEmul_correct; simpl; rewrite HH; ring.
+ intros HH; case Hrec2; auto.
+ apply PCond_app_inv_r with (1 := Hcond).
+ rewrite (split_correct_r l (denum (Fnorm e1)) (denum (Fnorm e2))); auto.
+ intros e1 Hrec1 e2 Hrec2 Hcond.
+ simpl @condition in Hcond.
+ simpl @denum.
+ rewrite NPEmul_correct.
+ simpl.
+ apply field_is_integral_domain.
+ intros HH; case Hrec1; auto.
+ apply PCond_app_inv_l with (1 := Hcond).
+ rewrite (split_correct_l l (denum (Fnorm e1)) (denum (Fnorm e2))).
+ rewrite NPEmul_correct; simpl; rewrite HH; ring.
+ intros HH; case Hrec2; auto.
+ apply PCond_app_inv_r with (1 := Hcond).
+ rewrite (split_correct_r l (denum (Fnorm e1)) (denum (Fnorm e2))); auto.
+ intros e1 Hrec1 e2 Hrec2 Hcond.
+ simpl in Hcond.
+ simpl @denum.
+ rewrite NPEmul_correct.
+ simpl.
+ apply field_is_integral_domain.
+ intros HH; apply Hrec1.
+ apply PCond_app_inv_l with (1 := Hcond).
+ rewrite (split_correct_r l (num (Fnorm e2)) (denum (Fnorm e1))).
+ rewrite NPEmul_correct; simpl; rewrite HH; ring.
+ intros HH; apply Hrec2.
+ apply PCond_app_inv_r with (1 := Hcond).
+ rewrite (split_correct_r l (num (Fnorm e1)) (denum (Fnorm e2))).
+ rewrite NPEmul_correct; simpl; rewrite HH; ring.
+ intros e1 Hrec1 Hcond.
+ simpl in Hcond.
+ simpl @denum.
+ auto.
+ intros e1 Hrec1 Hcond.
+ simpl in Hcond.
+ simpl @denum.
+ apply PCond_cons_inv_l with (1:=Hcond).
+ intros e1 Hrec1 e2 Hrec2 Hcond.
+ simpl in Hcond.
+ simpl @denum.
+ rewrite NPEmul_correct.
+ simpl.
+ apply field_is_integral_domain.
+ intros HH; apply Hrec1.
+ specialize PCond_cons_inv_r with (1:=Hcond); intro Hcond1.
+ apply PCond_app_inv_l with (1 := Hcond1).
+ rewrite (split_correct_l l (denum (Fnorm e1)) (denum (Fnorm e2))).
+ rewrite NPEmul_correct; simpl; rewrite HH; ring.
+ intros HH; apply PCond_cons_inv_l with (1:=Hcond).
+ rewrite (split_correct_r l (num (Fnorm e1)) (num (Fnorm e2))).
+ rewrite NPEmul_correct; simpl; rewrite HH; ring.
+ simpl;intros e1 Hrec1 n Hcond.
+ rewrite NPEpow_correct.
+ simpl;rewrite pow_th.(rpow_pow_N).
+ destruct n;simpl;intros.
+ apply AFth.(AF_1_neq_0). apply pow_pos_not_0;auto.
+Qed.
+Hint Resolve Pcond_Fnorm.
+>>>>>>> .merge_file_U4r9lJ
(***************************************************************************
@@ -1502,11 +1648,21 @@ Hypothesis ceqb_complete : forall c1 c2, [c1] == [c2] -> ceqb c1 c2 = true.
Lemma ceqb_spec' c1 c2 : Bool.reflect ([c1] == [c2]) (ceqb c1 c2).
Proof.
+<<<<<<< .merge_file_5Z3Qpn
assert (H := morph_eq CRmorph c1 c2).
assert (H' := @ceqb_complete c1 c2).
destruct (ceqb c1 c2); constructor.
- now apply H.
- intro E. specialize (H' E). discriminate.
+=======
+intros.
+generalize (fun h => X (morph_eq CRmorph _ _ h)).
+generalize (@ceqb_complete c1 c2).
+case (c1 ?=! c2); auto; intros.
+apply X0.
+red; intro.
+absurd (false = true); auto; discriminate.
+>>>>>>> .merge_file_U4r9lJ
Qed.
Fixpoint Fcons1 (e:PExpr C) (l:list (PExpr C)) {struct e} : list (PExpr C) :=
@@ -1766,4 +1922,4 @@ End Field.
End Complete.
Arguments FEO [C].
-Arguments FEI [C]. \ No newline at end of file
+Arguments FEI [C].
diff --git a/plugins/setoid_ring/InitialRing.v b/plugins/setoid_ring/InitialRing.v
index ca178dd38..07f49cc4f 100644
--- a/plugins/setoid_ring/InitialRing.v
+++ b/plugins/setoid_ring/InitialRing.v
@@ -15,6 +15,7 @@ Require Import Ring_polynom.
Import List.
Set Implicit Arguments.
+(* Set Universe Polymorphism. *)
Import RingSyntax.
diff --git a/plugins/setoid_ring/Ring_polynom.v b/plugins/setoid_ring/Ring_polynom.v
index 6ffa54866..5ec73950b 100644
--- a/plugins/setoid_ring/Ring_polynom.v
+++ b/plugins/setoid_ring/Ring_polynom.v
@@ -6,12 +6,14 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
+
Set Implicit Arguments.
