aboutsummaryrefslogtreecommitdiffhomepage
path: root/plugins/rtauto
diff options
context:
space:
mode:
authorGravatar letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7>2011-05-05 15:12:15 +0000
committerGravatar letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7>2011-05-05 15:12:15 +0000
commitc0a3544d6351e19c695951796bcee838671d1098 (patch)
treed87f69afd73340492ac694b2aa837024a90e8692 /plugins/rtauto
parentf61a557fbbdb89a4c24a8050a67252c3ecda6ea7 (diff)
Modularization of BinPos + fixes in Stdlib
BinPos now contain a sub-module Pos, in which are placed functions like add (ex-Pplus), mul (ex-Pmult), ... and properties like add_comm, add_assoc, ... In addition to the name changes, the organisation is changed quite a lot, to try to take advantage more of the orders < and <= instead of speaking only of the comparison function. The main source of incompatibilities in scripts concerns this compare: Pos.compare is now a binary operation, expressed in terms of the ex-Pcompare which is ternary (expecting an initial comparision as 3rd arg), this ternary version being called now Pos.compare_cont. As for everything else, compatibility notations (only parsing) are provided. But notations "_ ?= _" on positive will have to be edited, since they now point to Pos.compare. We also make the sub-module Pos to be directly an OrderedType, and include results about min and max. git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@14098 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'plugins/rtauto')
-rw-r--r--plugins/rtauto/Bintree.v162
-rw-r--r--plugins/rtauto/Rtauto.v37
2 files changed, 43 insertions, 156 deletions
diff --git a/plugins/rtauto/Bintree.v b/plugins/rtauto/Bintree.v
index 6c250ef4f..e3e9078e3 100644
--- a/plugins/rtauto/Bintree.v
+++ b/plugins/rtauto/Bintree.v
@@ -12,139 +12,20 @@ Require Export BinPos.
Open Scope positive_scope.
Ltac clean := try (simpl; congruence).
-Ltac caseq t := generalize (refl_equal t); pattern t at -1; case t.
-
-Functional Scheme Pcompare_ind := Induction for Pcompare Sort Prop.
-
-Lemma Gt_Eq_Gt : forall p q cmp,
- (p ?= q) Eq = Gt -> (p ?= q) cmp = Gt.
-apply (Pcompare_ind (fun p q cmp _ => (p ?= q) Eq = Gt -> (p ?= q) cmp = Gt));
-simpl;auto;congruence.
-Qed.
-
-Lemma Gt_Lt_Gt : forall p q cmp,
- (p ?= q) Lt = Gt -> (p ?= q) cmp = Gt.
-apply (Pcompare_ind (fun p q cmp _ => (p ?= q) Lt = Gt -> (p ?= q) cmp = Gt));
-simpl;auto;congruence.
-Qed.
-
-Lemma Gt_Psucc_Eq: forall p q,
- (p ?= Psucc q) Gt = Gt -> (p ?= q) Eq = Gt.
-intros p q;generalize p;clear p;induction q;destruct p;simpl;auto;try congruence.
-intro;apply Gt_Eq_Gt;auto.
-apply Gt_Lt_Gt.
-Qed.
-
-Lemma Eq_Psucc_Gt: forall p q,
- (p ?= Psucc q) Eq = Eq -> (p ?= q) Eq = Gt.
-intros p q;generalize p;clear p;induction q;destruct p;simpl;auto;try congruence.
-intro H;elim (Pcompare_not_Eq p (Psucc q));tauto.
-intro H;apply Gt_Eq_Gt;auto.
-intro H;rewrite Pcompare_Eq_eq with p q;auto.
-generalize q;clear q IHq p H;induction q;simpl;auto.
-intro H;elim (Pcompare_not_Eq p q);tauto.
-Qed.
-
-Lemma Gt_Psucc_Gt : forall n p cmp cmp0,
- (n?=p) cmp = Gt -> (Psucc n?=p) cmp0 = Gt.
-induction n;intros [ | p | p];simpl;try congruence.
-intros; apply IHn with cmp;trivial.
-intros; apply IHn with Gt;trivial.
-intros;apply Gt_Lt_Gt;trivial.
-intros [ | | ] _ H.
-apply Gt_Eq_Gt;trivial.
-apply Gt_Lt_Gt;trivial.
-trivial.
-Qed.
Lemma Gt_Psucc: forall p q,
- (p ?= Psucc q) Eq = Gt -> (p ?= q) Eq = Gt.
-intros p q;generalize p;clear p;induction q;destruct p;simpl;auto;try congruence.
-apply Gt_Psucc_Eq.
