aboutsummaryrefslogtreecommitdiffhomepage
path: root/plugins/setoid_ring/InitialRing.v
diff options
context:
space:
mode:
authorGravatar letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7>2009-03-20 01:22:58 +0000
committerGravatar letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7>2009-03-20 01:22:58 +0000
commit7d220f8b61649646692983872626d6a8042446a9 (patch)
treefefceb2c59cf155c55fffa25ad08bec629de523e /plugins/setoid_ring/InitialRing.v
parentad1fea78e3c23c903b2256d614756012d5f05d87 (diff)
Directory 'contrib' renamed into 'plugins', to end confusion with archive of user contribs
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@11996 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'plugins/setoid_ring/InitialRing.v')
-rw-r--r--plugins/setoid_ring/InitialRing.v908
1 files changed, 908 insertions, 0 deletions
diff --git a/plugins/setoid_ring/InitialRing.v b/plugins/setoid_ring/InitialRing.v
new file mode 100644
index 000000000..e664b3b76
--- /dev/null
+++ b/plugins/setoid_ring/InitialRing.v
@@ -0,0 +1,908 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+Require Import ZArith_base.
+Require Import Zpow_def.
+Require Import BinInt.
+Require Import BinNat.
+Require Import Setoid.
+Require Import Ring_theory.
+Require Import Ring_polynom.
+Require Import ZOdiv_def.
+Import List.
+
+Set Implicit Arguments.
+
+Import RingSyntax.
+
+(* An object to return when an expression is not recognized as a constant *)
+Definition NotConstant := false.
+
+(** Z is a ring and a setoid*)
+
+Lemma Zsth : Setoid_Theory Z (@eq Z).
+Proof (Eqsth Z).
+
+Lemma Zeqe : ring_eq_ext Zplus Zmult Zopp (@eq Z).
+Proof (Eq_ext Zplus Zmult Zopp).
+
+Lemma Zth : ring_theory Z0 (Zpos xH) Zplus Zmult Zminus Zopp (@eq Z).
+Proof.
+ constructor. exact Zplus_0_l. exact Zplus_comm. exact Zplus_assoc.
+ exact Zmult_1_l. exact Zmult_comm. exact Zmult_assoc.
+ exact Zmult_plus_distr_l. trivial. exact Zminus_diag.
+Qed.
+
+(** Two generic morphisms from Z to (abrbitrary) rings, *)
+(**second one is more convenient for proofs but they are ext. equal*)
+Section ZMORPHISM.
+ Variable R : Type.
+ Variable (rO rI : R) (radd rmul rsub: R->R->R) (ropp : R -> R).
+ Variable req : R -> R -> Prop.
+ Notation "0" := rO. Notation "1" := rI.
+ Notation "x + y" := (radd x y). Notation "x * y " := (rmul x y).
+ Notation "x - y " := (rsub x y). Notation "- x" := (ropp x).
+ Notation "x == y" := (req x y).
+ Variable Rsth : Setoid_Theory R req.
+ Add Setoid R req Rsth as R_setoid3.
+ Ltac rrefl := gen_reflexivity Rsth.
+ Variable Reqe : ring_eq_ext radd rmul ropp req.
+ Add Morphism radd : radd_ext3. exact (Radd_ext Reqe). Qed.
+ Add Morphism rmul : rmul_ext3. exact (Rmul_ext Reqe). Qed.
+ Add Morphism ropp : ropp_ext3. exact (Ropp_ext Reqe). Qed.
+
+ Fixpoint gen_phiPOS1 (p:positive) : R :=
+ match p with
+ | xH => 1
+ | xO p => (1 + 1) * (gen_phiPOS1 p)
+ | xI p => 1 + ((1 + 1) * (gen_phiPOS1 p))
+ end.
+
+ Fixpoint gen_phiPOS (p:positive) : R :=
+ match p with
+ | xH => 1
+ | xO xH => (1 + 1)
+ | xO p => (1 + 1) * (gen_phiPOS p)
+ | xI xH => 1 + (1 +1)
+ | xI p => 1 + ((1 + 1) * (gen_phiPOS p))
+ end.
+
+ Definition gen_phiZ1 z :=
+ match z with
+ | Zpos p => gen_phiPOS1 p
+ | Z0 => 0
+ | Zneg p => -(gen_phiPOS1 p)
+ end.
+
+ Definition gen_phiZ z :=
+ match z with
+ | Zpos p => gen_phiPOS p
+ | Z0 => 0
+ | Zneg p => -(gen_phiPOS p)
+ end.
+ Notation "[ x ]" := (gen_phiZ x).
+
+ Definition get_signZ z :=
+ match z with
+ | Zneg p => Some (Zpos p)
+ | _ => None
+ end.
+
+ Lemma get_signZ_th : sign_theory Zopp Zeq_bool get_signZ.
+ Proof.
+ constructor.
+ destruct c;intros;try discriminate.
+ injection H;clear H;intros H1;subst c'.
+ simpl. unfold Zeq_bool. rewrite Zcompare_refl. trivial.
+ Qed.
+
+
+ Section ALMOST_RING.