-Require Import Setoid Morphisms BinList BinPos BinNat BinInt.
+Require Import Setoid Morphisms.
+Require Import BinList BinPos BinNat BinInt.
Require Export Ring_theory.
-
Local Open Scope positive_scope.
Import RingSyntax.
+(* Set Universe Polymorphism. *)
Section MakeRingPol.
@@ -678,7 +680,7 @@ Section MakeRingPol.
- add_permut.
- destruct p; simpl;
rewrite ?jump_pred_double; add_permut.
- - destr_pos_sub; intros ->;Esimpl.
+ - destr_pos_sub; intros ->; Esimpl.
+ rewrite IHP';rsimpl. add_permut.
+ rewrite IHP', pow_pos_add;simpl;Esimpl. add_permut.
+ rewrite IHP1, pow_pos_add;rsimpl. add_permut.
@@ -796,9 +798,9 @@ Section MakeRingPol.
P@l == Q@l + [c] * R@l.
Proof.
revert l.
- induction P as [c0 | j P IH | P1 IH1 i P2 IH2]; intros l; Esimpl.
- - assert (H := div_th.(div_eucl_th) c0 c).
- destruct cdiv as (q,r). rewrite H; Esimpl. add_permut.
+ induction P as [c0 | j P IH | P1 IH1 i P2 IH2]; intros l; Esimpl.
+ - assert (H := div_th.(div_eucl_th) c0 c).
+ destruct cdiv as (q,r). rewrite H; Esimpl. add_permut.
- destr_factor. Esimpl.
- destr_factor. Esimpl. add_permut.
Qed.
@@ -807,11 +809,12 @@ Section MakeRingPol.
let (c,M) := cM in
let (Q,R) := MFactor P c M in
P@l == Q@l + [c] * M@@l * R@l.
- Proof.
+ Proof.
destruct cM as (c,M). revert M l.
- induction P; destruct M; intros l; simpl; auto;
+ induction P; destruct M; intros l; simpl; auto;
try (case ceqb_spec; intro He);
- try (case Pos.compare_spec; intros He); rewrite ?He;
+ try (case Pos.compare_spec; intros He);
+ rewrite ?He;
destr_factor; simpl; Esimpl.
- assert (H := div_th.(div_eucl_th) c0 c).
destruct cdiv as (q,r). rewrite H; Esimpl. add_permut.
@@ -869,9 +872,9 @@ Section MakeRingPol.
Lemma PSubstL1_ok n LM1 P1 l :
MPcond LM1 l -> P1@l == (PSubstL1 P1 LM1 n)@l.
Proof.
- revert P1; induction LM1 as [|(M2,P2) LM2 IH]; simpl; intros.
- - reflexivity.
- - rewrite <- IH by intuition. now apply PNSubst1_ok.
+ revert P1; induction LM1 as [|(M2,P2) LM2 IH]; simpl; intros.
+ - reflexivity.
+ - rewrite <- IH by intuition; now apply PNSubst1_ok.
Qed.
Lemma PSubstL_ok n LM1 P1 P2 l :
@@ -1483,4 +1486,4 @@ Qed.
End MakeRingPol.
Arguments PEO [C].
-Arguments PEI [C]. \ No newline at end of file
+Arguments PEI [C].
diff --git a/plugins/setoid_ring/Ring_theory.v b/plugins/setoid_ring/Ring_theory.v
index 42ce4edca..d56f50bec 100644
--- a/plugins/setoid_ring/Ring_theory.v
+++ b/plugins/setoid_ring/Ring_theory.v
@@ -28,6 +28,8 @@ Reserved Notation "x == y" (at level 70, no associativity).
End RingSyntax.
Import RingSyntax.
+(* Set Universe Polymorphism. *)
+
Section Power.
Variable R:Type.
Variable rI : R.
@@ -252,6 +254,7 @@ Section ALMOST_RING.
Section SEMI_RING.
Variable SReqe : sring_eq_ext radd rmul req.
+
Add Morphism radd : radd_ext1. exact (SRadd_ext SReqe). Qed.
Add Morphism rmul : rmul_ext1. exact (SRmul_ext SReqe). Qed.
Variable SRth : semi_ring_theory 0 1 radd rmul req.
@@ -503,7 +506,6 @@ Qed.
End ALMOST_RING.
-
Section AddRing.
(* Variable R : Type.
@@ -528,7 +530,6 @@ Inductive ring_kind : Type :=
(_ : ring_morph rO rI radd rmul rsub ropp req
cO cI cadd cmul csub copp ceqb phi).
