aboutsummaryrefslogtreecommitdiffhomepage
path: root/parsing
diff options
context:
space:
mode:
authorGravatar letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7>2009-03-27 17:53:43 +0000
committerGravatar letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7>2009-03-27 17:53:43 +0000
commit7f2c52bcf588abfcbf30530bae240244229304a4 (patch)
tree6a74c2b13c24e66076177d51e188724c06ef0720 /parsing
parent999ac2c4c2bb6c7397c88ee1b6f39bdb43eaecb1 (diff)
Parsing files for numerals (+ ascii/string) moved into plugins
Idea: make coqtop more independant of the standard library. In the future, we can imagine loading the syntax for numerals right after their definition. For the moment, it is easier to stay lazy and load the syntax plugins slightly before the definitions. After this commit, the main (sole ?) references to theories/ from the core ml files are in Coqlib (but many parts of coqlib are only used by plugins), and it mainly concerns Init (+ Logic/JMeq and maybe a few others). git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@12024 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'parsing')
-rw-r--r--parsing/g_ascii_syntax.ml83
-rw-r--r--parsing/g_intsyntax.ml342
-rw-r--r--parsing/g_natsyntax.ml78
-rw-r--r--parsing/g_rsyntax.ml125
-rw-r--r--parsing/g_string_syntax.ml69
-rw-r--r--parsing/g_zsyntax.ml194
-rw-r--r--parsing/highparsing.mllib6
7 files changed, 0 insertions, 897 deletions
diff --git a/parsing/g_ascii_syntax.ml b/parsing/g_ascii_syntax.ml
deleted file mode 100644
index f9ca94ff6..000000000
--- a/parsing/g_ascii_syntax.ml
+++ /dev/null
@@ -1,83 +0,0 @@
-(***********************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
-(* \VV/ *************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(***********************************************************************)
-
-(*i $Id$ i*)
-
-open Pp
-open Util
-open Names
-open Pcoq
-open Rawterm
-open Topconstr
-open Libnames
-open Coqlib
-open Bigint
-
-exception Non_closed_ascii
-
-let make_dir l = make_dirpath (List.map id_of_string (List.rev l))
-let make_kn dir id = Libnames.encode_kn (make_dir dir) (id_of_string id)
-let make_path dir id = Libnames.make_path (make_dir dir) (id_of_string id)
-
-let ascii_module = ["Coq";"Strings";"Ascii"]
-
-let ascii_path = make_path ascii_module "ascii"
-
-let ascii_kn = make_kn ascii_module "ascii"
-let path_of_Ascii = ((ascii_kn,0),1)
-let static_glob_Ascii = ConstructRef path_of_Ascii
-
-let make_reference id = find_reference "Ascii interpretation" ascii_module id
-let glob_Ascii = lazy (make_reference "Ascii")
-
-open Lazy
-
-let interp_ascii dloc p =
- let rec aux n p =
- if n = 0 then [] else
- let mp = p mod 2 in
- RRef (dloc,if mp = 0 then glob_false else glob_true)
- :: (aux (n-1) (p/2)) in
- RApp (dloc,RRef(dloc,force glob_Ascii), aux 8 p)
-
-let interp_ascii_string dloc s =
- let p =
- if String.length s = 1 then int_of_char s.[0]
- else
- if String.length s = 3 & is_digit s.[0] & is_digit s.[1] & is_digit s.[2]
- then int_of_string s
- else
- user_err_loc (dloc,"interp_ascii_string",
- str "Expects a single character or a three-digits ascii code.") in
- interp_ascii dloc p
-
-let uninterp_ascii r =
- let rec uninterp_bool_list n = function
- | [] when n = 0 -> 0
- | RRef (_,k)::l when k = glob_true -> 1+2*(uninterp_bool_list (n-1) l)
- | RRef (_,k)::l when k = glob_false -> 2*(uninterp_bool_list (n-1) l)
- | _ -> raise Non_closed_ascii in
- try