+ Variable ARth : almost_ring_theory 0 1 radd rmul rsub ropp req.
+ Add Morphism rsub : rsub_ext3. exact (ARsub_ext Rsth Reqe ARth). Qed.
+ Ltac norm := gen_srewrite Rsth Reqe ARth.
+ Ltac add_push := gen_add_push radd Rsth Reqe ARth.
+
+ Lemma same_gen : forall x, gen_phiPOS1 x == gen_phiPOS x.
+ Proof.
+ induction x;simpl.
+ rewrite IHx;destruct x;simpl;norm.
+ rewrite IHx;destruct x;simpl;norm.
+ rrefl.
+ Qed.
+
+ Lemma ARgen_phiPOS_Psucc : forall x,
+ gen_phiPOS1 (Psucc x) == 1 + (gen_phiPOS1 x).
+ Proof.
+ induction x;simpl;norm.
+ rewrite IHx;norm.
+ add_push 1;rrefl.
+ Qed.
+
+ Lemma ARgen_phiPOS_add : forall x y,
+ gen_phiPOS1 (x + y) == (gen_phiPOS1 x) + (gen_phiPOS1 y).
+ Proof.
+ induction x;destruct y;simpl;norm.
+ rewrite Pplus_carry_spec.
+ rewrite ARgen_phiPOS_Psucc.
+ rewrite IHx;norm.
+ add_push (gen_phiPOS1 y);add_push 1;rrefl.
+ rewrite IHx;norm;add_push (gen_phiPOS1 y);rrefl.
+ rewrite ARgen_phiPOS_Psucc;norm;add_push 1;rrefl.
+ rewrite IHx;norm;add_push(gen_phiPOS1 y); add_push 1;rrefl.
+ rewrite IHx;norm;add_push(gen_phiPOS1 y);rrefl.
+ add_push 1;rrefl.
+ rewrite ARgen_phiPOS_Psucc;norm;add_push 1;rrefl.
+ Qed.
+
+ Lemma ARgen_phiPOS_mult :
+ forall x y, gen_phiPOS1 (x * y) == gen_phiPOS1 x * gen_phiPOS1 y.
+ Proof.
+ induction x;intros;simpl;norm.
+ rewrite ARgen_phiPOS_add;simpl;rewrite IHx;norm.
+ rewrite IHx;rrefl.
+ Qed.
+
+ End ALMOST_RING.
+
+ Variable Rth : ring_theory 0 1 radd rmul rsub ropp req.
+ Let ARth := Rth_ARth Rsth Reqe Rth.
+ Add Morphism rsub : rsub_ext4. exact (ARsub_ext Rsth Reqe ARth). Qed.
+ Ltac norm := gen_srewrite Rsth Reqe ARth.
+ Ltac add_push := gen_add_push radd Rsth Reqe ARth.
+
+(*morphisms are extensionaly equal*)
+ Lemma same_genZ : forall x, [x] == gen_phiZ1 x.
+ Proof.
+ destruct x;simpl; try rewrite (same_gen ARth);rrefl.
+ Qed.
+
+ Lemma gen_Zeqb_ok : forall x y,
+ Zeq_bool x y = true -> [x] == [y].
+ Proof.
+ intros x y H.
+ assert (H1 := Zeq_bool_eq x y H);unfold IDphi in H1.
+ rewrite H1;rrefl.
+ Qed.
+
+ Lemma gen_phiZ1_add_pos_neg : forall x y,
+ gen_phiZ1
+ match (x ?= y)%positive Eq with
+ | Eq => Z0
+ | Lt => Zneg (y - x)
+ | Gt => Zpos (x - y)
+ end
+ == gen_phiPOS1 x + -gen_phiPOS1 y.
+ Proof.
+ intros x y.
+ assert (H:= (Pcompare_Eq_eq x y)); assert (H0 := Pminus_mask_Gt x y).
+ generalize (Pminus_mask_Gt y x).
+ replace Eq with (CompOpp Eq);[intro H1;simpl|trivial].
+ rewrite <- Pcompare_antisym in H1.
+ destruct ((x ?= y)%positive Eq).
+ rewrite H;trivial. rewrite (Ropp_def Rth);rrefl.
+ destruct H1 as [h [Heq1 [Heq2 Hor]]];trivial.
+ unfold Pminus; rewrite Heq1;rewrite <- Heq2.
+ rewrite (ARgen_phiPOS_add ARth);simpl;norm.
+ rewrite (Ropp_def Rth);norm.
+ destruct H0 as [h [Heq1 [Heq2 Hor]]];trivial.
+ unfold Pminus; rewrite Heq1;rewrite <- Heq2.
+ rewrite (ARgen_phiPOS_add ARth);simpl;norm.
+ add_push (gen_phiPOS1 h);rewrite (Ropp_def Rth); norm.
+ Qed.
+
+ Lemma match_compOpp : forall x (B:Type) (be bl bg:B),
+ match CompOpp x with Eq => be | Lt => bl | Gt => bg end
+ = match x with Eq => be | Lt => bg | Gt => bl end.
+ Proof. destruct x;simpl;intros;trivial. Qed.