-
End AddRing.
diff --git a/plugins/setoid_ring/newring.ml4 b/plugins/setoid_ring/newring.ml4
index 235ee8d72..7ed8e03a9 100644
--- a/plugins/setoid_ring/newring.ml4
+++ b/plugins/setoid_ring/newring.ml4
@@ -74,7 +74,7 @@ and mk_clos_app_but f_map subs f args n =
| None -> mk_clos_app_but f_map subs f args (n+1)
let interp_map l t =
- try Some(List.assoc_f eq_constr t l) with Not_found -> None
+ try Some(List.assoc_f eq_constr_nounivs t l) with Not_found -> None
let protect_maps = ref String.Map.empty
let add_map s m = protect_maps := String.Map.add s m !protect_maps
@@ -104,7 +104,7 @@ END;;
(****************************************************************************)
let closed_term t l =
- let l = List.map constr_of_global l in
+ let l = List.map Universes.constr_of_global l in
let cs = List.fold_right Quote.ConstrSet.add l Quote.ConstrSet.empty in
if Quote.closed_under cs t then tclIDTAC else tclFAIL 0 (mt())
;;
@@ -141,15 +141,24 @@ let _ = add_tacdef false ((Loc.ghost,Id.of_string"ring_closed_term"
let ic c =
let env = Global.env() and sigma = Evd.empty in
- Constrintern.interp_constr sigma env c
+ Constrintern.interp_open_constr sigma env c
+
+let ic_unsafe c = (*FIXME remove *)
+ let env = Global.env() and sigma = Evd.empty in
+ fst (Constrintern.interp_constr sigma env c)
let ty c = Typing.type_of (Global.env()) Evd.empty c
-let decl_constant na c =
+let decl_constant na ctx c =
+ let vars = Universes.universes_of_constr c in
+ let ctx = Universes.restrict_universe_context (Univ.ContextSet.of_context ctx) vars in
mkConst(declare_constant (Id.of_string na) (DefinitionEntry
- { const_entry_body = c;
+ { const_entry_body = Future.from_val (c, Declareops.no_seff);
const_entry_secctx = None;
const_entry_type = None;
+ const_entry_polymorphic = false;
+ const_entry_universes = Univ.ContextSet.to_context ctx;
+ const_entry_proj = None;
const_entry_opaque = true;
const_entry_inline_code = false;
const_entry_feedback = None;
@@ -182,7 +191,11 @@ let dummy_goal env =
Goal.V82.mk_goal Evd.empty (named_context_val env) mkProp Evd.Store.empty in
{Evd.it = gl; Evd.sigma = sigma}
-let exec_tactic env n f args =
+let constr_of v = match Value.to_constr v with
+ | Some c -> c
+ | None -> failwith "Ring.exec_tactic: anomaly"
+
+let exec_tactic env evd n f args =
let lid = List.init n (fun i -> Id.of_string("x"^string_of_int i)) in
let res = ref [||] in
let get_res ist =
@@ -192,13 +205,14 @@ let exec_tactic env n f args =
let getter =
Tacexp(TacFun(List.map(fun id -> Some id) lid,
Tacintern.glob_tactic(tacticIn get_res))) in
- let _ =
- Proofview.V82.of_tactic (Tacinterp.eval_tactic(ltac_call f (args@[getter]))) (dummy_goal env) in
- !res
-
-let constr_of v = match Value.to_constr v with
- | Some c -> c
- | None -> failwith "Ring.exec_tactic: anomaly"
+ let gls =
+ (fun gl ->
+ let sigma = gl.Evd.sigma in
+ tclTHEN (Refiner.tclEVARS (Evd.merge sigma evd))
+ (Proofview.V82.of_tactic (Tacinterp.eval_tactic(ltac_call f (args@[getter])))) gl)
+ (dummy_goal env) in
+ let evd, nf = Evarutil.nf_evars_and_universes (Refiner.project gls) in
+ Array.map (fun x -> nf (constr_of x)) !res, Evd.universe_context evd
let stdlib_modules =
[["Coq";"Setoids";"Setoid"];
@@ -209,6 +223,8 @@ let stdlib_modules =
let coq_constant c =
lazy (Coqlib.gen_constant_in_modules "Ring" stdlib_modules c)
+let coq_reference c =
+ lazy (Coqlib.gen_reference_in_modules "Ring" stdlib_modules c)
let coq_mk_Setoid = coq_constant "Build_Setoid_Theory"
let coq_cons = coq_constant "cons"
@@ -217,8 +233,15 @@ let coq_None = coq_constant "None"
let coq_Some = coq_constant "Some"
let coq_eq = coq_constant "eq"
+let coq_pcons = coq_reference "cons"
+let coq_pnil = coq_reference "nil"
+
let lapp f args = mkApp(Lazy.force f,args)
+let plapp evd f args =
+ let fc = Evarutil.e_new_global evd (Lazy.force f) in
+ mkApp(fc,args)
+
let dest_rel0 t =
match kind_of_term t with
| App(f,args) when Array.length args >= 2 ->
@@ -247,6 +270,8 @@ let plugin_modules =
let my_constant c =
