aboutsummaryrefslogtreecommitdiffhomepage
path: root/plugins/romega
diff options
context:
space:
mode:
authorGravatar Pierre Letouzey <pierre.letouzey@inria.fr>2017-06-16 17:40:04 +0200
committerGravatar Pierre Letouzey <pierre.letouzey@inria.fr>2018-03-06 18:24:28 +0100
commita768e75f761ae444c05162ec1d064795d413ba25 (patch)
treed8d501dda29040c3e750b1077785833675ab3a43 /plugins/romega
parentdf9d3a36e71d6d224286811fdc529ad5a955deb7 (diff)
romega: get rid of EConstr.Unsafe
We replace constr by EConstr.t everywhere, and propagate some extra sigma args
Diffstat (limited to 'plugins/romega')
-rw-r--r--plugins/romega/const_omega.ml175
-rw-r--r--plugins/romega/const_omega.mli155
-rw-r--r--plugins/romega/refl_omega.ml148
3 files changed, 246 insertions, 232 deletions
diff --git a/plugins/romega/const_omega.ml b/plugins/romega/const_omega.ml
index 0f5417e7d..ad3afafd8 100644
--- a/plugins/romega/const_omega.ml
+++ b/plugins/romega/const_omega.ml
@@ -7,15 +7,14 @@
*************************************************************************)
open Names
-open Constr
let module_refl_name = "ReflOmegaCore"
let module_refl_path = ["Coq"; "romega"; module_refl_name]
type result =
| Kvar of string
- | Kapp of string * constr list
- | Kimp of constr * constr
+ | Kapp of string * EConstr.t list
+ | Kimp of EConstr.t * EConstr.t
| Kufo
let meaningful_submodule = [ "Z"; "N"; "Pos" ]
@@ -30,9 +29,10 @@ let string_of_global r =
in
prefix^(Names.Id.to_string (Nametab.basename_of_global r))
-let destructurate t =
- let c, args = decompose_app t in
- match Constr.kind c, args with
+let destructurate sigma t =
+ let c, args = EConstr.decompose_app sigma t in
+ let open Constr in
+ match EConstr.kind sigma c, args with
| Const (sp,_), args ->
Kapp (string_of_global (Globnames.ConstRef sp), args)
| Construct (csp,_) , args ->
@@ -45,10 +45,11 @@ let destructurate t =
exception DestConstApp
-let dest_const_apply t =
- let f,args = decompose_app t in
+let dest_const_apply sigma t =
+ let open Constr in
+ let f,args = EConstr.decompose_app sigma t in
let ref =
- match Constr.kind f with
+ match EConstr.kind sigma f with
| Const (sp,_) -> Globnames.ConstRef sp
| Construct (csp,_) -> Globnames.ConstructRef csp
| Ind (isp,_) -> Globnames.IndRef isp
@@ -66,10 +67,22 @@ let coq_modules =
let bin_module = [["Coq";"Numbers";"BinNums"]]
let z_module = [["Coq";"ZArith";"BinInt"]]
-let init_constant x = Universes.constr_of_global @@ Coqlib.gen_reference_in_modules "Omega" Coqlib.init_modules x
-let constant x = Universes.constr_of_global @@ Coqlib.gen_reference_in_modules "Omega" coq_modules x
-let z_constant x = Universes.constr_of_global @@ Coqlib.gen_reference_in_modules "Omega" z_module x
-let bin_constant x = Universes.constr_of_global @@ Coqlib.gen_reference_in_modules "Omega" bin_module x
+let init_constant x =
+ EConstr.of_constr @@
+ Universes.constr_of_global @@
+ Coqlib.gen_reference_in_modules "Omega" Coqlib.init_modules x
+let constant x =
+ EConstr.of_constr @@
+ Universes.constr_of_global @@
+ Coqlib.gen_reference_in_modules "Omega" coq_modules x
+let z_constant x =
+ EConstr.of_constr @@
+ Universes.constr_of_global @@
+ Coqlib.gen_reference_in_modules "Omega" z_module x
+let bin_constant x =
+ EConstr.of_constr @@
+ Universes.constr_of_global @@
+ Coqlib.gen_reference_in_modules "Omega" bin_module x
(* Logic *)
let coq_refl_equal = lazy(init_constant "eq_refl")
@@ -130,62 +143,64 @@ let coq_O = lazy(init_constant "O")
let rec mk_nat = function
| 0 -> Lazy.force coq_O
- | n -> mkApp (Lazy.force coq_S, [| mk_nat (n-1) |])
+ | n -> EConstr.mkApp (Lazy.force coq_S, [| mk_nat (n-1) |])
(* Lists *)
-let mkListConst c =
- let r =
+let mkListConst c =
+ let r =
Coqlib.coq_reference "" ["Init";"Datatypes"] c
- in
- let inst =
