aboutsummaryrefslogtreecommitdiffhomepage
path: root/plugins/rtauto
diff options
context:
space:
mode:
authorGravatar msozeau <msozeau@85f007b7-540e-0410-9357-904b9bb8a0f7>2010-08-02 21:14:19 +0000
committerGravatar msozeau <msozeau@85f007b7-540e-0410-9357-904b9bb8a0f7>2010-08-02 21:14:19 +0000
commitaab16ea645fefd71b6bd0fdb155a076640ab0d4e (patch)
tree3ed018277f794418597f53b40de974f7c41bbb6e /plugins/rtauto
parent799afff6971ffe639c764dd88b54cad288f65bc2 (diff)
Fix [clenv_missing] to compute a better approximation of missing
dependent arguments. It breaks compatibility as some [apply with] clauses are not necessary anymore. Typically when applying [f_equal], the domain type of the function can be infered even if it does not appear directly in the conclusion of the goal. Fixes bug #2154. git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@13367 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'plugins/rtauto')
-rw-r--r--plugins/rtauto/Bintree.v8
-rw-r--r--plugins/rtauto/Rtauto.v2
2 files changed, 5 insertions, 5 deletions
diff --git a/plugins/rtauto/Bintree.v b/plugins/rtauto/Bintree.v
index d68fb1656..769869584 100644
--- a/plugins/rtauto/Bintree.v
+++ b/plugins/rtauto/Bintree.v
@@ -87,7 +87,7 @@ end.
Theorem pos_eq_refl : forall m n, pos_eq m n = true -> m = n.
induction m;simpl;intro n;destruct n;congruence ||
-(intro e;apply f_equal with positive;auto).
+(intro e;apply f_equal;auto).
Defined.
Theorem refl_pos_eq : forall m, pos_eq m m = true.
@@ -140,7 +140,7 @@ end.
Theorem nat_eq_refl : forall m n, nat_eq m n = true -> m = n.
induction m;simpl;intro n;destruct n;congruence ||
-(intro e;apply f_equal with nat;auto).
+(intro e;apply f_equal;auto).
Defined.
Theorem refl_nat_eq : forall n, nat_eq n n = true.
@@ -161,14 +161,14 @@ List.map f (l ++ m) = List.map f l ++ List.map f m.
induction l.
reflexivity.
simpl.
-intro m ; apply f_equal with (list B);apply IHl.
+intro m ; apply f_equal;apply IHl.
Qed.
Lemma length_map : forall (A B:Set) (f:A -> B) l,
length (List.map f l) = length l.
induction l.
reflexivity.
-simpl; apply f_equal with nat;apply IHl.
+simpl; apply f_equal;apply IHl.
Qed.
Lemma Lget_map : forall (A B:Set) (f:A -> B) i l,
diff --git a/plugins/rtauto/Rtauto.v b/plugins/rtauto/Rtauto.v
index 63e6717a0..e80542831 100644
--- a/plugins/rtauto/Rtauto.v
+++ b/plugins/rtauto/Rtauto.v
@@ -41,7 +41,7 @@ end.
Theorem pos_eq_refl : forall m n, pos_eq m n = true -> m = n.
induction m;simpl;destruct n;congruence ||
-(intro e;apply f_equal with positive;auto).
+(intro e;apply f_equal;auto).
Qed.
Fixpoint form_eq (p q:form) {struct p} :bool :=