lazy (Coqlib.gen_constant_in_modules "Ring" plugin_modules c)
+let my_reference c =
+ lazy (Coqlib.gen_reference_in_modules "Ring" plugin_modules c)
let new_ring_path =
DirPath.make (List.map Id.of_string ["Ring_tac";plugin_dir;"Coq"])
@@ -266,9 +291,9 @@ let pol_cst s = mk_cst [plugin_dir;"Ring_polynom"] s ;;
let coq_almost_ring_theory = my_constant "almost_ring_theory"
(* setoid and morphism utilities *)
-let coq_eq_setoid = my_constant "Eqsth"
-let coq_eq_morph = my_constant "Eq_ext"
-let coq_eq_smorph = my_constant "Eq_s_ext"
+let coq_eq_setoid = my_reference "Eqsth"
+let coq_eq_morph = my_reference "Eq_ext"
+let coq_eq_smorph = my_reference "Eq_s_ext"
(* ring -> almost_ring utilities *)
let coq_ring_theory = my_constant "ring_theory"
@@ -295,8 +320,8 @@ let ltac_inv_morph_nothing = zltac"inv_morph_nothing"
let coq_pow_N_pow_N = my_constant "pow_N_pow_N"
(* hypothesis *)
-let coq_mkhypo = my_constant "mkhypo"
-let coq_hypo = my_constant "hypo"
+let coq_mkhypo = my_reference "mkhypo"
+let coq_hypo = my_reference "hypo"
(* Equality: do not evaluate but make recursive call on both sides *)
let map_with_eq arg_map c =
@@ -415,14 +440,14 @@ let theory_to_obj : ring_info -> obj =
classify_function = (fun x -> Substitute x)}
-let setoid_of_relation env a r =
- let evm = Evd.empty in
+let setoid_of_relation env evd a r =
try
- lapp coq_mk_Setoid
- [|a ; r ;
- Rewrite.get_reflexive_proof env evm a r ;
- Rewrite.get_symmetric_proof env evm a r ;
- Rewrite.get_transitive_proof env evm a r |]
+ let evm = !evd, Int.Set.empty in
+ let evm, refl = Rewrite.PropGlobal.get_reflexive_proof env evm a r in
+ let evm, sym = Rewrite.PropGlobal.get_symmetric_proof env evm a r in
+ let evm, trans = Rewrite.PropGlobal.get_transitive_proof env evm a r in
+ evd := fst evm;
+ lapp coq_mk_Setoid [|a ; r ; refl; sym; trans |]
with Not_found ->
error "cannot find setoid relation"
@@ -435,7 +460,7 @@ let op_smorph r add mul req m1 m2 =
(* let default_ring_equality (r,add,mul,opp,req) = *)
(* let is_setoid = function *)
(* {rel_refl=Some _; rel_sym=Some _;rel_trans=Some _;rel_aeq=rel} -> *)
-(* eq_constr req rel (\* Qu: use conversion ? *\) *)
+(* eq_constr_nounivs req rel (\* Qu: use conversion ? *\) *)
(* | _ -> false in *)
(* match default_relation_for_carrier ~filter:is_setoid r with *)
(* Leibniz _ -> *)
@@ -450,7 +475,7 @@ let op_smorph r add mul req m1 m2 =
(* let is_endomorphism = function *)
(* { args=args } -> List.for_all *)
(* (function (var,Relation rel) -> *)
-(* var=None && eq_constr req rel *)
+(* var=None && eq_constr_nounivs req rel *)
(* | _ -> false) args in *)
(* let add_m = *)
(* try default_morphism ~filter:is_endomorphism add *)
@@ -485,17 +510,19 @@ let op_smorph r add mul req m1 m2 =
(* op_smorph r add mul req add_m.lem mul_m.lem) in *)
(* (setoid,op_morph) *)
-let ring_equality (r,add,mul,opp,req) =
+let ring_equality env evd (r,add,mul,opp,req) =
match kind_of_term req with
- | App (f, [| _ |]) when eq_constr f (Lazy.force coq_eq) ->
- let setoid = lapp coq_eq_setoid [|r|] in
+ | App (f, [| _ |]) when eq_constr_nounivs f (Lazy.force coq_eq) ->
+ let setoid = plapp evd coq_eq_setoid [|r|] in
let op_morph =
match opp with
- Some opp -> lapp coq_eq_morph [|r;add;mul;opp|]
- | None -> lapp coq_eq_smorph [|r;add;mul|] in
+ Some opp -> plapp evd coq_eq_morph [|r;add;mul;opp|]
+ | None -> plapp evd coq_eq_smorph [|r;add;mul|] in
+ let setoid = Typing.solve_evars env evd setoid in
+ let op_morph = Typing.solve_evars env evd op_morph in
(setoid,op_morph)
| _ ->
- let setoid = setoid_of_relation (Global.env ()) r req in
+ let setoid = setoid_of_relation (Global.env ()) evd r req in
let signature = [Some (r,Some req);Some (r,Some req)],Some(r,Some req) in
let add_m, add_m_lem =
try Rewrite.default_morphism signature add
@@ -532,22 +559,22 @@ let ring_equality (r,add,mul,opp,req) =
op_smorph r add mul req add_m_lem mul_m_lem) in
(setoid,op_morph)
-let build_setoid_params r add mul opp req eqth =
+let build_setoid_params env evd r add mul opp req eqth =