- if Global.is_polymorphic r then fun u -> Univ.Instance.of_array [|u|]
- else fun _ -> Univ.Instance.empty
in
- fun u -> mkConstructU (Globnames.destConstructRef r, inst u)
+ let inst =
+ if Global.is_polymorphic r then
+ fun u -> EConstr.EInstance.make (Univ.Instance.of_array [|u|])
+ else
+ fun _ -> EConstr.EInstance.empty
+ in
+ fun u -> EConstr.mkConstructU (Globnames.destConstructRef r, inst u)
-let coq_cons univ typ = mkApp (mkListConst "cons" univ, [|typ|])
-let coq_nil univ typ = mkApp (mkListConst "nil" univ, [|typ|])
+let coq_cons univ typ = EConstr.mkApp (mkListConst "cons" univ, [|typ|])
+let coq_nil univ typ = EConstr.mkApp (mkListConst "nil" univ, [|typ|])
let mk_list univ typ l =
let rec loop = function
| [] -> coq_nil univ typ
| (step :: l) ->
- mkApp (coq_cons univ typ, [| step; loop l |]) in
+ EConstr.mkApp (coq_cons univ typ, [| step; loop l |]) in
loop l
-let mk_plist =
+let mk_plist =
let type1lev = Universes.new_univ_level () in
- fun l -> mk_list type1lev mkProp l
+ fun l -> mk_list type1lev EConstr.mkProp l
let mk_list = mk_list Univ.Level.set
type parse_term =
- | Tplus of constr * constr
- | Tmult of constr * constr
- | Tminus of constr * constr
- | Topp of constr
- | Tsucc of constr
+ | Tplus of EConstr.t * EConstr.t
+ | Tmult of EConstr.t * EConstr.t
+ | Tminus of EConstr.t * EConstr.t
+ | Topp of EConstr.t
+ | Tsucc of EConstr.t
| Tnum of Bigint.bigint
| Tother
type parse_rel =
- | Req of constr * constr
- | Rne of constr * constr
- | Rlt of constr * constr
- | Rle of constr * constr
- | Rgt of constr * constr
- | Rge of constr * constr
+ | Req of EConstr.t * EConstr.t
+ | Rne of EConstr.t * EConstr.t
+ | Rlt of EConstr.t * EConstr.t
+ | Rle of EConstr.t * EConstr.t
+ | Rgt of EConstr.t * EConstr.t
+ | Rge of EConstr.t * EConstr.t
| Rtrue
| Rfalse
- | Rnot of constr
- | Ror of constr * constr
- | Rand of constr * constr
- | Rimp of constr * constr
- | Riff of constr * constr
+ | Rnot of EConstr.t
+ | Ror of EConstr.t * EConstr.t
+ | Rand of EConstr.t * EConstr.t
+ | Rimp of EConstr.t * EConstr.t
+ | Riff of EConstr.t * EConstr.t
| Rother
-let parse_logic_rel c = match destructurate c with
+let parse_logic_rel sigma c = match destructurate sigma c with
| Kapp("True",[]) -> Rtrue
| Kapp("False",[]) -> Rfalse
| Kapp("not",[t]) -> Rnot t
@@ -211,29 +226,29 @@ let rec mk_positive n =
if Bigint.equal n Bigint.one then Lazy.force coq_xH
else
let (q,r) = Bigint.euclid n Bigint.two in
- mkApp
+ EConstr.mkApp
((if Bigint.equal r Bigint.zero
then Lazy.force coq_xO else Lazy.force coq_xI),
[| mk_positive q |])
let mk_N = function
| 0 -> Lazy.force coq_N0
- | n -> mkApp (Lazy.force coq_Npos,
+ | n -> EConstr.mkApp (Lazy.force coq_Npos,
[| mk_positive (Bigint.of_int n) |])
module type Int = sig
- val typ : constr Lazy.t
- val is_int_typ : Proofview.Goal.t -> constr -> bool
- val plus : constr Lazy.t
- val mult : constr Lazy.t
- val opp : constr Lazy.t
- val minus : constr Lazy.t
-
- val mk : Bigint.bigint -> constr
- val parse_term : constr -> parse_term
- val parse_rel : Proofview.Goal.t -> constr -> parse_rel
+ val typ : EConstr.t Lazy.t
+ val is_int_typ : Proofview.Goal.t -> EConstr.t -> bool
+ val plus : EConstr.t Lazy.t
+ val mult : EConstr.t Lazy.t
+ val opp : EConstr.t Lazy.t
+ val minus : EConstr.t Lazy.t
+
+ val mk : Bigint.bigint -> EConstr.t
+ val parse_term : Evd.evar_map -> EConstr.t -> parse_term
+ val parse_rel : Proofview.Goal.t -> EConstr.t -> parse_rel
(* check whether t is built only with numbers and + * - *)
- val get_scalar : constr -> Bigint.bigint option
+ val get_scalar : Evd.evar_map -> EConstr.t -> Bigint.bigint option
end
module Z : Int = struct
@@ -244,9 +259,9 @@ let mult = lazy (z_constant "Z.mul")
let opp = lazy (z_constant "Z.opp")
let minus = lazy (z_constant "Z.sub")