- let rec aux = function
- | RApp (_,RRef (_,k),l) when k = force glob_Ascii -> uninterp_bool_list 8 l
- | _ -> raise Non_closed_ascii in
- Some (aux r)
- with
- Non_closed_ascii -> None
-
-let make_ascii_string n =
- if n>=32 && n<=126 then String.make 1 (char_of_int n)
- else Printf.sprintf "%03d" n
-
-let uninterp_ascii_string r = Option.map make_ascii_string (uninterp_ascii r)
-
-let _ =
- Notation.declare_string_interpreter "char_scope"
- (ascii_path,ascii_module)
- interp_ascii_string
- ([RRef (dummy_loc,static_glob_Ascii)], uninterp_ascii_string, true)
diff --git a/parsing/g_intsyntax.ml b/parsing/g_intsyntax.ml
deleted file mode 100644
index 7cef2fac0..000000000
--- a/parsing/g_intsyntax.ml
+++ /dev/null
@@ -1,342 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(*i $Id$ i*)
-
-(* digit-based syntax for int31, bigN bigZ and bigQ *)
-
-open Bigint
-open Libnames
-open Rawterm
-
-(*** Constants for locating the int31 and bigN ***)
-
-
-
-let make_dir l = Names.make_dirpath (List.map Names.id_of_string (List.rev l))
-let make_path dir id = Libnames.make_path (make_dir dir) (Names.id_of_string id)
-
-(* copied on g_zsyntax.ml, where it is said to be a temporary hack*)
-(* takes a path an identifier in the form of a string list and a string,
- returns a kernel_name *)
-let make_kn dir id = Libnames.encode_kn (make_dir dir) (Names.id_of_string id)
-
-
-(* int31 stuff *)
-let int31_module = ["Coq"; "Numbers"; "Cyclic"; "Int31"; "Int31"]
-let int31_path = make_path int31_module "int31"
-let int31_id = make_kn int31_module
-let int31_scope = "int31_scope"
-
-let int31_construct = ConstructRef ((int31_id "int31",0),1)
-
-let int31_0 = ConstructRef ((int31_id "digits",0),1)
-let int31_1 = ConstructRef ((int31_id "digits",0),2)
-
-
-(* bigN stuff*)
-let zn2z_module = ["Coq"; "Numbers"; "Cyclic"; "DoubleCyclic"; "DoubleType"]
-let zn2z_path = make_path zn2z_module "zn2z"
-let zn2z_id = make_kn zn2z_module
-
-let zn2z_W0 = ConstructRef ((zn2z_id "zn2z",0),1)
-let zn2z_WW = ConstructRef ((zn2z_id "zn2z",0),2)
-
-let bigN_module = ["Coq"; "Numbers"; "Natural"; "BigN"; "BigN" ]
-let bigN_path = make_path (bigN_module@["BigN"]) "t"
-(* big ugly hack *)
-let bigN_id id = (Obj.magic ((Names.MPdot ((Names.MPfile (make_dir bigN_module)),
- Names.mk_label "BigN")),
- [], Names.id_of_string id) : Names.kernel_name)
-let bigN_scope = "bigN_scope"
-
-(* number of inlined level of bigN (actually the level 0 to n_inlined-1 are inlined) *)
-let n_inlined = of_string "7"
-let bigN_constructor =
- (* converts a bigint into an int the ugly way *)
- let rec to_int i =
- if equal i zero then
- 0
- else
- let (quo,rem) = div2_with_rest i in
- if rem then
- 2*(to_int quo)+1
- else
- 2*(to_int quo)
- in
- fun i ->
- ConstructRef ((bigN_id "t_",0),
- if less_than i n_inlined then
- (to_int i)+1
- else
- (to_int n_inlined)+1
- )
-
-(*bigZ stuff*)
-let bigZ_module = ["Coq"; "Numbers"; "Integer"; "BigZ"; "BigZ" ]
-let bigZ_path = make_path (bigZ_module@["BigZ"]) "t"
-(* big ugly hack bis *)
-let bigZ_id id = (Obj.magic ((Names.MPdot ((Names.MPfile (make_dir bigZ_module)),
- Names.mk_label "BigZ")),
- [], Names.id_of_string id) : Names.kernel_name)
-let bigZ_scope = "bigZ_scope"
-
-let bigZ_pos = ConstructRef ((bigZ_id "t_",0),1)
-let bigZ_neg = ConstructRef ((bigZ_id "t_",0),2)
-
-
-(*bigQ stuff*)
-let bigQ_module = ["Coq"; "Numbers"; "Rational"; "BigQ"; "BigQ"]
-let qmake_module = ["Coq"; "Numbers"; "Rational"; "BigQ"; "QMake_base"]