-intro;apply Gt_Eq_Gt;apply IHq;auto.
-apply Gt_Eq_Gt.
-apply Gt_Lt_Gt.
+ (p ?= Psucc q) = Gt -> (p ?= q) = Gt.
+Proof.
+intros. rewrite <- Pos.compare_succ_succ.
+now apply Pos.lt_gt, Pos.lt_lt_succ, Pos.gt_lt.
Qed.
Lemma Psucc_Gt : forall p,
- (Psucc p ?= p) Eq = Gt.
-induction p;simpl.
-apply Gt_Eq_Gt;auto.
-generalize p;clear p IHp.
-induction p;simpl;auto.
-reflexivity.
-Qed.
-
-Fixpoint pos_eq (m n:positive) {struct m} :bool :=
-match m, n with
- xI mm, xI nn => pos_eq mm nn
-| xO mm, xO nn => pos_eq mm nn
-| xH, xH => true
-| _, _ => false
-end.
-
-Theorem pos_eq_refl : forall m n, pos_eq m n = true -> m = n.
-induction m;simpl;intro n;destruct n;congruence ||
-(intro e;apply f_equal;auto).
-Defined.
-
-Theorem refl_pos_eq : forall m, pos_eq m m = true.
-induction m;simpl;auto.
+ (Psucc p ?= p) = Gt.
+Proof.
+intros. apply Pos.lt_gt, Pos.lt_succ_diag_r.
Qed.
-Definition pos_eq_dec : forall (m n:positive), {m=n}+{m<>n} .
-fix 1;intros [mm|mm|] [nn|nn|];try (right;congruence).
-case (pos_eq_dec mm nn).
-intro e;left;apply (f_equal xI e).
-intro ne;right;congruence.
-case (pos_eq_dec mm nn).
-intro e;left;apply (f_equal xO e).
-intro ne;right;congruence.
-left;reflexivity.
-Defined.
-
-Theorem pos_eq_dec_refl : forall m, pos_eq_dec m m = left _ (refl_equal m).
-fix 1;intros [mm|mm|].
-simpl; rewrite pos_eq_dec_refl; reflexivity.
-simpl; rewrite pos_eq_dec_refl; reflexivity.
-reflexivity.
-Qed.
-
-Theorem pos_eq_dec_ex : forall m n,
- pos_eq m n =true -> exists h:m=n,
- pos_eq_dec m n = left _ h.
-fix 1;intros [mm|mm|] [nn|nn|];try (simpl;congruence).
-simpl;intro e.
-elim (pos_eq_dec_ex _ _ e).
-intros x ex; rewrite ex.
-exists (f_equal xI x).
-reflexivity.
-simpl;intro e.
-elim (pos_eq_dec_ex _ _ e).
-intros x ex; rewrite ex.
-exists (f_equal xO x).
-reflexivity.
-simpl.
-exists (refl_equal xH).
-reflexivity.
-Qed.
-
-Fixpoint nat_eq (m n:nat) {struct m}: bool:=
-match m, n with
-O,O => true
-| S mm,S nn => nat_eq mm nn
-| _,_ => false
-end.
-
-Theorem nat_eq_refl : forall m n, nat_eq m n = true -> m = n.
-induction m;simpl;intro n;destruct n;congruence ||
-(intro e;apply f_equal;auto).
-Defined.
-
-Theorem refl_nat_eq : forall n, nat_eq n n = true.
-induction n;simpl;trivial.
-Defined.
-
Fixpoint Lget (A:Set) (n:nat) (l:list A) {struct l}:option A :=
match l with nil => None
| x::q =>
@@ -178,7 +59,8 @@ simpl;auto.
Qed.
Lemma Lget_app : forall (A:Set) (a:A) l i,
-Lget i (l ++ a :: nil) = if nat_eq i (length l) then Some a else Lget i l.
+Lget i (l ++ a :: nil) = if nat_beq i (length l) then Some a else Lget i l.
+Proof.
induction l;simpl Lget;simpl length.
intros [ | i];simpl;reflexivity.
intros [ | i];simpl.
@@ -274,17 +156,20 @@ Qed.
Theorem Tget_Tadd: forall i j a T,
Tget i (Tadd j a T) =
- match (i ?= j) Eq with
+ match (i ?= j) with
Eq => PSome a
| Lt => Tget i T
| Gt => Tget i T
end.
+Proof.
intros i j.
-caseq ((i ?= j) Eq).
-intro H;rewrite (Pcompare_Eq_eq _ _ H);intros a;clear i H.
+case_eq (i ?= j).