-let recognize_pos t =
+let recognize_pos sigma t =
let rec loop t =
- let f,l = dest_const_apply t in
+ let f,l = dest_const_apply sigma t in
match Id.to_string f,l with
| "xI",[t] -> Bigint.add Bigint.one (Bigint.mult Bigint.two (loop t))
| "xO",[t] -> Bigint.mult Bigint.two (loop t)
@@ -255,12 +270,12 @@ let recognize_pos t =
in
try Some (loop t) with DestConstApp -> None
-let recognize_Z t =
+let recognize_Z sigma t =
try
- let f,l = dest_const_apply t in
+ let f,l = dest_const_apply sigma t in
match Id.to_string f,l with
- | "Zpos",[t] -> recognize_pos t
- | "Zneg",[t] -> Option.map Bigint.neg (recognize_pos t)
+ | "Zpos",[t] -> recognize_pos sigma t
+ | "Zneg",[t] -> Option.map Bigint.neg (recognize_pos sigma t)
| "Z0",[] -> Some Bigint.zero
| _ -> None
with DestConstApp -> None
@@ -268,14 +283,14 @@ let recognize_Z t =
let mk_Z n =
if Bigint.equal n Bigint.zero then Lazy.force coq_Z0
else if Bigint.is_strictly_pos n then
- mkApp (Lazy.force coq_Zpos, [| mk_positive n |])
+ EConstr.mkApp (Lazy.force coq_Zpos, [| mk_positive n |])
else
- mkApp (Lazy.force coq_Zneg, [| mk_positive (Bigint.neg n) |])
+ EConstr.mkApp (Lazy.force coq_Zneg, [| mk_positive (Bigint.neg n) |])
let mk = mk_Z
-let parse_term t =
- match destructurate t with
+let parse_term sigma t =
+ match destructurate sigma t with
| Kapp("Z.add",[t1;t2]) -> Tplus (t1,t2)
| Kapp("Z.sub",[t1;t2]) -> Tminus (t1,t2)
| Kapp("Z.mul",[t1;t2]) -> Tmult (t1,t2)
@@ -283,35 +298,35 @@ let parse_term t =
| Kapp("Z.succ",[t]) -> Tsucc t
| Kapp("Z.pred",[t]) -> Tplus(t, mk_Z (Bigint.neg Bigint.one))
| Kapp(("Zpos"|"Zneg"|"Z0"),_) ->
- (match recognize_Z t with Some t -> Tnum t | None -> Tother)
+ (match recognize_Z sigma t with Some t -> Tnum t | None -> Tother)
| _ -> Tother
let is_int_typ gl t =
- Tacmach.New.pf_apply Reductionops.is_conv gl
- (EConstr.of_constr t) (EConstr.of_constr (Lazy.force coq_Z))
+ Tacmach.New.pf_apply Reductionops.is_conv gl t (Lazy.force coq_Z)
let parse_rel gl t =
- match destructurate t with
+ let sigma = Proofview.Goal.sigma gl in
+ match destructurate sigma t with
| Kapp("eq",[typ;t1;t2]) when is_int_typ gl typ -> Req (t1,t2)
| Kapp("Zne",[t1;t2]) -> Rne (t1,t2)
| Kapp("Z.le",[t1;t2]) -> Rle (t1,t2)
| Kapp("Z.lt",[t1;t2]) -> Rlt (t1,t2)
| Kapp("Z.ge",[t1;t2]) -> Rge (t1,t2)
| Kapp("Z.gt",[t1;t2]) -> Rgt (t1,t2)
- | _ -> parse_logic_rel t
+ | _ -> parse_logic_rel sigma t
-let rec get_scalar t =
- match destructurate t with
+let rec get_scalar sigma t =
+ match destructurate sigma t with
| Kapp("Z.add", [t1;t2]) ->
- Option.lift2 Bigint.add (get_scalar t1) (get_scalar t2)
+ Option.lift2 Bigint.add (get_scalar sigma t1) (get_scalar sigma t2)
| Kapp ("Z.sub",[t1;t2]) ->
- Option.lift2 Bigint.sub (get_scalar t1) (get_scalar t2)
+ Option.lift2 Bigint.sub (get_scalar sigma t1) (get_scalar sigma t2)
| Kapp ("Z.mul",[t1;t2]) ->
- Option.lift2 Bigint.mult (get_scalar t1) (get_scalar t2)
- | Kapp("Z.opp", [t]) -> Option.map Bigint.neg (get_scalar t)
- | Kapp("Z.succ", [t]) -> Option.map Bigint.add_1 (get_scalar t)
- | Kapp("Z.pred", [t]) -> Option.map Bigint.sub_1 (get_scalar t)
- | Kapp(("Zpos"|"Zneg"|"Z0"),_) -> recognize_Z t
+ Option.lift2 Bigint.mult (get_scalar sigma t1) (get_scalar sigma t2)
+ | Kapp("Z.opp", [t]) -> Option.map Bigint.neg (get_scalar sigma t)
+ | Kapp("Z.succ", [t]) -> Option.map Bigint.add_1 (get_scalar sigma t)
+ | Kapp("Z.pred", [t]) -> Option.map Bigint.sub_1 (get_scalar sigma t)
+ | Kapp(("Zpos"|"Zneg"|"Z0"),_) -> recognize_Z sigma t
| _ -> None
end
diff --git a/plugins/romega/const_omega.mli b/plugins/romega/const_omega.mli
index ecddc55de..64668df00 100644
--- a/plugins/romega/const_omega.mli
+++ b/plugins/romega/const_omega.mli
@@ -8,117 +8,116 @@
(** Coq objects used in romega *)