+
+ Lemma gen_phiZ_add : forall x y, [x + y] == [x] + [y].
+ Proof.
+ intros x y; repeat rewrite same_genZ; generalize x y;clear x y.
+ induction x;destruct y;simpl;norm.
+ apply (ARgen_phiPOS_add ARth).
+ apply gen_phiZ1_add_pos_neg.
+ replace Eq with (CompOpp Eq);trivial.
+ rewrite <- Pcompare_antisym;simpl.
+ rewrite match_compOpp.
+ rewrite (Radd_comm Rth).
+ apply gen_phiZ1_add_pos_neg.
+ rewrite (ARgen_phiPOS_add ARth); norm.
+ Qed.
+
+ Lemma gen_phiZ_mul : forall x y, [x * y] == [x] * [y].
+ Proof.
+ intros x y;repeat rewrite same_genZ.
+ destruct x;destruct y;simpl;norm;
+ rewrite (ARgen_phiPOS_mult ARth);try (norm;fail).
+ rewrite (Ropp_opp Rsth Reqe Rth);rrefl.
+ Qed.
+
+ Lemma gen_phiZ_ext : forall x y : Z, x = y -> [x] == [y].
+ Proof. intros;subst;rrefl. Qed.
+
+(*proof that [.] satisfies morphism specifications*)
+ Lemma gen_phiZ_morph :
+ ring_morph 0 1 radd rmul rsub ropp req Z0 (Zpos xH)
+ Zplus Zmult Zminus Zopp Zeq_bool gen_phiZ.
+ Proof.
+ assert ( SRmorph : semi_morph 0 1 radd rmul req Z0 (Zpos xH)
+ Zplus Zmult Zeq_bool gen_phiZ).
+ apply mkRmorph;simpl;try rrefl.
+ apply gen_phiZ_add. apply gen_phiZ_mul. apply gen_Zeqb_ok.
+ apply (Smorph_morph Rsth Reqe Rth Zth SRmorph gen_phiZ_ext).
+ Qed.
+
+End ZMORPHISM.
+
+(** N is a semi-ring and a setoid*)
+Lemma Nsth : Setoid_Theory N (@eq N).
+Proof (Eqsth N).
+
+Lemma Nseqe : sring_eq_ext Nplus Nmult (@eq N).
+Proof (Eq_s_ext Nplus Nmult).
+
+Lemma Nth : semi_ring_theory N0 (Npos xH) Nplus Nmult (@eq N).
+Proof.
+ constructor. exact Nplus_0_l. exact Nplus_comm. exact Nplus_assoc.
+ exact Nmult_1_l. exact Nmult_0_l. exact Nmult_comm. exact Nmult_assoc.
+ exact Nmult_plus_distr_r.
+Qed.
+
+Definition Nsub := SRsub Nplus.
+Definition Nopp := (@SRopp N).
+
+Lemma Neqe : ring_eq_ext Nplus Nmult Nopp (@eq N).
+Proof (SReqe_Reqe Nseqe).
+
+Lemma Nath :
+ almost_ring_theory N0 (Npos xH) Nplus Nmult Nsub Nopp (@eq N).
+Proof (SRth_ARth Nsth Nth).
+
+Definition Neq_bool (x y:N) :=
+ match Ncompare x y with
+ | Eq => true
+ | _ => false
+ end.
+
+Lemma Neq_bool_ok : forall x y, Neq_bool x y = true -> x = y.
+ Proof.
+ intros x y;unfold Neq_bool.
+ assert (H:=Ncompare_Eq_eq x y);
+ destruct (Ncompare x y);intros;try discriminate.
+ rewrite H;trivial.
+ Qed.
+
+Lemma Neq_bool_complete : forall x y, Neq_bool x y = true -> x = y.
+ Proof.
+ intros x y;unfold Neq_bool.
+ assert (H:=Ncompare_Eq_eq x y);
+ destruct (Ncompare x y);intros;try discriminate.
+ rewrite H;trivial.
+ Qed.
+
+(**Same as above : definition of two,extensionaly equal, generic morphisms *)
+(**from N to any semi-ring*)
+Section NMORPHISM.
+ Variable R : Type.
+ Variable (rO rI : R) (radd rmul: R->R->R).
+ Variable req : R -> R -> Prop.
+ Notation "0" := rO. Notation "1" := rI.
+ Notation "x + y" := (radd x y). Notation "x * y " := (rmul x y).
+ Variable Rsth : Setoid_Theory R req.
+ Add Setoid R req Rsth as R_setoid4.
+ Ltac rrefl := gen_reflexivity Rsth.
+ Variable SReqe : sring_eq_ext radd rmul req.
+ Variable SRth : semi_ring_theory 0 1 radd rmul req.
+ Let ARth := SRth_ARth Rsth SRth.
+ Let Reqe := SReqe_Reqe SReqe.
+ Let ropp := (@SRopp R).
+ Let rsub := (@SRsub R radd).
+ Notation "x - y " := (rsub x y). Notation "- x" := (ropp x).
+ Notation "x == y" := (req x y).