+intro H;rewrite (Pos.compare_eq _ _ H);intros a;clear i H.
induction j;destruct T;simpl;try (apply IHj);congruence.
+unfold Pos.compare.
generalize i;clear i;induction j;destruct T;simpl in H|-*;
destruct i;simpl;try rewrite (IHj _ H);try (destruct i;simpl;congruence);reflexivity|| congruence.
+unfold Pos.compare.
generalize i;clear i;induction j;destruct T;simpl in H|-*;
destruct i;simpl;try rewrite (IHj _ H);try (destruct i;simpl;congruence);reflexivity|| congruence.
Qed.
@@ -308,7 +193,8 @@ Inductive Full : Store -> Type:=
| F_push : forall a S, Full S -> Full (push a S).
Theorem get_Full_Gt : forall S, Full S ->
- forall i, (i ?= index S) Eq = Gt -> get i S = PNone.
+ forall i, (i ?= index S) = Gt -> get i S = PNone.
+Proof.
intros S W;induction W.
unfold empty,index,get,contents;intros;apply Tget_Tempty.
unfold index,get,push;simpl contents.
@@ -335,16 +221,17 @@ Qed.
Theorem get_push_Full :
forall i a S, Full S ->
get i (push a S) =
- match (i ?= index S) Eq with
+ match (i ?= index S) with
Eq => PSome a
| Lt => get i S
| Gt => PNone
end.
+Proof.
intros i a S F.
-caseq ((i ?= index S) Eq).
-intro e;rewrite (Pcompare_Eq_eq _ _ e).
+case_eq (i ?= index S).
+intro e;rewrite (Pos.compare_eq _ _ e).
destruct S;unfold get,push,index;simpl contents;rewrite Tget_Tadd.
-rewrite Pcompare_refl;reflexivity.
+rewrite Pos.compare_refl;reflexivity.
intros;destruct S;unfold get,push,index;simpl contents;rewrite Tget_Tadd.
simpl index in H;rewrite H;reflexivity.
intro H;generalize H;clear H.
@@ -357,8 +244,9 @@ Qed.
Lemma Full_push_compat : forall i a S, Full S ->
forall x, get i S = PSome x ->
get i (push a S) = PSome x.
+Proof.
intros i a S F x H.
-caseq ((i ?= index S) Eq);intro test.
+case_eq (i ?= index S);intro test.
rewrite (Pcompare_Eq_eq _ _ test) in H.
rewrite (get_Full_Eq _ F) in H;congruence.
rewrite <- H.
@@ -391,7 +279,7 @@ get i S = PSome x -> In x S F.
induction F.
intro i;rewrite get_empty; congruence.
intro i;rewrite get_push_Full;trivial.
-caseq ((i ?= index S) Eq);simpl.
+case_eq (i ?= index S);simpl.
left;congruence.
right;eauto.
congruence.
diff --git a/plugins/rtauto/Rtauto.v b/plugins/rtauto/Rtauto.v
index f5d452f7e..8b5e42447 100644
--- a/plugins/rtauto/Rtauto.v
+++ b/plugins/rtauto/Rtauto.v
@@ -13,7 +13,6 @@ Require Import Bool.
Declare ML Module "rtauto_plugin".
-Ltac caseq t := generalize (refl_equal t); pattern t at -1; case t.
Ltac clean:=try (simpl;congruence).
Inductive form:Set:=
@@ -66,11 +65,11 @@ end.
Theorem form_eq_refl: forall p q, form_eq p q = true -> p = q.
induction p;destruct q;simpl;clean.
intro h;generalize (pos_eq_refl _ _ h);congruence.
-caseq (form_eq p1 q1);clean.
+case_eq (form_eq p1 q1);clean.
intros e1 e2;generalize (IHp1 _ e1) (IHp2 _ e2);congruence.
-caseq (form_eq p1 q1);clean.
+case_eq (form_eq p1 q1);clean.
intros e1 e2;generalize (IHp1 _ e1) (IHp2 _ e2);congruence.
-caseq (form_eq p1 q1);clean.
+case_eq (form_eq p1 q1);clean.
intros e1 e2;generalize (IHp1 _ e1) (IHp2 _ e2);congruence.
Qed.
@@ -260,7 +259,7 @@ induction p;intros hyps F gl.
(* cas Axiom *)
Focus 1.
-simpl;caseq (get p hyps);clean.
+simpl;case_eq (get p hyps);clean.
intros f nth_f e;rewrite <- (form_eq_refl e).
apply project with p;trivial.
@@ -273,10 +272,10 @@ apply IHp;try constructor;trivial.