-let bigQ_path = make_path (bigQ_module@["BigQ"]) "t"
-(* big ugly hack bis *)
-let bigQ_id = make_kn qmake_module
-let bigQ_scope = "bigQ_scope"
-
-let bigQ_z = ConstructRef ((bigQ_id "q_type",0),1)
-
-
-(*** Definition of the Non_closed exception, used in the pretty printing ***)
-exception Non_closed
-
-(*** Parsing for int31 in digital notation ***)
-
-(* parses a *non-negative* integer (from bigint.ml) into an int31
- wraps modulo 2^31 *)
-let int31_of_pos_bigint dloc n =
- let ref_construct = RRef (dloc, int31_construct) in
- let ref_0 = RRef (dloc, int31_0) in
- let ref_1 = RRef (dloc, int31_1) in
- let rec args counter n =
- if counter <= 0 then
- []
- else
- let (q,r) = div2_with_rest n in
- (if r then ref_1 else ref_0)::(args (counter-1) q)
- in
- RApp (dloc, ref_construct, List.rev (args 31 n))
-
-let error_negative dloc =
- Util.user_err_loc (dloc, "interp_int31", Pp.str "int31 are only non-negative numbers.")
-
-let interp_int31 dloc n =
- if is_pos_or_zero n then
- int31_of_pos_bigint dloc n
- else
- error_negative dloc
-
-(* Pretty prints an int31 *)
-
-let bigint_of_int31 =
- let rec args_parsing args cur =
- match args with
- | [] -> cur
- | (RRef (_,b))::l when b = int31_0 -> args_parsing l (mult_2 cur)
- | (RRef (_,b))::l when b = int31_1 -> args_parsing l (add_1 (mult_2 cur))
- | _ -> raise Non_closed
- in
- function
- | RApp (_, RRef (_, c), args) when c=int31_construct -> args_parsing args zero
- | _ -> raise Non_closed
-
-let uninterp_int31 i =
- try
- Some (bigint_of_int31 i)
- with Non_closed ->
- None
-
-(* Actually declares the interpreter for int31 *)
-let _ = Notation.declare_numeral_interpreter int31_scope
- (int31_path, int31_module)
- interp_int31
- ([RRef (Util.dummy_loc, int31_construct)],
- uninterp_int31,
- true)
-
-
-(*** Parsing for bigN in digital notation ***)
-(* the base for bigN (in Coq) that is 2^31 in our case *)
-let base = pow two (of_string "31")
-
-(* base of the bigN of height N : *)
-let rank n = pow base (pow two n)
-
-(* splits a number bi at height n, that is the rest needs 2^n int31 to be stored
- it is expected to be used only when the quotient would also need 2^n int31 to be
- stored *)
-let split_at n bi =
- euclid bi (rank (sub_1 n))
-
-(* search the height of the Coq bigint needed to represent the integer bi *)
-let height bi =
- let rec height_aux n =
- if less_than bi (rank n) then
- n
- else
- height_aux (add_1 n)
- in
- height_aux zero
-
-
-(* n must be a non-negative integer (from bigint.ml) *)
-let word_of_pos_bigint dloc hght n =
- let ref_W0 = RRef (dloc, zn2z_W0) in
- let ref_WW = RRef (dloc, zn2z_WW) in
- let rec decomp hgt n =
- if is_neg_or_zero hgt then
- int31_of_pos_bigint dloc n
- else if equal n zero then
- RApp (dloc, ref_W0, [RHole (dloc, Evd.InternalHole)])
- else
- let (h,l) = split_at hgt n in
- RApp (dloc, ref_WW, [RHole (dloc, Evd.InternalHole);
- decomp (sub_1 hgt) h;
- decomp (sub_1 hgt) l])
- in
- decomp hght n
-
-let bigN_of_pos_bigint dloc n =
- let ref_constructor i = RRef (dloc, bigN_constructor i) in
- let result h word = RApp (dloc, ref_constructor h, if less_than h n_inlined then
- [word]
- else
- [G_natsyntax.nat_of_int dloc (sub h n_inlined);
- word])
- in
- let hght = height n in
- result hght (word_of_pos_bigint dloc hght n)
-
-let bigN_error_negative dloc =
- Util.user_err_loc (dloc, "interp_bigN", Pp.str "bigN are only non-negative numbers.")