+ Add Morphism radd : radd_ext4. exact (Radd_ext Reqe). Qed.
+ Add Morphism rmul : rmul_ext4. exact (Rmul_ext Reqe). Qed.
+ Add Morphism ropp : ropp_ext4. exact (Ropp_ext Reqe). Qed.
+ Add Morphism rsub : rsub_ext5. exact (ARsub_ext Rsth Reqe ARth). Qed.
+ Ltac norm := gen_srewrite Rsth Reqe ARth.
+
+ Definition gen_phiN1 x :=
+ match x with
+ | N0 => 0
+ | Npos x => gen_phiPOS1 1 radd rmul x
+ end.
+
+ Definition gen_phiN x :=
+ match x with
+ | N0 => 0
+ | Npos x => gen_phiPOS 1 radd rmul x
+ end.
+ Notation "[ x ]" := (gen_phiN x).
+
+ Lemma same_genN : forall x, [x] == gen_phiN1 x.
+ Proof.
+ destruct x;simpl. rrefl.
+ rewrite (same_gen Rsth Reqe ARth);rrefl.
+ Qed.
+
+ Lemma gen_phiN_add : forall x y, [x + y] == [x] + [y].
+ Proof.
+ intros x y;repeat rewrite same_genN.
+ destruct x;destruct y;simpl;norm.
+ apply (ARgen_phiPOS_add Rsth Reqe ARth).
+ Qed.
+
+ Lemma gen_phiN_mult : forall x y, [x * y] == [x] * [y].
+ Proof.
+ intros x y;repeat rewrite same_genN.
+ destruct x;destruct y;simpl;norm.
+ apply (ARgen_phiPOS_mult Rsth Reqe ARth).
+ Qed.
+
+ Lemma gen_phiN_sub : forall x y, [Nsub x y] == [x] - [y].
+ Proof. exact gen_phiN_add. Qed.
+
+(*gen_phiN satisfies morphism specifications*)
+ Lemma gen_phiN_morph : ring_morph 0 1 radd rmul rsub ropp req
+ N0 (Npos xH) Nplus Nmult Nsub Nopp Neq_bool gen_phiN.
+ Proof.
+ constructor;intros;simpl; try rrefl.
+ apply gen_phiN_add. apply gen_phiN_sub. apply gen_phiN_mult.
+ rewrite (Neq_bool_ok x y);trivial. rrefl.
+ Qed.
+
+End NMORPHISM.
+
+(* Words on N : initial structure for almost-rings. *)
+Definition Nword := list N.
+Definition NwO : Nword := nil.
+Definition NwI : Nword := 1%N :: nil.
+
+Definition Nwcons n (w : Nword) : Nword :=
+ match w, n with
+ | nil, 0%N => nil
+ | _, _ => n :: w
+ end.
+
+Fixpoint Nwadd (w1 w2 : Nword) {struct w1} : Nword :=
+ match w1, w2 with
+ | n1::w1', n2:: w2' => (n1+n2)%N :: Nwadd w1' w2'
+ | nil, _ => w2
+ | _, nil => w1
+ end.
+
+Definition Nwopp (w:Nword) : Nword := Nwcons 0%N w.
+
+Definition Nwsub w1 w2 := Nwadd w1 (Nwopp w2).
+
+Fixpoint Nwscal (n : N) (w : Nword) {struct w} : Nword :=
+ match w with
+ | m :: w' => (n*m)%N :: Nwscal n w'
+ | nil => nil
+ end.
+
+Fixpoint Nwmul (w1 w2 : Nword) {struct w1} : Nword :=
+ match w1 with
+ | 0%N::w1' => Nwopp (Nwmul w1' w2)
+ | n1::w1' => Nwsub (Nwscal n1 w2) (Nwmul w1' w2)
+ | nil => nil
+ end.
+Fixpoint Nw_is0 (w : Nword) : bool :=
+ match w with
+ | nil => true
+ | 0%N :: w' => Nw_is0 w'
+ | _ => false
+ end.
+
+Fixpoint Nweq_bool (w1 w2 : Nword) {struct w1} : bool :=
+ match w1, w2 with
+ | n1::w1', n2::w2' =>
+ if Neq_bool n1 n2 then Nweq_bool w1' w2' else false
+ | nil, _ => Nw_is0 w2
+ | _, nil => Nw_is0 w1
+ end.
+
+Section NWORDMORPHISM.
+ Variable R : Type.
+ Variable (rO rI : R) (radd rmul rsub: R->R->R) (ropp : R -> R).
+ Variable req : R -> R -> Prop.
+ Notation "0" := rO. Notation "1" := rI.
+ Notation "x + y" := (radd x y). Notation "x * y " := (rmul x y).
+ Notation "x - y " := (rsub x y). Notation "- x" := (ropp x).
+ Notation "x == y" := (req x y).
+ Variable Rsth : Setoid_Theory R req.
+ Add Setoid R req Rsth as R_setoid5.
+ Ltac rrefl := gen_reflexivity Rsth.
+ Variable Reqe : ring_eq_ext radd rmul ropp req.
+ Add Morphism radd : radd_ext5. exact (Radd_ext Reqe). Qed.
