aboutsummaryrefslogtreecommitdiffhomepage
path: root/plugins/micromega/csdpcert.ml
diff options
context:
space:
mode:
authorGravatar letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7>2009-03-20 01:22:58 +0000
committerGravatar letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7>2009-03-20 01:22:58 +0000
commit7d220f8b61649646692983872626d6a8042446a9 (patch)
treefefceb2c59cf155c55fffa25ad08bec629de523e /plugins/micromega/csdpcert.ml
parentad1fea78e3c23c903b2256d614756012d5f05d87 (diff)
Directory 'contrib' renamed into 'plugins', to end confusion with archive of user contribs
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@11996 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'plugins/micromega/csdpcert.ml')
-rw-r--r--plugins/micromega/csdpcert.ml197
1 files changed, 197 insertions, 0 deletions
diff --git a/plugins/micromega/csdpcert.ml b/plugins/micromega/csdpcert.ml
new file mode 100644
index 000000000..e451a38fd
--- /dev/null
+++ b/plugins/micromega/csdpcert.ml
@@ -0,0 +1,197 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* *)
+(* Micromega: A reflexive tactic using the Positivstellensatz *)
+(* *)
+(* Frédéric Besson (Irisa/Inria) 2006-2008 *)
+(* *)
+(************************************************************************)
+
+open Big_int
+open Num
+open Sos
+
+module Mc = Micromega
+module Ml2C = Mutils.CamlToCoq
+module C2Ml = Mutils.CoqToCaml
+
+let debug = false
+
+module M =
+struct
+ open Mc
+
+ let rec expr_to_term = function
+ | PEc z -> Const (C2Ml.q_to_num z)
+ | PEX v -> Var ("x"^(string_of_int (C2Ml.index v)))
+ | PEmul(p1,p2) ->
+ let p1 = expr_to_term p1 in
+ let p2 = expr_to_term p2 in
+ let res = Mul(p1,p2) in res
+
+ | PEadd(p1,p2) -> Add(expr_to_term p1, expr_to_term p2)
+ | PEsub(p1,p2) -> Sub(expr_to_term p1, expr_to_term p2)
+ | PEpow(p,n) -> Pow(expr_to_term p , C2Ml.n n)
+ | PEopp p -> Opp (expr_to_term p)
+
+
+
+
+(* let term_to_expr e =
+ let e' = term_to_expr e in
+ if debug
+ then Printf.printf "term_to_expr : %s - %s\n"
+ (string_of_poly (poly_of_term e))
+ (string_of_poly (poly_of_term (expr_to_term e')));
+ e' *)
+
+end
+open M
+
+open List
+open Mutils
+
+
+
+
+let rec canonical_sum_to_string = function s -> failwith "not implemented"
+
+let print_canonical_sum m = Format.print_string (canonical_sum_to_string m)
+
+let print_list_term l =
+ print_string "print_list_term\n";
+ List.iter (fun (Mc.Pair(e,k)) -> Printf.printf "q: %s %s ;"
+ (string_of_poly (poly_of_term (expr_to_term e)))
+ (match k with
+ Mc.Equal -> "= "
+ | Mc.Strict -> "> "
+ | Mc.NonStrict -> ">= "
+ | _ -> failwith "not_implemented")) l ;
+ print_string "\n"
+
+
+let partition_expr l =
+ let rec f i = function
+ | [] -> ([],[],[])
+ | Mc.Pair(e,k)::l ->
+ let (eq,ge,neq) = f (i+1) l in
+ match k with
+ | Mc.Equal -> ((e,i)::eq,ge,neq)
+ | Mc.NonStrict -> (eq,(e,Axiom_le i)::ge,neq)
+ | Mc.Strict -> (* e > 0 == e >= 0 /\ e <> 0 *)
+ (eq, (e,Axiom_lt i)::ge,(e,Axiom_lt i)::neq)
+ | Mc.NonEqual -> (eq,ge,(e,Axiom_eq i)::neq)
+ (* Not quite sure -- Coq interface has changed *)
+ in f 0 l
+
+
+let rec sets_of_list l =
+ match l with
+ | [] -> [[]]
+ | e::l -> let s = sets_of_list l in
+ s@(List.map (fun s0 -> e::s0) s)
+
+(* The exploration is probably not complete - for simple cases, it works... *)