match eqth with
Some th -> th
- | None -> ring_equality (r,add,mul,opp,req)
+ | None -> ring_equality env evd (r,add,mul,opp,req)
let dest_ring env sigma th_spec =
let th_typ = Retyping.get_type_of env sigma th_spec in
match kind_of_term th_typ with
App(f,[|r;zero;one;add;mul;sub;opp;req|])
- when eq_constr f (Lazy.force coq_almost_ring_theory) ->
+ when eq_constr_nounivs f (Lazy.force coq_almost_ring_theory) ->
(None,r,zero,one,add,mul,Some sub,Some opp,req)
| App(f,[|r;zero;one;add;mul;req|])
- when eq_constr f (Lazy.force coq_semi_ring_theory) ->
+ when eq_constr_nounivs f (Lazy.force coq_semi_ring_theory) ->
(Some true,r,zero,one,add,mul,None,None,req)
| App(f,[|r;zero;one;add;mul;sub;opp;req|])
- when eq_constr f (Lazy.force coq_ring_theory) ->
+ when eq_constr_nounivs f (Lazy.force coq_ring_theory) ->
(Some false,r,zero,one,add,mul,Some sub,Some opp,req)
| _ -> error "bad ring structure"
@@ -557,10 +584,10 @@ let dest_morph env sigma m_spec =
match kind_of_term m_typ with
App(f,[|r;zero;one;add;mul;sub;opp;req;
c;czero;cone;cadd;cmul;csub;copp;ceqb;phi|])
- when eq_constr f (Lazy.force coq_ring_morph) ->
+ when eq_constr_nounivs f (Lazy.force coq_ring_morph) ->
(c,czero,cone,cadd,cmul,Some csub,Some copp,ceqb,phi)
| App(f,[|r;zero;one;add;mul;req;c;czero;cone;cadd;cmul;ceqb;phi|])
- when eq_constr f (Lazy.force coq_semi_morph) ->
+ when eq_constr_nounivs f (Lazy.force coq_semi_morph) ->
(c,czero,cone,cadd,cmul,None,None,ceqb,phi)
| _ -> error "bad morphism structure"
@@ -591,18 +618,22 @@ let interp_cst_tac env sigma rk kind (zero,one,add,mul,opp) cst_tac =
let t = ArgArg(Loc.ghost,Lazy.force ltac_inv_morph_nothing) in
TacArg(Loc.ghost,TacCall(Loc.ghost,t,[]))
-let make_hyp env c =
- let t = Retyping.get_type_of env Evd.empty c in
- lapp coq_mkhypo [|t;c|]
-
-let make_hyp_list env lH =
- let carrier = Lazy.force coq_hypo in
- List.fold_right
- (fun c l -> lapp coq_cons [|carrier; (make_hyp env c); l|]) lH
- (lapp coq_nil [|carrier|])
-
-let interp_power env pow =
- let carrier = Lazy.force coq_hypo in
+let make_hyp env evd c =
+ let t = Retyping.get_type_of env !evd c in
+ plapp evd coq_mkhypo [|t;c|]
+
+let make_hyp_list env evd lH =
+ let carrier = Evarutil.e_new_global evd (Lazy.force coq_hypo) in
+ let l =
+ List.fold_right
+ (fun c l -> plapp evd coq_pcons [|carrier; (make_hyp env evd c); l|]) lH
+ (plapp evd coq_pnil [|carrier|])
+ in
+ let l' = Typing.solve_evars env evd l in
+ Evarutil.nf_evars_universes !evd l'
+
+let interp_power env evd pow =
+ let carrier = Evarutil.e_new_global evd (Lazy.force coq_hypo) in
match pow with
| None ->
let t = ArgArg(Loc.ghost, Lazy.force ltac_inv_morph_nothing) in
@@ -613,47 +644,47 @@ let interp_power env pow =
| CstTac t -> Tacintern.glob_tactic t
| Closed lc ->
closed_term_ast (List.map Smartlocate.global_with_alias lc) in
- let spec = make_hyp env (ic spec) in
+ let spec = make_hyp env evd (ic_unsafe spec) in
(tac, lapp coq_Some [|carrier; spec|])
-let interp_sign env sign =
- let carrier = Lazy.force coq_hypo in
+let interp_sign env evd sign =
+ let carrier = Evarutil.e_new_global evd (Lazy.force coq_hypo) in
match sign with
| None -> lapp coq_None [|carrier|]
| Some spec ->
- let spec = make_hyp env (ic spec) in
+ let spec = make_hyp env evd (ic_unsafe spec) in
lapp coq_Some [|carrier;spec|]
(* Same remark on ill-typed terms ... *)
-let interp_div env div =
- let carrier = Lazy.force coq_hypo in
+let interp_div env evd div =
+ let carrier = Evarutil.e_new_global evd (Lazy.force coq_hypo) in
match div with
| None -> lapp coq_None [|carrier|]
| Some spec ->
- let spec = make_hyp env (ic spec) in
+ let spec = make_hyp env evd (ic_unsafe spec) in
lapp coq_Some [|carrier;spec|]
(* Same remark on ill-typed terms ... *)
-let add_theory name rth eqth morphth cst_tac (pre,post) power sign div =
+let add_theory name (sigma,rth) eqth morphth cst_tac (pre,post) power sign div =
check_required_library (cdir@["Ring_base"]);
let env = Global.env() in
- let sigma = Evd.empty in