+ Add Morphism rmul : rmul_ext5. exact (Rmul_ext Reqe). Qed.
+ Add Morphism ropp : ropp_ext5. exact (Ropp_ext Reqe). Qed.
+
+ Variable ARth : almost_ring_theory 0 1 radd rmul rsub ropp req.
+ Add Morphism rsub : rsub_ext7. exact (ARsub_ext Rsth Reqe ARth). Qed.
+ Ltac norm := gen_srewrite Rsth Reqe ARth.
+ Ltac add_push := gen_add_push radd Rsth Reqe ARth.
+
+ Fixpoint gen_phiNword (w : Nword) : R :=
+ match w with
+ | nil => 0
+ | n :: nil => gen_phiN rO rI radd rmul n
+ | N0 :: w' => - gen_phiNword w'
+ | n::w' => gen_phiN rO rI radd rmul n - gen_phiNword w'
+ end.
+
+ Lemma gen_phiNword0_ok : forall w, Nw_is0 w = true -> gen_phiNword w == 0.
+Proof.
+induction w; simpl in |- *; intros; auto.
+ reflexivity.
+
+ destruct a.
+ destruct w.
+ reflexivity.
+
+ rewrite IHw in |- *; trivial.
+ apply (ARopp_zero Rsth Reqe ARth).
+
+ discriminate.
+Qed.
+
+ Lemma gen_phiNword_cons : forall w n,
+ gen_phiNword (n::w) == gen_phiN rO rI radd rmul n - gen_phiNword w.
+induction w.
+ destruct n; simpl in |- *; norm.
+
+ intros.
+ destruct n; norm.
+Qed.
+
+ Lemma gen_phiNword_Nwcons : forall w n,
+ gen_phiNword (Nwcons n w) == gen_phiN rO rI radd rmul n - gen_phiNword w.
+destruct w; intros.
+ destruct n; norm.
+
+ unfold Nwcons in |- *.
+ rewrite gen_phiNword_cons in |- *.
+ reflexivity.
+Qed.
+
+ Lemma gen_phiNword_ok : forall w1 w2,
+ Nweq_bool w1 w2 = true -> gen_phiNword w1 == gen_phiNword w2.
+induction w1; intros.
+ simpl in |- *.
+ rewrite (gen_phiNword0_ok _ H) in |- *.
+ reflexivity.
+
+ rewrite gen_phiNword_cons in |- *.
+ destruct w2.
+ simpl in H.
+ destruct a; try discriminate.
+ rewrite (gen_phiNword0_ok _ H) in |- *.
+ norm.
+
+ simpl in H.
+ rewrite gen_phiNword_cons in |- *.
+ case_eq (Neq_bool a n); intros.
+ rewrite H0 in H.
+ rewrite <- (Neq_bool_ok _ _ H0) in |- *.
+ rewrite (IHw1 _ H) in |- *.
+ reflexivity.
+
+ rewrite H0 in H; discriminate H.
+Qed.
+
+
+Lemma Nwadd_ok : forall x y,
+ gen_phiNword (Nwadd x y) == gen_phiNword x + gen_phiNword y.
+induction x; intros.
+ simpl in |- *.
+ norm.
+
+ destruct y.
+ simpl Nwadd; norm.
+
+ simpl Nwadd in |- *.
+ repeat rewrite gen_phiNword_cons in |- *.
+ rewrite (fun sreq => gen_phiN_add Rsth sreq (ARth_SRth ARth)) in |- * by
+ (destruct Reqe; constructor; trivial).
+
+ rewrite IHx in |- *.
+ norm.
+ add_push (- gen_phiNword x); reflexivity.
+Qed.
+
+Lemma Nwopp_ok : forall x, gen_phiNword (Nwopp x) == - gen_phiNword x.
+simpl in |- *.
+unfold Nwopp in |- *; simpl in |- *.
+intros.
+rewrite gen_phiNword_Nwcons in |- *; norm.
+Qed.
+
+Lemma Nwscal_ok : forall n x,
+ gen_phiNword (Nwscal n x) == gen_phiN rO rI radd rmul n * gen_phiNword x.
+induction x; intros.
+ norm.
+
+ simpl Nwscal in |- *.
+ repeat rewrite gen_phiNword_cons in |- *.
+ rewrite (fun sreq => gen_phiN_mult Rsth sreq (ARth_SRth ARth)) in |- *
+ by (destruct Reqe; constructor; trivial).
+
+ rewrite IHx in |- *.
+ norm.
+Qed.
+
+Lemma Nwmul_ok : forall x y,
+ gen_phiNword (Nwmul x y) == gen_phiNword x * gen_phiNword y.
+induction x; intros.
+ norm.
+
+ destruct a.
+ simpl Nwmul in |- *.
+ rewrite Nwopp_ok in |- *.
+ rewrite IHx in |- *.
+ rewrite gen_phiNword_cons in |- *.
+ norm.
+
+ simpl Nwmul in |- *.
+ unfold Nwsub in |- *.
+ rewrite Nwadd_ok in |- *.
+ rewrite Nwscal_ok in |- *.