+let real_nonlinear_prover d l =
+ try
+ let (eq,ge,neq) = partition_expr l in
+
+ let rec elim_const = function
+ [] -> []
+ | (x,y)::l -> let p = poly_of_term (expr_to_term x) in
+ if poly_isconst p
+ then elim_const l
+ else (p,y)::(elim_const l) in
+
+ let eq = elim_const eq in
+ let peq = List.map fst eq in
+
+ let pge = List.map
+ (fun (e,psatz) -> poly_of_term (expr_to_term e),psatz) ge in
+
+ let monoids = List.map (fun m -> (List.fold_right (fun (p,kd) y ->
+ let p = poly_of_term (expr_to_term p) in
+ match kd with
+ | Axiom_lt i -> poly_mul p y
+ | Axiom_eq i -> poly_mul (poly_pow p 2) y
+ | _ -> failwith "monoids") m (poly_const (Int 1)) , map snd m))
+ (sets_of_list neq) in
+
+ let (cert_ideal, cert_cone,monoid) = deepen_until d (fun d ->
+ list_try_find (fun m -> let (ci,cc) =
+ real_positivnullstellensatz_general false d peq pge (poly_neg (fst m) ) in
+ (ci,cc,snd m)) monoids) 0 in
+
+ let proofs_ideal = map2 (fun q i -> Eqmul(term_of_poly q,Axiom_eq i))
+ cert_ideal (List.map snd eq) in
+
+ let proofs_cone = map term_of_sos cert_cone in
+
+ let proof_ne =
+ let (neq , lt) = List.partition
+ (function Axiom_eq _ -> true | _ -> false ) monoid in
+ let sq = match
+ (List.map (function Axiom_eq i -> i | _ -> failwith "error") neq)
+ with
+ | [] -> Rational_lt (Int 1)
+ | l -> Monoid l in
+ List.fold_right (fun x y -> Product(x,y)) lt sq in
+
+ let proof = list_fold_right_elements
+ (fun s t -> Sum(s,t)) (proof_ne :: proofs_ideal @ proofs_cone) in
+ Some proof
+ with
+ | Sos.TooDeep -> None
+
+
+(* This is somewhat buggy, over Z, strict inequality vanish... *)
+let pure_sos l =
+ (* If there is no strict inequality,
+ I should nonetheless be able to try something - over Z > is equivalent to -1 >= *)
+ try
+ let l = List.combine l (interval 0 (length l -1)) in
+ let (lt,i) = try (List.find (fun (x,_) -> snd' x = Mc.Strict) l)
+ with Not_found -> List.hd l in
+ let plt = poly_neg (poly_of_term (expr_to_term (fst' lt))) in
+ let (n,polys) = sumofsquares plt in (* n * (ci * pi^2) *)
+ let pos = Product (Rational_lt n,
+ List.fold_right (fun (c,p) rst -> Sum (Product (Rational_lt c, Square
+ (term_of_poly p)), rst))
+ polys (Rational_lt (Int 0))) in
+ let proof = Sum(Axiom_lt i, pos) in
+(* let s,proof' = scale_certificate proof in
+ let cert = snd (cert_of_pos proof') in *)
+ Some proof
+ with
+ | Not_found -> (* This is no strict inequality *) None
+ | x -> None
+
+
+type micromega_polys = (Micromega.q Mc.pExpr, Mc.op1) Micromega.prod list
+type csdp_certificate = Sos.positivstellensatz option
+type provername = string * int option
+
+let main () =
+ if Array.length Sys.argv <> 3 then
+ (Printf.printf "Usage: csdpcert inputfile outputfile\n"; exit 1);
+ let input_file = Sys.argv.(1) in
+ let output_file = Sys.argv.(2) in
+ let inch = open_in input_file in
+ let (prover,poly) = (input_value inch : provername * micromega_polys) in
+ close_in inch;
+ let cert =
+ match prover with
+ | "real_nonlinear_prover", Some d -> real_nonlinear_prover d poly
+ | "pure_sos", None -> pure_sos poly
+ | prover, _ -> (Printf.printf "unknown prover: %s\n" prover; exit 1) in
+ let outch = open_out output_file in
+ output_value outch (cert:csdp_certificate);
+ close_out outch;
+ exit 0;;
+
+let _ = main () in ()