let (kind,r,zero,one,add,mul,sub,opp,req) = dest_ring env sigma rth in
- let (sth,ext) = build_setoid_params r add mul opp req eqth in
- let (pow_tac, pspec) = interp_power env power in
- let sspec = interp_sign env sign in
- let dspec = interp_div env div in
+ let evd = ref sigma in
+ let (sth,ext) = build_setoid_params env evd r add mul opp req eqth in
+ let (pow_tac, pspec) = interp_power env evd power in
+ let sspec = interp_sign env evd sign in
+ let dspec = interp_div env evd div in
let rk = reflect_coeff morphth in
- let params =
- exec_tactic env 5 (zltac "ring_lemmas")
+ let params,ctx =
+ exec_tactic env !evd 5 (zltac "ring_lemmas")
(List.map carg[sth;ext;rth;pspec;sspec;dspec;rk]) in
- let lemma1 = constr_of params.(3) in
- let lemma2 = constr_of params.(4) in
+ let lemma1 = params.(3) in
+ let lemma2 = params.(4) in
let lemma1 =
- decl_constant (Id.to_string name^"_ring_lemma1") (Future.from_val ( lemma1,Declareops.no_seff)) in
+ decl_constant (Id.to_string name^"_ring_lemma1") ctx (Future.from_val ( lemma1,Declareops.no_seff)) in
let lemma2 =
- decl_constant (Id.to_string name^"_ring_lemma2") (Future.from_val ( lemma2,Declareops.no_seff)) in
+ decl_constant (Id.to_string name^"_ring_lemma2") ctx (Future.from_val ( lemma2,Declareops.no_seff)) in
let cst_tac =
interp_cst_tac env sigma morphth kind (zero,one,add,mul,opp) cst_tac in
let pretac =
@@ -670,9 +701,9 @@ let add_theory name rth eqth morphth cst_tac (pre,post) power sign div =
{ ring_carrier = r;
ring_req = req;
ring_setoid = sth;
- ring_ext = constr_of params.(1);
- ring_morph = constr_of params.(2);
- ring_th = constr_of params.(0);
+ ring_ext = params.(1);
+ ring_morph = params.(2);
+ ring_th = params.(0);
ring_cst_tac = cst_tac;
ring_pow_tac = pow_tac;
ring_lemma1 = lemma1;
@@ -692,16 +723,11 @@ type 'constr ring_mod =
| Sign_spec of Constrexpr.constr_expr
| Div_spec of Constrexpr.constr_expr
-let ic_coeff_spec = function
- | Computational t -> Computational (ic t)
- | Morphism t -> Morphism (ic t)
- | Abstract -> Abstract
-
VERNAC ARGUMENT EXTEND ring_mod
- | [ "decidable" constr(eq_test) ] -> [ Ring_kind(Computational eq_test) ]
+ | [ "decidable" constr(eq_test) ] -> [ Ring_kind(Computational (ic_unsafe eq_test)) ]
| [ "abstract" ] -> [ Ring_kind Abstract ]
- | [ "morphism" constr(morph) ] -> [ Ring_kind(Morphism morph) ]
+ | [ "morphism" constr(morph) ] -> [ Ring_kind(Morphism (ic_unsafe morph)) ]
| [ "constants" "[" tactic(cst_tac) "]" ] -> [ Const_tac(CstTac cst_tac) ]
| [ "closed" "[" ne_global_list(l) "]" ] -> [ Const_tac(Closed l) ]
| [ "preprocess" "[" tactic(pre) "]" ] -> [ Pre_tac pre ]
@@ -732,11 +758,11 @@ let process_ring_mods l =
| Const_tac t -> set_once "tactic recognizing constants" cst_tac t
| Pre_tac t -> set_once "preprocess tactic" pre t
| Post_tac t -> set_once "postprocess tactic" post t
- | Setoid(sth,ext) -> set_once "setoid" set (ic sth,ic ext)
+ | Setoid(sth,ext) -> set_once "setoid" set (ic_unsafe sth,ic_unsafe ext)
| Pow_spec(t,spec) -> set_once "power" power (t,spec)
| Sign_spec t -> set_once "sign" sign t
| Div_spec t -> set_once "div" div t) l;
- let k = match !kind with Some k -> ic_coeff_spec k | None -> Abstract in
+ let k = match !kind with Some k -> k | None -> Abstract in
(k, !set, !cst_tac, !pre, !post, !power, !sign, !div)
VERNAC COMMAND EXTEND AddSetoidRing CLASSIFIED AS SIDEFF
@@ -762,10 +788,11 @@ let make_args_list rl t =
| [] -> let (_,t1,t2) = dest_rel0 t in [t1;t2]
| _ -> rl
-let make_term_list carrier rl =
- List.fold_right
- (fun x l -> lapp coq_cons [|carrier;x;l|]) rl
- (lapp coq_nil [|carrier|])
+let make_term_list env evd carrier rl =
+ let l = List.fold_right
+ (fun x l -> plapp evd coq_pcons [|carrier;x;l|]) rl
+ (plapp evd coq_pnil [|carrier|])
+ in Typing.solve_evars env evd l
let ltac_ring_structure e =
let req = carg e.ring_req in
@@ -786,12 +813,15 @@ let ring_lookup (f:glob_tactic_expr) lH rl t =
Proofview.Goal.raw_enter begin fun gl ->
let sigma = Proofview.Goal.sigma gl in
let env = Proofview.Goal.env gl in