+ rewrite Nwopp_ok in |- *.
+ rewrite IHx in |- *.
+ rewrite gen_phiNword_cons in |- *.
+ norm.
+Qed.
+
+(* Proof that [.] satisfies morphism specifications *)
+ Lemma gen_phiNword_morph :
+ ring_morph 0 1 radd rmul rsub ropp req
+ NwO NwI Nwadd Nwmul Nwsub Nwopp Nweq_bool gen_phiNword.
+constructor.
+ reflexivity.
+
+ reflexivity.
+
+ exact Nwadd_ok.
+
+ intros.
+ unfold Nwsub in |- *.
+ rewrite Nwadd_ok in |- *.
+ rewrite Nwopp_ok in |- *.
+ norm.
+
+ exact Nwmul_ok.
+
+ exact Nwopp_ok.
+
+ exact gen_phiNword_ok.
+Qed.
+
+End NWORDMORPHISM.
+
+Section GEN_DIV.
+
+ Variables (R : Type) (rO : R) (rI : R) (radd : R -> R -> R)
+ (rmul : R -> R -> R) (rsub : R -> R -> R) (ropp : R -> R)
+ (req : R -> R -> Prop) (C : Type) (cO : C) (cI : C)
+ (cadd : C -> C -> C) (cmul : C -> C -> C) (csub : C -> C -> C)
+ (copp : C -> C) (ceqb : C -> C -> bool) (phi : C -> R).
+ Variable Rsth : Setoid_Theory R req.
+ Variable Reqe : ring_eq_ext radd rmul ropp req.
+ Variable ARth : almost_ring_theory rO rI radd rmul rsub ropp req.
+ Variable morph : ring_morph rO rI radd rmul rsub ropp req cO cI cadd cmul csub copp ceqb phi.
+
+ (* Useful tactics *)
+ Add Setoid R req Rsth as R_set1.
+ Ltac rrefl := gen_reflexivity Rsth.
+ Add Morphism radd : radd_ext. exact (Radd_ext Reqe). Qed.
+ Add Morphism rmul : rmul_ext. exact (Rmul_ext Reqe). Qed.
+ Add Morphism ropp : ropp_ext. exact (Ropp_ext Reqe). Qed.
+ Add Morphism rsub : rsub_ext. exact (ARsub_ext Rsth Reqe ARth). Qed.
+ Ltac rsimpl := gen_srewrite Rsth Reqe ARth.
+
+ Definition triv_div x y :=
+ if ceqb x y then (cI, cO)
+ else (cO, x).
+
+ Ltac Esimpl :=repeat (progress (
+ match goal with
+ | |- context [phi cO] => rewrite (morph0 morph)
+ | |- context [phi cI] => rewrite (morph1 morph)
+ | |- context [phi (cadd ?x ?y)] => rewrite ((morph_add morph) x y)
+ | |- context [phi (cmul ?x ?y)] => rewrite ((morph_mul morph) x y)
+ | |- context [phi (csub ?x ?y)] => rewrite ((morph_sub morph) x y)
+ | |- context [phi (copp ?x)] => rewrite ((morph_opp morph) x)
+ end)).
+
+ Lemma triv_div_th : Ring_theory.div_theory req cadd cmul phi triv_div.
+ Proof.
+ constructor.
+ intros a b;unfold triv_div.
+ assert (X:= morph.(morph_eq) a b);destruct (ceqb a b).
+ Esimpl.
+ rewrite X; trivial.
+ rsimpl.
+ Esimpl; rsimpl.
+Qed.
+
+ Variable zphi : Z -> R.
+
+ Lemma Ztriv_div_th : div_theory req Zplus Zmult zphi ZOdiv_eucl.
+ Proof.
+ constructor.
+ intros; generalize (ZOdiv_eucl_correct a b); case ZOdiv_eucl; intros; subst.
+ rewrite Zmult_comm; rsimpl.
+ Qed.
+
+ Variable nphi : N -> R.
+
+ Lemma Ntriv_div_th : div_theory req Nplus Nmult nphi Ndiv_eucl.
+ constructor.
+ intros; generalize (Ndiv_eucl_correct a b); case Ndiv_eucl; intros; subst.
+ rewrite Nmult_comm; rsimpl.
+ Qed.
+
+End GEN_DIV.
+
+ (* syntaxification of constants in an abstract ring:
+ the inverse of gen_phiPOS *)
+ Ltac inv_gen_phi_pos rI add mul t :=
+ let rec inv_cst t :=
+ match t with
+ rI => constr:1%positive
+ | (add rI rI) => constr:2%positive
+ | (add rI (add rI rI)) => constr:3%positive
+ | (mul (add rI rI) ?p) => (* 2p *)
+ match inv_cst p with
+ NotConstant => constr:NotConstant
+ | 1%positive => constr:NotConstant (* 2*1 is not convertible to 2 *)
+ | ?p => constr:(xO p)
+ end
+ | (add rI (mul (add rI rI) ?p)) => (* 1+2p *)
+ match inv_cst p with
+ NotConstant => constr:NotConstant
+ | 1%positive => constr:NotConstant
+ | ?p => constr:(xI p)
+ end
+ | _ => constr:NotConstant
+ end in
+ inv_cst t.