-open Constr
(* from Logic *)
-val coq_refl_equal : constr lazy_t
-val coq_and : constr lazy_t
-val coq_not : constr lazy_t
-val coq_or : constr lazy_t
-val coq_True : constr lazy_t
-val coq_False : constr lazy_t
-val coq_I : constr lazy_t
+val coq_refl_equal : EConstr.t lazy_t
+val coq_and : EConstr.t lazy_t
+val coq_not : EConstr.t lazy_t
+val coq_or : EConstr.t lazy_t
+val coq_True : EConstr.t lazy_t
+val coq_False : EConstr.t lazy_t
+val coq_I : EConstr.t lazy_t
(* from ReflOmegaCore/ZOmega *)
-val coq_t_int : constr lazy_t
-val coq_t_plus : constr lazy_t
-val coq_t_mult : constr lazy_t
-val coq_t_opp : constr lazy_t
-val coq_t_minus : constr lazy_t
-val coq_t_var : constr lazy_t
-
-val coq_proposition : constr lazy_t
-val coq_p_eq : constr lazy_t
-val coq_p_leq : constr lazy_t
-val coq_p_geq : constr lazy_t
-val coq_p_lt : constr lazy_t
-val coq_p_gt : constr lazy_t
-val coq_p_neq : constr lazy_t
-val coq_p_true : constr lazy_t
-val coq_p_false : constr lazy_t
-val coq_p_not : constr lazy_t
-val coq_p_or : constr lazy_t
-val coq_p_and : constr lazy_t
-val coq_p_imp : constr lazy_t
-val coq_p_prop : constr lazy_t
-
-val coq_s_bad_constant : constr lazy_t
-val coq_s_divide : constr lazy_t
-val coq_s_not_exact_divide : constr lazy_t
-val coq_s_sum : constr lazy_t
-val coq_s_merge_eq : constr lazy_t
-val coq_s_split_ineq : constr lazy_t
-
-val coq_direction : constr lazy_t
-val coq_d_left : constr lazy_t
-val coq_d_right : constr lazy_t
-
-val coq_e_split : constr lazy_t
-val coq_e_extract : constr lazy_t
-val coq_e_solve : constr lazy_t
-
-val coq_interp_sequent : constr lazy_t
-val coq_do_omega : constr lazy_t
-
-val mk_nat : int -> constr
-val mk_N : int -> constr
+val coq_t_int : EConstr.t lazy_t
+val coq_t_plus : EConstr.t lazy_t
+val coq_t_mult : EConstr.t lazy_t
+val coq_t_opp : EConstr.t lazy_t
+val coq_t_minus : EConstr.t lazy_t
+val coq_t_var : EConstr.t lazy_t
+
+val coq_proposition : EConstr.t lazy_t
+val coq_p_eq : EConstr.t lazy_t
+val coq_p_leq : EConstr.t lazy_t
+val coq_p_geq : EConstr.t lazy_t
+val coq_p_lt : EConstr.t lazy_t
+val coq_p_gt : EConstr.t lazy_t
+val coq_p_neq : EConstr.t lazy_t
+val coq_p_true : EConstr.t lazy_t
+val coq_p_false : EConstr.t lazy_t
+val coq_p_not : EConstr.t lazy_t
+val coq_p_or : EConstr.t lazy_t
+val coq_p_and : EConstr.t lazy_t
+val coq_p_imp : EConstr.t lazy_t
+val coq_p_prop : EConstr.t lazy_t
+
+val coq_s_bad_constant : EConstr.t lazy_t
+val coq_s_divide : EConstr.t lazy_t
+val coq_s_not_exact_divide : EConstr.t lazy_t
+val coq_s_sum : EConstr.t lazy_t
+val coq_s_merge_eq : EConstr.t lazy_t
+val coq_s_split_ineq : EConstr.t lazy_t
+
+val coq_direction : EConstr.t lazy_t
+val coq_d_left : EConstr.t lazy_t
+val coq_d_right : EConstr.t lazy_t
+
+val coq_e_split : EConstr.t lazy_t
+val coq_e_extract : EConstr.t lazy_t
+val coq_e_solve : EConstr.t lazy_t
+
+val coq_interp_sequent : EConstr.t lazy_t
+val coq_do_omega : EConstr.t lazy_t
+
+val mk_nat : int -> EConstr.t
+val mk_N : int -> EConstr.t
(** Precondition: the type of the list is in Set *)
-val mk_list : constr -> constr list -> constr
-val mk_plist : types list -> types
+val mk_list : EConstr.t -> EConstr.t list -> EConstr.t
+val mk_plist : EConstr.types list -> EConstr.types
(** Analyzing a coq term *)
(* The generic result shape of the analysis of a term.
One-level depth, except when a number is found *)
type parse_term =
- Tplus of constr * constr
- | Tmult of constr * constr
- | Tminus of constr * constr
- | Topp of constr
- | Tsucc of constr
+ Tplus of EConstr.t * EConstr.t
+ | Tmult of EConstr.t * EConstr.t
+ | Tminus of EConstr.t * EConstr.t
+ | Topp of EConstr.t
+ | Tsucc of EConstr.t
| Tnum of Bigint.bigint
| Tother
(* The generic result shape of the analysis of a relation.