(* Cas Arrow_Elim *)
Focus 1.
-simpl check_proof;caseq (get p hyps);clean.
-intros f ef;caseq (get p0 hyps);clean.
+simpl check_proof;case_eq (get p hyps);clean.
+intros f ef;case_eq (get p0 hyps);clean.
intros f0 ef0;destruct f0;clean.
-caseq (form_eq f f0_1);clean.
+case_eq (form_eq f f0_1);clean.
simpl;intros e check_p1.
generalize (project F ef) (project F ef0)
(IHp (hyps \ f0_2) (F_push f0_2 hyps F) gl check_p1);
@@ -288,10 +287,10 @@ auto.
(* cas Arrow_Destruct *)
Focus 1.
-simpl;caseq (get p1 hyps);clean.
+simpl;case_eq (get p1 hyps);clean.
intros f ef;destruct f;clean.
destruct f1;clean.
-caseq (check_proof (hyps \ f1_2 =>> f2 \ f1_1) f1_2 p2);clean.
+case_eq (check_proof (hyps \ f1_2 =>> f2 \ f1_1) f1_2 p2);clean.
intros check_p1 check_p2.
generalize (project F ef)
(IHp1 (hyps \ f1_2 =>> f2 \ f1_1)
@@ -302,7 +301,7 @@ simpl;apply compose3;auto.
(* Cas False_Elim *)
Focus 1.
-simpl;caseq (get p hyps);clean.
+simpl;case_eq (get p hyps);clean.
intros f ef;destruct f;clean.
intros _; generalize (project F ef).
apply compose1;apply False_ind.
@@ -310,13 +309,13 @@ apply compose1;apply False_ind.
(* Cas And_Intro *)
Focus 1.
simpl;destruct gl;clean.
-caseq (check_proof hyps gl1 p1);clean.
+case_eq (check_proof hyps gl1 p1);clean.
intros Hp1 Hp2;generalize (IHp1 hyps F gl1 Hp1) (IHp2 hyps F gl2 Hp2).
apply compose2 ;simpl;auto.
(* cas And_Elim *)
Focus 1.
-simpl;caseq (get p hyps);clean.
+simpl;case_eq (get p hyps);clean.
intros f ef;destruct f;clean.
intro check_p;generalize (project F ef)
(IHp (hyps \ f1 \ f2) (F_push f2 (hyps \ f1) (F_push f1 hyps F)) gl check_p).
@@ -324,7 +323,7 @@ simpl;apply compose2;intros [h1 h2];auto.
(* cas And_Destruct *)
Focus 1.
-simpl;caseq (get p hyps);clean.
+simpl;case_eq (get p hyps);clean.
intros f ef;destruct f;clean.
destruct f1;clean.
intro H;generalize (project F ef)
@@ -346,9 +345,9 @@ apply compose1;simpl;auto.
(* cas Or_elim *)
Focus 1.
-simpl;caseq (get p1 hyps);clean.
+simpl;case_eq (get p1 hyps);clean.
intros f ef;destruct f;clean.
-caseq (check_proof (hyps \ f1) gl p2);clean.
+case_eq (check_proof (hyps \ f1) gl p2);clean.
intros check_p1 check_p2;generalize (project F ef)
(IHp1 (hyps \ f1) (F_push f1 hyps F) gl check_p1)
(IHp2 (hyps \ f2) (F_push f2 hyps F) gl check_p2);
@@ -356,7 +355,7 @@ simpl;apply compose3;simpl;intro h;destruct h;auto.
(* cas Or_Destruct *)
Focus 1.
-simpl;caseq (get p hyps);clean.
+simpl;case_eq (get p hyps);clean.
intros f ef;destruct f;clean.
destruct f1;clean.
intro check_p0;generalize (project F ef)
@@ -367,7 +366,7 @@ apply compose2;auto.
(* cas Cut *)
Focus 1.
-simpl;caseq (check_proof hyps f p1);clean.
+simpl;case_eq (check_proof hyps f p1);clean.
intros check_p1 check_p2;
generalize (IHp1 hyps F f check_p1)
(IHp2 (hyps\f) (F_push f hyps F) gl check_p2);
@@ -375,7 +374,7 @@ simpl; apply compose2;auto.
Qed.
Theorem Reflect: forall gl prf, if check_proof empty gl prf then [[gl]] else True.
-intros gl prf;caseq (check_proof empty gl prf);intro check_prf.
+intros gl prf;case_eq (check_proof empty gl prf);intro check_prf.
change (interp_ctx empty F_empty [[gl]]) ;
apply interp_proof with prf;assumption.
trivial.