+
+(* The (partial) inverse of gen_phiNword *)
+ Ltac inv_gen_phiNword rO rI add mul opp t :=
+ match t with
+ rO => constr:NwO
+ | _ =>
+ match inv_gen_phi_pos rI add mul t with
+ NotConstant => constr:NotConstant
+ | ?p => constr:(Npos p::nil)
+ end
+ end.
+
+
+(* The inverse of gen_phiN *)
+ Ltac inv_gen_phiN rO rI add mul t :=
+ match t with
+ rO => constr:0%N
+ | _ =>
+ match inv_gen_phi_pos rI add mul t with
+ NotConstant => constr:NotConstant
+ | ?p => constr:(Npos p)
+ end
+ end.
+
+(* The inverse of gen_phiZ *)
+ Ltac inv_gen_phiZ rO rI add mul opp t :=
+ match t with
+ rO => constr:0%Z
+ | (opp ?p) =>
+ match inv_gen_phi_pos rI add mul p with
+ NotConstant => constr:NotConstant
+ | ?p => constr:(Zneg p)
+ end
+ | _ =>
+ match inv_gen_phi_pos rI add mul t with
+ NotConstant => constr:NotConstant
+ | ?p => constr:(Zpos p)
+ end
+ end.
+
+(* A simple tactic recognizing only 0 and 1. The inv_gen_phiX above
+ are only optimisations that directly returns the reifid constant
+ instead of resorting to the constant propagation of the simplification
+ algorithm. *)
+Ltac inv_gen_phi rO rI cO cI t :=
+ match t with
+ | rO => cO
+ | rI => cI
+ end.
+
+(* A simple tactic recognizing no constant *)
+ Ltac inv_morph_nothing t := constr:NotConstant.
+
+Ltac coerce_to_almost_ring set ext rspec :=
+ match type of rspec with
+ | ring_theory _ _ _ _ _ _ _ => constr:(Rth_ARth set ext rspec)
+ | semi_ring_theory _ _ _ _ _ => constr:(SRth_ARth set rspec)
+ | almost_ring_theory _ _ _ _ _ _ _ => rspec
+ | _ => fail 1 "not a valid ring theory"
+ end.
+
+Ltac coerce_to_ring_ext ext :=
+ match type of ext with
+ | ring_eq_ext _ _ _ _ => ext
+ | sring_eq_ext _ _ _ => constr:(SReqe_Reqe ext)
+ | _ => fail 1 "not a valid ring_eq_ext theory"
+ end.
+
+Ltac abstract_ring_morphism set ext rspec :=
+ match type of rspec with
+ | ring_theory _ _ _ _ _ _ _ => constr:(gen_phiZ_morph set ext rspec)
+ | semi_ring_theory _ _ _ _ _ => constr:(gen_phiN_morph set ext rspec)
+ | almost_ring_theory _ _ _ _ _ _ _ =>
+ constr:(gen_phiNword_morph set ext rspec)
+ | _ => fail 1 "bad ring structure"
+ end.
+
+Record hypo : Type := mkhypo {
+ hypo_type : Type;
+ hypo_proof : hypo_type
+ }.
+
+Ltac gen_ring_pow set arth pspec :=
+ match pspec with
+ | None =>
+ match type of arth with
+ | @almost_ring_theory ?R ?rO ?rI ?radd ?rmul ?rsub ?ropp ?req =>
+ constr:(mkhypo (@pow_N_th R rI rmul req set))
+ | _ => fail 1 "gen_ring_pow"
+ end
+ | Some ?t => constr:(t)
+ end.
+
+Ltac gen_ring_sign morph sspec :=
+ match sspec with
+ | None =>
+ match type of morph with
+ | @ring_morph ?R ?r0 ?rI ?radd ?rmul ?rsub ?ropp ?req
+ Z ?c0 ?c1 ?cadd ?cmul ?csub ?copp ?ceqb ?phi =>
+ constr:(@mkhypo (sign_theory copp ceqb get_signZ) get_signZ_th)
+ | @ring_morph ?R ?r0 ?rI ?radd ?rmul ?rsub ?ropp ?req
+ ?C ?c0 ?c1 ?cadd ?cmul ?csub ?copp ?ceqb ?phi =>
+ constr:(mkhypo (@get_sign_None_th C copp ceqb))
+ | _ => fail 2 "ring anomaly : default_sign_spec"
+ end
+ | Some ?t => constr:(t)
+ end.
+
+Ltac default_div_spec set reqe arth morph :=
+ match type of morph with
+ | @ring_morph ?R ?r0 ?rI ?radd ?rmul ?rsub ?ropp ?req
+ Z ?c0 ?c1 Zplus Zmult ?csub ?copp ?ceq_b ?phi =>
+ constr:(mkhypo (Ztriv_div_th set phi))
+ | @ring_morph ?R ?r0 ?rI ?radd ?rmul ?rsub ?ropp ?req
+ N ?c0 ?c1 Nplus Nmult ?csub ?copp ?ceq_b ?phi =>
+ constr:(mkhypo (Ntriv_div_th set phi))
+ | @ring_morph ?R ?r0 ?rI ?radd ?rmul ?rsub ?ropp ?req
+ ?C ?c0 ?c1 ?cadd ?cmul ?csub ?copp ?ceq_b ?phi =>
+ constr:(mkhypo (triv_div_th set reqe arth morph))
+ | _ => fail 1 "ring anomaly : default_sign_spec"
+ end.