- let rl = make_args_list rl t in
- let e = find_ring_structure env sigma rl in
- let rl = carg (make_term_list e.ring_carrier rl) in
- let lH = carg (make_hyp_list env lH) in
- let ring = ltac_ring_structure e in
- ltac_apply f (ring@[lH;rl])
+ try (* find_ring_strucure can raise an exception *)
+ let evdref = ref sigma in
+ let rl = make_args_list rl t in
+ let e = find_ring_structure env sigma rl in
+ let rl = carg (make_term_list env evdref e.ring_carrier rl) in
+ let lH = carg (make_hyp_list env evdref lH) in
+ let ring = ltac_ring_structure e in
+ Proofview.tclTHEN (Proofview.V82.tclEVARS !evdref) (ltac_apply f (ring@[lH;rl]))
+ with e when Proofview.V82.catchable_exception e -> Proofview.tclZERO e
end
TACTIC EXTEND ring_lookup
@@ -850,26 +880,26 @@ let _ = Redexpr.declare_reduction "simpl_field_expr"
let afield_theory = my_constant "almost_field_theory"
let field_theory = my_constant "field_theory"
let sfield_theory = my_constant "semi_field_theory"
-let af_ar = my_constant"AF_AR"
-let f_r = my_constant"F_R"
-let sf_sr = my_constant"SF_SR"
-let dest_field env sigma th_spec =
- let th_typ = Retyping.get_type_of env sigma th_spec in
+let af_ar = my_reference"AF_AR"
+let f_r = my_reference"F_R"
+let sf_sr = my_reference"SF_SR"
+let dest_field env evd th_spec =
+ let th_typ = Retyping.get_type_of env !evd th_spec in
match kind_of_term th_typ with
| App(f,[|r;zero;one;add;mul;sub;opp;div;inv;req|])
- when eq_constr f (Lazy.force afield_theory) ->
- let rth = lapp af_ar
+ when eq_constr_nounivs f (Lazy.force afield_theory) ->
+ let rth = plapp evd af_ar
[|r;zero;one;add;mul;sub;opp;div;inv;req;th_spec|] in
(None,r,zero,one,add,mul,Some sub,Some opp,div,inv,req,rth)
| App(f,[|r;zero;one;add;mul;sub;opp;div;inv;req|])
- when eq_constr f (Lazy.force field_theory) ->
+ when eq_constr_nounivs f (Lazy.force field_theory) ->
let rth =
- lapp f_r
+ plapp evd f_r
[|r;zero;one;add;mul;sub;opp;div;inv;req;th_spec|] in
(Some false,r,zero,one,add,mul,Some sub,Some opp,div,inv,req,rth)
| App(f,[|r;zero;one;add;mul;div;inv;req|])
- when eq_constr f (Lazy.force sfield_theory) ->
- let rth = lapp sf_sr
+ when eq_constr_nounivs f (Lazy.force sfield_theory) ->
+ let rth = plapp evd sf_sr
[|r;zero;one;add;mul;div;inv;req;th_spec|] in
(Some true,r,zero,one,add,mul,None,None,div,inv,req,rth)
| _ -> error "bad field structure"
@@ -960,12 +990,12 @@ let ftheory_to_obj : field_info -> obj =
subst_function = subst_th;
classify_function = (fun x -> Substitute x) }
-let field_equality r inv req =
+let field_equality evd r inv req =
match kind_of_term req with
- | App (f, [| _ |]) when eq_constr f (Lazy.force coq_eq) ->
- mkApp((Coqlib.build_coq_eq_data()).congr,[|r;r;inv|])
+ | App (f, [| _ |]) when eq_constr_nounivs f (Lazy.force coq_eq) ->
+ mkApp(Universes.constr_of_global (Coqlib.build_coq_eq_data()).congr,[|r;r;inv|])
| _ ->
- let _setoid = setoid_of_relation (Global.env ()) r req in
+ let _setoid = setoid_of_relation (Global.env ()) evd r req in
let signature = [Some (r,Some req)],Some(r,Some req) in
let inv_m, inv_m_lem =
try Rewrite.default_morphism signature inv
@@ -973,36 +1003,41 @@ let field_equality r inv req =
error "field inverse should be declared as a morphism" in
inv_m_lem
-let add_field_theory name fth eqth morphth cst_tac inj (pre,post) power sign odiv =
+let add_field_theory name (sigma,fth) eqth morphth cst_tac inj (pre,post) power sign odiv =
check_required_library (cdir@["Field_tac"]);
let env = Global.env() in
- let sigma = Evd.empty in
+ let evd = ref sigma in
let (kind,r,zero,one,add,mul,sub,opp,div,inv,req,rth) =
- dest_field env sigma fth in
- let (sth,ext) = build_setoid_params r add mul opp req eqth in
+ dest_field env evd fth in
+ let (sth,ext) = build_setoid_params env evd r add mul opp req eqth in
let eqth = Some(sth,ext) in
- let _ = add_theory name rth eqth morphth cst_tac (None,None) power sign odiv in
- let (pow_tac, pspec) = interp_power env power in
- let sspec = interp_sign env sign in
- let dspec = interp_div env odiv in