-
-let interp_bigN dloc n =
- if is_pos_or_zero n then
- bigN_of_pos_bigint dloc n
- else
- bigN_error_negative dloc
-
-
-(* Pretty prints a bigN *)
-
-let bigint_of_word =
- let rec get_height rc =
- match rc with
- | RApp (_,RRef(_,c), [_;lft;rght]) when c = zn2z_WW ->
- let hleft = get_height lft in
- let hright = get_height rght in
- add_1
- (if less_than hleft hright then
- hright
- else
- hleft)
- | _ -> zero
- in
- let rec transform hght rc =
- match rc with
- | RApp (_,RRef(_,c),_) when c = zn2z_W0-> zero
- | RApp (_,RRef(_,c), [_;lft;rght]) when c=zn2z_WW-> let new_hght = sub_1 hght in
- add (mult (rank new_hght)
- (transform (new_hght) lft))
- (transform (new_hght) rght)
- | _ -> bigint_of_int31 rc
- in
- fun rc ->
- let hght = get_height rc in
- transform hght rc
-
-let bigint_of_bigN rc =
- match rc with
- | RApp (_,_,[one_arg]) -> bigint_of_word one_arg
- | RApp (_,_,[_;second_arg]) -> bigint_of_word second_arg
- | _ -> raise Non_closed
-
-let uninterp_bigN rc =
- try
- Some (bigint_of_bigN rc)
- with Non_closed ->
- None
-
-
-(* declare the list of constructors of bigN used in the declaration of the
- numeral interpreter *)
-
-let bigN_list_of_constructors =
- let rec build i =
- if less_than i (add_1 n_inlined) then
- RRef (Util.dummy_loc, bigN_constructor i)::(build (add_1 i))
- else
- []
- in
- build zero
-
-(* Actually declares the interpreter for bigN *)
-let _ = Notation.declare_numeral_interpreter bigN_scope
- (bigN_path, bigN_module)
- interp_bigN
- (bigN_list_of_constructors,
- uninterp_bigN,
- true)
-
-
-(*** Parsing for bigZ in digital notation ***)
-let interp_bigZ dloc n =
- let ref_pos = RRef (dloc, bigZ_pos) in
- let ref_neg = RRef (dloc, bigZ_neg) in
- if is_pos_or_zero n then
- RApp (dloc, ref_pos, [bigN_of_pos_bigint dloc n])
- else
- RApp (dloc, ref_neg, [bigN_of_pos_bigint dloc (neg n)])
-
-(* pretty printing functions for bigZ *)
-let bigint_of_bigZ = function
- | RApp (_, RRef(_,c), [one_arg]) when c = bigZ_pos -> bigint_of_bigN one_arg
- | RApp (_, RRef(_,c), [one_arg]) when c = bigZ_neg ->
- let opp_val = bigint_of_bigN one_arg in
- if equal opp_val zero then
- raise Non_closed
- else
- neg opp_val
- | _ -> raise Non_closed
-
-
-let uninterp_bigZ rc =
- try
- Some (bigint_of_bigZ rc)
- with Non_closed ->
- None
-
-(* Actually declares the interpreter for bigN *)
-let _ = Notation.declare_numeral_interpreter bigZ_scope
- (bigZ_path, bigZ_module)
- interp_bigZ
- ([RRef (Util.dummy_loc, bigZ_pos);
- RRef (Util.dummy_loc, bigZ_neg)],
- uninterp_bigZ,
- true)
-
-(*** Parsing for bigQ in digital notation ***)
-let interp_bigQ dloc n =
- let ref_z = RRef (dloc, bigQ_z) in
- let ref_pos = RRef (dloc, bigZ_pos) in
- let ref_neg = RRef (dloc, bigZ_neg) in
- if is_pos_or_zero n then
- RApp (dloc, ref_z,