One-level depth. *)
type parse_rel =
- Req of constr * constr
- | Rne of constr * constr
- | Rlt of constr * constr
- | Rle of constr * constr
- | Rgt of constr * constr
- | Rge of constr * constr
+ Req of EConstr.t * EConstr.t
+ | Rne of EConstr.t * EConstr.t
+ | Rlt of EConstr.t * EConstr.t
+ | Rle of EConstr.t * EConstr.t
+ | Rgt of EConstr.t * EConstr.t
+ | Rge of EConstr.t * EConstr.t
| Rtrue
| Rfalse
- | Rnot of constr
- | Ror of constr * constr
- | Rand of constr * constr
- | Rimp of constr * constr
- | Riff of constr * constr
+ | Rnot of EConstr.t
+ | Ror of EConstr.t * EConstr.t
+ | Rand of EConstr.t * EConstr.t
+ | Rimp of EConstr.t * EConstr.t
+ | Riff of EConstr.t * EConstr.t
| Rother
(* A module factorizing what we should now about the number representation *)
module type Int =
sig
(* the coq type of the numbers *)
- val typ : constr Lazy.t
+ val typ : EConstr.t Lazy.t
(* Is a constr expands to the type of these numbers *)
- val is_int_typ : Proofview.Goal.t -> constr -> bool
+ val is_int_typ : Proofview.Goal.t -> EConstr.t -> bool
(* the operations on the numbers *)
- val plus : constr Lazy.t
- val mult : constr Lazy.t
- val opp : constr Lazy.t
- val minus : constr Lazy.t
+ val plus : EConstr.t Lazy.t
+ val mult : EConstr.t Lazy.t
+ val opp : EConstr.t Lazy.t
+ val minus : EConstr.t Lazy.t
(* building a coq number *)
- val mk : Bigint.bigint -> constr
+ val mk : Bigint.bigint -> EConstr.t
(* parsing a term (one level, except if a number is found) *)
- val parse_term : constr -> parse_term
+ val parse_term : Evd.evar_map -> EConstr.t -> parse_term
(* parsing a relation expression, including = < <= >= > *)
- val parse_rel : Proofview.Goal.t -> constr -> parse_rel
+ val parse_rel : Proofview.Goal.t -> EConstr.t -> parse_rel
(* Is a particular term only made of numbers and + * - ? *)
- val get_scalar : constr -> Bigint.bigint option
+ val get_scalar : Evd.evar_map -> EConstr.t -> Bigint.bigint option
end
(* Currently, we only use Z numbers *)
diff --git a/plugins/romega/refl_omega.ml b/plugins/romega/refl_omega.ml
index 54ff44fbd..d18249784 100644
--- a/plugins/romega/refl_omega.ml
+++ b/plugins/romega/refl_omega.ml
@@ -8,7 +8,6 @@
open Pp
open Util
-open Constr
open Const_omega
module OmegaSolver = Omega_plugin.Omega.MakeOmegaSolver (Bigint)
open OmegaSolver
@@ -67,14 +66,14 @@ type comparaison = Eq | Leq | Geq | Gt | Lt | Neq
(it could contains some [Term.Var] but no [Term.Rel]). So no need to
lift when breaking or creating arrows. *)
type oproposition =
- Pequa of constr * oequation (* constr = copy of the Coq formula *)
+ Pequa of EConstr.t * oequation (* constr = copy of the Coq formula *)
| Ptrue
| Pfalse
| Pnot of oproposition
| Por of int * oproposition * oproposition
| Pand of int * oproposition * oproposition
| Pimp of int * oproposition * oproposition
- | Pprop of constr
+ | Pprop of EConstr.t
(* The equations *)
and oequation = {
@@ -101,9 +100,9 @@ and oequation = {
type environment = {
(* La liste des termes non reifies constituant l'environnement global *)
- mutable terms : constr list;
+ mutable terms : EConstr.t list;
(* La meme chose pour les propositions *)
- mutable props : constr list;
+ mutable props : EConstr.t list;
(* Traduction des indices utilisés ici en les indices finaux utilisés par
* la tactique Omega après dénombrement des variables utiles *)
real_indices : int IntHtbl.t;
@@ -185,7 +184,7 @@ let print_env_reification env =
| t :: l ->
let sigma, env = Pfedit.get_current_context () in
let s = Printf.sprintf "(%c%02d)" c i in
- spc () ++ str s ++ str " := " ++ Printer.pr_lconstr_env env sigma t ++ fnl () ++
+ spc () ++ str s ++ str " := " ++ Printer.pr_econstr_env env sigma t ++ fnl () ++
loop c (succ i) l
in
let prop_info = str "ENVIRONMENT OF PROPOSITIONS :" ++ fnl () ++ loop 'P' 0 env.props in
@@ -218,8 +217,8 @@ let display_omega_var i = Printf.sprintf "OV%d" i
l'environnement initial contenant tout. Il faudra le réduire après
calcul des variables utiles. *)
-let add_reified_atom t env =