+
+Ltac gen_ring_div set reqe arth morph dspec :=
+ match dspec with
+ | None => default_div_spec set reqe arth morph
+ | Some ?t => constr:(t)
+ end.
+
+Ltac ring_elements set ext rspec pspec sspec dspec rk :=
+ let arth := coerce_to_almost_ring set ext rspec in
+ let ext_r := coerce_to_ring_ext ext in
+ let morph :=
+ match rk with
+ | Abstract => abstract_ring_morphism set ext rspec
+ | @Computational ?reqb_ok =>
+ match type of arth with
+ | almost_ring_theory ?rO ?rI ?add ?mul ?sub ?opp _ =>
+ constr:(IDmorph rO rI add mul sub opp set _ reqb_ok)
+ | _ => fail 2 "ring anomaly"
+ end
+ | @Morphism ?m =>
+ match type of m with
+ | ring_morph _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ => m
+ | @semi_morph _ _ _ _ _ _ _ _ _ _ _ _ _ =>
+ constr:(SRmorph_Rmorph set m)
+ | _ => fail 2 "ring anomaly"
+ end
+ | _ => fail 1 "ill-formed ring kind"
+ end in
+ let p_spec := gen_ring_pow set arth pspec in
+ let s_spec := gen_ring_sign morph sspec in
+ let d_spec := gen_ring_div set ext_r arth morph dspec in
+ fun f => f arth ext_r morph p_spec s_spec d_spec.
+
+(* Given a ring structure and the kind of morphism,
+ returns 2 lemmas (one for ring, and one for ring_simplify). *)
+
+ Ltac ring_lemmas set ext rspec pspec sspec dspec rk :=
+ let gen_lemma2 :=
+ match pspec with
+ | None => constr:(ring_rw_correct)
+ | Some _ => constr:(ring_rw_pow_correct)
+ end in
+ ring_elements set ext rspec pspec sspec dspec rk
+ ltac:(fun arth ext_r morph p_spec s_spec d_spec =>
+ match type of morph with
+ | @ring_morph ?R ?r0 ?rI ?radd ?rmul ?rsub ?ropp ?req
+ ?C ?c0 ?c1 ?cadd ?cmul ?csub ?copp ?ceq_b ?phi =>
+ let gen_lemma2_0 :=
+ constr:(gen_lemma2 R r0 rI radd rmul rsub ropp req set ext_r arth
+ C c0 c1 cadd cmul csub copp ceq_b phi morph) in
+ match p_spec with
+ | @mkhypo (power_theory _ _ _ ?Cp_phi ?rpow) ?pp_spec =>
+ let gen_lemma2_1 := constr:(gen_lemma2_0 _ Cp_phi rpow pp_spec) in
+ match d_spec with
+ | @mkhypo (div_theory _ _ _ _ ?cdiv) ?dd_spec =>
+ let gen_lemma2_2 := constr:(gen_lemma2_1 cdiv dd_spec) in
+ match s_spec with
+ | @mkhypo (sign_theory _ _ ?get_sign) ?ss_spec =>
+ let lemma2 := constr:(gen_lemma2_2 get_sign ss_spec) in
+ let lemma1 :=
+ constr:(ring_correct set ext_r arth morph pp_spec dd_spec) in
+ fun f => f arth ext_r morph lemma1 lemma2
+ | _ => fail 4 "ring: bad sign specification"
+ end
+ | _ => fail 3 "ring: bad coefficiant division specification"
+ end
+ | _ => fail 2 "ring: bad power specification"
+ end
+ | _ => fail 1 "ring internal error: ring_lemmas, please report"
+ end).
+
+(* Tactic for constant *)
+Ltac isnatcst t :=
+ match t with
+ O => constr:true
+ | S ?p => isnatcst p
+ | _ => constr:false
+ end.
+
+Ltac isPcst t :=
+ match t with
+ | xI ?p => isPcst p
+ | xO ?p => isPcst p
+ | xH => constr:true
+ (* nat -> positive *)
+ | P_of_succ_nat ?n => isnatcst n
+ | _ => constr:false
+ end.
+
+Ltac isNcst t :=
+ match t with
+ N0 => constr:true
+ | Npos ?p => isPcst p
+ | _ => constr:false
+ end.
+
+Ltac isZcst t :=
+ match t with
+ Z0 => constr:true
+ | Zpos ?p => isPcst p
+ | Zneg ?p => isPcst p
+ (* injection nat -> Z *)
+ | Z_of_nat ?n => isnatcst n
+ (* injection N -> Z *)
+ | Z_of_N ?n => isNcst n
+ (* *)
+ | _ => constr:false
+ end.
+
+
+
+
+