- [RApp (dloc, ref_pos, [bigN_of_pos_bigint dloc n])])
- else
- RApp (dloc, ref_z,
- [RApp (dloc, ref_neg, [bigN_of_pos_bigint dloc (neg n)])])
-
-let uninterp_bigQ rc = None
-
-
-(* Actually declares the interpreter for bigQ *)
-let _ = Notation.declare_numeral_interpreter bigQ_scope
- (bigQ_path, bigQ_module)
- interp_bigQ
- ([], uninterp_bigQ,
- true)
diff --git a/parsing/g_natsyntax.ml b/parsing/g_natsyntax.ml
deleted file mode 100644
index c62c81377..000000000
--- a/parsing/g_natsyntax.ml
+++ /dev/null
@@ -1,78 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(* $Id$ *)
-
-(* This file defines the printer for natural numbers in [nat] *)
-
-(*i*)
-open Pcoq
-open Pp
-open Util
-open Names
-open Coqlib
-open Rawterm
-open Libnames
-open Bigint
-open Coqlib
-open Notation
-open Pp
-open Util
-open Names
-(*i*)
-
-(**********************************************************************)
-(* Parsing via scopes *)
-(* For example, (nat_of_string "3") is <<(S (S (S O)))>> *)
-
-let nat_of_int dloc n =
- if is_pos_or_zero n then begin
- if less_than (of_string "5000") n then
- Flags.if_warn msg_warning
- (strbrk "Stack overflow or segmentation fault happens when " ++
- strbrk "working with large numbers in nat (observed threshold " ++
- strbrk "may vary from 5000 to 70000 depending on your system " ++
- strbrk "limits and on the command executed).");
- let ref_O = RRef (dloc, glob_O) in
- let ref_S = RRef (dloc, glob_S) in
- let rec mk_nat acc n =
- if n <> zero then
- mk_nat (RApp (dloc,ref_S, [acc])) (sub_1 n)
- else
- acc
- in
- mk_nat ref_O n
- end
- else
- user_err_loc (dloc, "nat_of_int",
- str "Cannot interpret a negative number as a number of type nat")
-
-(************************************************************************)
-(* Printing via scopes *)
-
-exception Non_closed_number
-
-let rec int_of_nat = function
- | RApp (_,RRef (_,s),[a]) when s = glob_S -> add_1 (int_of_nat a)
- | RRef (_,z) when z = glob_O -> zero
- | _ -> raise Non_closed_number
-
-let uninterp_nat p =
- try
- Some (int_of_nat p)
- with
- Non_closed_number -> None
-
-(************************************************************************)
-(* Declare the primitive parsers and printers *)
-
-let _ =
- Notation.declare_numeral_interpreter "nat_scope"
- (nat_path,["Coq";"Init";"Datatypes"])
- nat_of_int
- ([RRef (dummy_loc,glob_S); RRef (dummy_loc,glob_O)], uninterp_nat, true)
diff --git a/parsing/g_rsyntax.ml b/parsing/g_rsyntax.ml
deleted file mode 100644
index 4a5972cc7..000000000
--- a/parsing/g_rsyntax.ml
+++ /dev/null
@@ -1,125 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(*i $Id$ i*)
-
-open Pp
-open Util
-open Names
-open Pcoq
-open Topconstr
-open Libnames
-
-exception Non_closed_number
-
-(**********************************************************************)