- try List.index0 Constr.equal t env.terms
+let add_reified_atom sigma t env =
+ try List.index0 (EConstr.eq_constr sigma) t env.terms
with Not_found ->
let i = List.length env.terms in
env.terms <- env.terms @ [t]; i
@@ -236,8 +235,8 @@ let set_reified_atom v t env =
(* \subsection{Gestion de l'environnement de proposition pour Omega} *)
(* ajout d'une proposition *)
-let add_prop env t =
- try List.index0 Constr.equal t env.props
+let add_prop sigma env t =
+ try List.index0 (EConstr.eq_constr sigma) t env.props
with Not_found ->
let i = List.length env.props in env.props <- env.props @ [t]; i
@@ -290,7 +289,7 @@ let oformula_of_omega af =
in
loop af.body
-let app f v = mkApp(Lazy.force f,v)
+let app f v = EConstr.mkApp(Lazy.force f,v)
(* \subsection{Oformula vers COQ reel} *)
@@ -347,18 +346,19 @@ let reified_conn = function
| Pimp _ -> app coq_p_imp
| _ -> assert false
-let rec reified_of_oprop env t = match t with
+let rec reified_of_oprop sigma env t = match t with
| Pequa (_,{ e_comp=cmp; e_left=t1; e_right=t2 }) ->
reified_cmp cmp [| reified_of_formula env t1; reified_of_formula env t2 |]
| Ptrue -> Lazy.force coq_p_true
| Pfalse -> Lazy.force coq_p_false
- | Pnot t -> app coq_p_not [| reified_of_oprop env t |]
+ | Pnot t -> app coq_p_not [| reified_of_oprop sigma env t |]
| Por (_,t1,t2) | Pand (_,t1,t2) | Pimp (_,t1,t2) ->
- reified_conn t [| reified_of_oprop env t1; reified_of_oprop env t2 |]
- | Pprop t -> app coq_p_prop [| mk_nat (add_prop env t) |]
+ reified_conn t
+ [| reified_of_oprop sigma env t1; reified_of_oprop sigma env t2 |]
+ | Pprop t -> app coq_p_prop [| mk_nat (add_prop sigma env t) |]
-let reified_of_proposition env f =
- try reified_of_oprop env f
+let reified_of_proposition sigma env f =
+ try reified_of_oprop sigma env f
with reraise -> pprint stderr f; raise reraise
let reified_of_eq env (l,r) =
@@ -475,28 +475,28 @@ let mkPor i x y = Por (i,x,y)
let mkPand i x y = Pand (i,x,y)
let mkPimp i x y = Pimp (i,x,y)
-let rec oformula_of_constr env t =
- match Z.parse_term t with
- | Tplus (t1,t2) -> binop env (fun x y -> Oplus(x,y)) t1 t2
- | Tminus (t1,t2) -> binop env (fun x y -> Ominus(x,y)) t1 t2
+let rec oformula_of_constr sigma env t =
+ match Z.parse_term sigma t with
+ | Tplus (t1,t2) -> binop sigma env (fun x y -> Oplus(x,y)) t1 t2
+ | Tminus (t1,t2) -> binop sigma env (fun x y -> Ominus(x,y)) t1 t2
| Tmult (t1,t2) ->
- (match Z.get_scalar t1 with
- | Some n -> Omult (Oint n,oformula_of_constr env t2)
+ (match Z.get_scalar sigma t1 with
+ | Some n -> Omult (Oint n,oformula_of_constr sigma env t2)
| None ->
- match Z.get_scalar t2 with
- | Some n -> Omult (oformula_of_constr env t1, Oint n)
- | None -> Oatom (add_reified_atom t env))
- | Topp t -> Oopp(oformula_of_constr env t)
- | Tsucc t -> Oplus(oformula_of_constr env t, Oint one)
+ match Z.get_scalar sigma t2 with
+ | Some n -> Omult (oformula_of_constr sigma env t1, Oint n)
+ | None -> Oatom (add_reified_atom sigma t env))
+ | Topp t -> Oopp(oformula_of_constr sigma env t)
+ | Tsucc t -> Oplus(oformula_of_constr sigma env t, Oint one)
| Tnum n -> Oint n
- | Tother -> Oatom (add_reified_atom t env)
+ | Tother -> Oatom (add_reified_atom sigma t env)
-and binop env c t1 t2 =
- let t1' = oformula_of_constr env t1 in
- let t2' = oformula_of_constr env t2 in
+and binop sigma env c t1 t2 =
+ let t1' = oformula_of_constr sigma env t1 in
+ let t2' = oformula_of_constr sigma env t2 in
c t1' t2'
-and binprop env (neg2,depends,origin,path)
+and binprop sigma env (neg2,depends,origin,path)
add_to_depends neg1 gl c t1 t2 =
let i = new_connector_id env in
let depends1 = if add_to_depends then Left i::depends else depends in
@@ -504,41 +504,41 @@ and binprop env (neg2,depends,origin,path)
if add_to_depends then
IntHtbl.add env.constructors i {o_hyp = origin; o_path = List.rev path};
let t1' =
- oproposition_of_constr env (neg1,depends1,origin,O_left::path) gl t1 in
+ oproposition_of_constr sigma env (neg1,depends1,origin,O_left::path) gl t1 in