- let inv_m = field_equality r inv req in
+ let _ = add_theory name (!evd,rth) eqth morphth cst_tac (None,None) power sign odiv in
+ let (pow_tac, pspec) = interp_power env evd power in
+ let sspec = interp_sign env evd sign in
+ let dspec = interp_div env evd odiv in
+ let inv_m = field_equality evd r inv req in
let rk = reflect_coeff morphth in
- let params =
- exec_tactic env 9 (field_ltac"field_lemmas")
+ let params,ctx =
+ exec_tactic env !evd 9 (field_ltac"field_lemmas")
(List.map carg[sth;ext;inv_m;fth;pspec;sspec;dspec;rk]) in
- let lemma1 = constr_of params.(3) in
- let lemma2 = constr_of params.(4) in
- let lemma3 = constr_of params.(5) in
- let lemma4 = constr_of params.(6) in
+ let lemma1 = params.(3) in
+ let lemma2 = params.(4) in
+ let lemma3 = params.(5) in
+ let lemma4 = params.(6) in
let cond_lemma =
match inj with
| Some thm -> mkApp(constr_of params.(8),[|thm|])
| None -> constr_of params.(7) in
- let lemma1 = decl_constant (Id.to_string name^"_field_lemma1") (Future.from_val (lemma1,Declareops.no_seff)) in
- let lemma2 = decl_constant (Id.to_string name^"_field_lemma2") (Future.from_val (lemma2,Declareops.no_seff)) in
- let lemma3 = decl_constant (Id.to_string name^"_field_lemma3") (Future.from_val (lemma3,Declareops.no_seff)) in
- let lemma4 = decl_constant (Id.to_string name^"_field_lemma4") (Future.from_val (lemma4,Declareops.no_seff)) in
- let cond_lemma = decl_constant (Id.to_string name^"_lemma5") (Future.from_val (cond_lemma,Declareops.no_seff)) in
+ let lemma1 = decl_constant (Id.to_string name^"_field_lemma1")
+ ctx (Future.from_val (lemma1,Declareops.no_seff)) in
+ let lemma2 = decl_constant (Id.to_string name^"_field_lemma2")
+ ctx (Future.from_val (lemma2,Declareops.no_seff)) in
+ let lemma3 = decl_constant (Id.to_string name^"_field_lemma3")
+ ctx (Future.from_val (lemma3,Declareops.no_seff)) in
+ let lemma4 = decl_constant (Id.to_string name^"_field_lemma4")
+ ctx (Future.from_val (lemma4,Declareops.no_seff)) in
+ let cond_lemma = decl_constant (Id.to_string name^"_lemma5")
+ ctx (Future.from_val (cond_lemma,Declareops.no_seff)) in
let cst_tac =
interp_cst_tac env sigma morphth kind (zero,one,add,mul,opp) cst_tac in
let pretac =
@@ -1053,12 +1088,12 @@ let process_field_mods l =
set_once "tactic recognizing constants" cst_tac t
| Ring_mod(Pre_tac t) -> set_once "preprocess tactic" pre t
| Ring_mod(Post_tac t) -> set_once "postprocess tactic" post t
- | Ring_mod(Setoid(sth,ext)) -> set_once "setoid" set (ic sth,ic ext)
+ | Ring_mod(Setoid(sth,ext)) -> set_once "setoid" set (ic_unsafe sth,ic_unsafe ext)
| Ring_mod(Pow_spec(t,spec)) -> set_once "power" power (t,spec)
| Ring_mod(Sign_spec t) -> set_once "sign" sign t
| Ring_mod(Div_spec t) -> set_once "div" div t
- | Inject i -> set_once "infinite property" inj (ic i)) l;
- let k = match !kind with Some k -> ic_coeff_spec k | None -> Abstract in
+ | Inject i -> set_once "infinite property" inj (ic_unsafe i)) l;
+ let k = match !kind with Some k -> k | None -> Abstract in
(k, !set, !inj, !cst_tac, !pre, !post, !power, !sign, !div)
VERNAC COMMAND EXTEND AddSetoidField CLASSIFIED AS SIDEFF
@@ -1094,12 +1129,15 @@ let field_lookup (f:glob_tactic_expr) lH rl t =
Proofview.Goal.raw_enter begin fun gl ->
let sigma = Proofview.Goal.sigma gl in
let env = Proofview.Goal.env gl in
- let rl = make_args_list rl t in
- let e = find_field_structure env sigma rl in
- let rl = carg (make_term_list e.field_carrier rl) in
- let lH = carg (make_hyp_list env lH) in
- let field = ltac_field_structure e in
- ltac_apply f (field@[lH;rl])
+ try
+ let evdref = ref sigma in
+ let rl = make_args_list rl t in
+ let e = find_field_structure env sigma rl in
+ let rl = carg (make_term_list env evdref e.field_carrier rl) in
+ let lH = carg (make_hyp_list env evdref lH) in
+ let field = ltac_field_structure e in
+ Proofview.tclTHEN (Proofview.V82.tclEVARS !evdref) (ltac_apply f (field@[lH;rl]))
+ with e when Proofview.V82.catchable_exception e -> Proofview.tclZERO e
end