let t2' =
- oproposition_of_constr env (neg2,depends2,origin,O_right::path) gl t2 in
+ oproposition_of_constr sigma env (neg2,depends2,origin,O_right::path) gl t2 in
(* On numérote le connecteur dans l'environnement. *)
c i t1' t2'
-and mk_equation env ctxt c connector t1 t2 =
- let t1' = oformula_of_constr env t1 in
- let t2' = oformula_of_constr env t2 in
+and mk_equation sigma env ctxt c connector t1 t2 =
+ let t1' = oformula_of_constr sigma env t1 in
+ let t2' = oformula_of_constr sigma env t2 in
(* On ajoute l'equation dans l'environnement. *)
let omega = normalize_equation env ctxt connector t1' t2' in
add_equation env omega;
Pequa (c,omega)
-and oproposition_of_constr env ((negated,depends,origin,path) as ctxt) gl c =
+and oproposition_of_constr sigma env ((negated,depends,origin,path) as ctxt) gl c =
match Z.parse_rel gl c with
- | Req (t1,t2) -> mk_equation env ctxt c Eq t1 t2
- | Rne (t1,t2) -> mk_equation env ctxt c Neq t1 t2
- | Rle (t1,t2) -> mk_equation env ctxt c Leq t1 t2
- | Rlt (t1,t2) -> mk_equation env ctxt c Lt t1 t2
- | Rge (t1,t2) -> mk_equation env ctxt c Geq t1 t2
- | Rgt (t1,t2) -> mk_equation env ctxt c Gt t1 t2
+ | Req (t1,t2) -> mk_equation sigma env ctxt c Eq t1 t2
+ | Rne (t1,t2) -> mk_equation sigma env ctxt c Neq t1 t2
+ | Rle (t1,t2) -> mk_equation sigma env ctxt c Leq t1 t2
+ | Rlt (t1,t2) -> mk_equation sigma env ctxt c Lt t1 t2
+ | Rge (t1,t2) -> mk_equation sigma env ctxt c Geq t1 t2
+ | Rgt (t1,t2) -> mk_equation sigma env ctxt c Gt t1 t2
| Rtrue -> Ptrue
| Rfalse -> Pfalse
| Rnot t ->
let ctxt' = (not negated, depends, origin,(O_mono::path)) in
- Pnot (oproposition_of_constr env ctxt' gl t)
- | Ror (t1,t2) -> binprop env ctxt (not negated) negated gl mkPor t1 t2
- | Rand (t1,t2) -> binprop env ctxt negated negated gl mkPand t1 t2
+ Pnot (oproposition_of_constr sigma env ctxt' gl t)
+ | Ror (t1,t2) -> binprop sigma env ctxt (not negated) negated gl mkPor t1 t2
+ | Rand (t1,t2) -> binprop sigma env ctxt negated negated gl mkPand t1 t2
| Rimp (t1,t2) ->
- binprop env ctxt (not negated) (not negated) gl mkPimp t1 t2
+ binprop sigma env ctxt (not negated) (not negated) gl mkPimp t1 t2
| Riff (t1,t2) ->
(* No lifting here, since Omega only works on closed propositions. *)
- binprop env ctxt negated negated gl mkPand
- (Term.mkArrow t1 t2) (Term.mkArrow t2 t1)
+ binprop sigma env ctxt negated negated gl mkPand
+ (EConstr.mkArrow t1 t2) (EConstr.mkArrow t2 t1)
| _ -> Pprop c
(* Destructuration des hypothèses et de la conclusion *)
@@ -553,27 +553,25 @@ let display_gl env t_concl t_lhyps =
type defined = Defined | Assumed
-let reify_hyp env gl i =
+let reify_hyp sigma env gl i =
let open Context.Named.Declaration in
let ctxt = (false,[],i,[]) in
match Tacmach.New.pf_get_hyp i gl with
- | LocalDef (_,d,t) when Z.is_int_typ gl (EConstr.Unsafe.to_constr t) ->
- let d = EConstr.Unsafe.to_constr d in
+ | LocalDef (_,d,t) when Z.is_int_typ gl t ->
let dummy = Lazy.force coq_True in
- let p = mk_equation env ctxt dummy Eq (mkVar i) d in
+ let p = mk_equation sigma env ctxt dummy Eq (EConstr.mkVar i) d in
i,Defined,p
| LocalDef (_,_,t) | LocalAssum (_,t) ->
- let t = EConstr.Unsafe.to_constr t in
- let p = oproposition_of_constr env ctxt gl t in
+ let p = oproposition_of_constr sigma env ctxt gl t in
i,Assumed,p
let reify_gl env gl =
+ let sigma = Proofview.Goal.sigma gl in
let concl = Tacmach.New.pf_concl gl in
- let concl = EConstr.Unsafe.to_constr concl in
let hyps = Tacmach.New.pf_ids_of_hyps gl in
let ctxt_concl = (true,[],id_concl,[O_mono]) in
- let t_concl = oproposition_of_constr env ctxt_concl gl concl in
- let t_lhyps = List.map (reify_hyp env gl) hyps in
+ let t_concl = oproposition_of_constr sigma env ctxt_concl gl concl in
+ let t_lhyps = List.map (reify_hyp sigma env gl) hyps in
let () = if !debug then display_gl env t_concl t_lhyps in
t_concl, t_lhyps
@@ -684,8 +682,7 @@ let rec stated_in_tree = function
| Tree(_,t1,t2) -> StateSet.union (stated_in_tree t1) (stated_in_tree t2)
| Leaf s -> stated_in_trace s.s_trace
-let mk_refl t =
- EConstr.of_constr (app coq_refl_equal [|Lazy.force Z.typ; t|])
+let mk_refl t = app coq_refl_equal [|Lazy.force Z.typ; t|]
let digest_stated_equations env tree =
let do_equation st (vars,gens,eqns,ids) =
@@ -775,7 +772,7 @@ let maximize_prop equas c =
| t1', t2' -> Pand(i,t1',t2'))
| Pimp(i,t1,t2) ->
(match loop t1, loop t2 with
- | Pprop p1, Pprop p2 -> Pprop (Term.mkArrow p1 p2) (* no lift (closed) *)
+ | Pprop p1, Pprop p2 -> Pprop (EConstr.mkArrow p1 p2) (* no lift (closed) *)
| t1', t2' -> Pimp(i,t1',t2'))
| Ptrue -> Pprop (app coq_True [||])
| Pfalse -> Pprop (app coq_False [||])
@@ -852,12 +849,15 @@ let hyp_idx env_hyp i =
a O_SUM followed by a O_BAD_CONSTANT *)
let sum_bad inv i1 i2 =
+ let open EConstr in
mkApp (Lazy.force coq_s_sum,
[| Z.mk Bigint.one; i1;
Z.mk (if inv then negone else Bigint.one); i2;
mkApp (Lazy.force coq_s_bad_constant, [| mk_nat 0 |])|])
-let rec reify_trace env env_hyp = function
+let rec reify_trace env env_hyp =
+ let open EConstr in
+ function
| CONSTANT_NOT_NUL(e,_) :: []
| CONSTANT_NEG(e,_) :: []
| CONSTANT_NUL e :: [] ->
@@ -958,7 +958,7 @@ l'extraction d'un ensemble minimal de solutions permettant la
résolution globale du système et enfin construit la trace qui permet
de faire rejouer cette solution par la tactique réflexive. *)
-let resolution unsafe env (reified_concl,reified_hyps) systems_list =
+let resolution unsafe sigma env (reified_concl,reified_hyps) systems_list =
if !debug then Printf.printf "\n====================================\n";
let all_solutions = List.mapi (solve_system env) systems_list in
let solution_tree = solve_with_constraints all_solutions [] in
@@ -1006,15 +1006,15 @@ let resolution unsafe env (reified_concl,reified_hyps) systems_list =
(** The environment [env] (and especially [env.real_indices]) is now
ready for the coming reifications: *)
let l_reified_stated = List.map (reified_of_eq env) to_reify_stated in
- let reified_concl = reified_of_proposition env reified_concl in
+ let reified_concl = reified_of_proposition sigma env reified_concl in
let l_reified_terms =
List.map
(fun id ->
match Id.Map.find id reified_hyps with
| Defined,p ->
- reified_of_proposition env p, mk_refl (mkVar id)
+ reified_of_proposition sigma env p, mk_refl (EConstr.mkVar id)
| Assumed,p ->
- reified_of_proposition env (maximize_prop useful_equa_ids p),
+ reified_of_proposition sigma env (maximize_prop useful_equa_ids p),
EConstr.mkVar id
| exception Not_found -> assert false)
useful_hypnames
@@ -1036,17 +1036,16 @@ let resolution unsafe env (reified_concl,reified_hyps) systems_list =
let decompose_tactic = decompose_tree env context solution_tree in
Tactics.generalize (l_generalize_arg @ l_reified_hypnames) >>
- Tactics.convert_concl_no_check (EConstr.of_constr reified) Term.DEFAULTcast >>
- Tactics.apply (EConstr.of_constr (app coq_do_omega [|decompose_tactic|])) >>
+ Tactics.convert_concl_no_check reified Term.DEFAULTcast >>
+ Tactics.apply (app coq_do_omega [|decompose_tactic|]) >>
show_goal >>
(if unsafe then
(* Trust the produced term. Faster, but might fail later at Qed.
Also handy when debugging, e.g. via a Show Proof after romega. *)
- Tactics.convert_concl_no_check
- (EConstr.of_constr (Lazy.force coq_True)) Term.VMcast
+ Tactics.convert_concl_no_check (Lazy.force coq_True) Term.VMcast
else
Tactics.normalise_vm_in_concl) >>
- Tactics.apply (EConstr.of_constr (Lazy.force coq_I))
+ Tactics.apply (Lazy.force coq_I)
let total_reflexive_omega_tactic unsafe =
Proofview.Goal.nf_enter begin fun gl ->
@@ -1064,7 +1063,8 @@ let total_reflexive_omega_tactic unsafe =
List.fold_left (fun s (id,d,p) -> Id.Map.add id (d,p) s) Id.Map.empty hyps
in
if !debug then display_systems systems_list;
- resolution unsafe env (concl,hyps) systems_list
+ let sigma = Proofview.Goal.sigma gl in
+ resolution unsafe sigma env (concl,hyps) systems_list
with NO_CONTRADICTION -> CErrors.user_err Pp.(str "ROmega can't solve this system")
end