-(* Parsing R via scopes *)
-(**********************************************************************)
-
-open Libnames
-open Rawterm
-open Bigint
-
-let make_dir l = make_dirpath (List.map id_of_string (List.rev l))
-let rdefinitions = make_dir ["Coq";"Reals";"Rdefinitions"]
-let make_path dir id = Libnames.make_path dir (id_of_string id)
-
-let r_path = make_path rdefinitions "R"
-
-(* TODO: temporary hack *)
-let make_path dir id = Libnames.encode_con dir (id_of_string id)
-
-let r_kn = make_path rdefinitions "R"
-let glob_R = ConstRef r_kn
-let glob_R1 = ConstRef (make_path rdefinitions "R1")
-let glob_R0 = ConstRef (make_path rdefinitions "R0")
-let glob_Ropp = ConstRef (make_path rdefinitions "Ropp")
-let glob_Rplus = ConstRef (make_path rdefinitions "Rplus")
-let glob_Rmult = ConstRef (make_path rdefinitions "Rmult")
-
-let two = mult_2 one
-let three = add_1 two
-let four = mult_2 two
-
-(* Unary representation of strictly positive numbers *)
-let rec small_r dloc n =
- if equal one n then RRef (dloc, glob_R1)
- else RApp(dloc,RRef (dloc,glob_Rplus),
- [RRef (dloc, glob_R1);small_r dloc (sub_1 n)])
-
-let r_of_posint dloc n =
- let r1 = RRef (dloc, glob_R1) in
- let r2 = small_r dloc two in
- let rec r_of_pos n =
- if less_than n four then small_r dloc n
- else
- let (q,r) = div2_with_rest n in
- let b = RApp(dloc,RRef(dloc,glob_Rmult),[r2;r_of_pos q]) in
- if r then RApp(dloc,RRef(dloc,glob_Rplus),[r1;b]) else b in
- if n <> zero then r_of_pos n else RRef(dloc,glob_R0)
-
-let r_of_int dloc z =
- if is_strictly_neg z then
- RApp (dloc, RRef(dloc,glob_Ropp), [r_of_posint dloc (neg z)])
- else
- r_of_posint dloc z
-
-(**********************************************************************)
-(* Printing R via scopes *)
-(**********************************************************************)
-
-let bignat_of_r =
-(* for numbers > 1 *)
-let rec bignat_of_pos = function
- (* 1+1 *)
- | RApp (_,RRef (_,p), [RRef (_,o1); RRef (_,o2)])
- when p = glob_Rplus & o1 = glob_R1 & o2 = glob_R1 -> two
- (* 1+(1+1) *)
- | RApp (_,RRef (_,p1), [RRef (_,o1);
- RApp(_,RRef (_,p2),[RRef(_,o2);RRef(_,o3)])])
- when p1 = glob_Rplus & p2 = glob_Rplus &
- o1 = glob_R1 & o2 = glob_R1 & o3 = glob_R1 -> three
- (* (1+1)*b *)
- | RApp (_,RRef (_,p), [a; b]) when p = glob_Rmult ->
- if bignat_of_pos a <> two then raise Non_closed_number;
- mult_2 (bignat_of_pos b)
- (* 1+(1+1)*b *)
- | RApp (_,RRef (_,p1), [RRef (_,o); RApp (_,RRef (_,p2),[a;b])])
- when p1 = glob_Rplus & p2 = glob_Rmult & o = glob_R1 ->
- if bignat_of_pos a <> two then raise Non_closed_number;
- add_1 (mult_2 (bignat_of_pos b))
- | _ -> raise Non_closed_number
-in
-let bignat_of_r = function
- | RRef (_,a) when a = glob_R0 -> zero
- | RRef (_,a) when a = glob_R1 -> one
- | r -> bignat_of_pos r
-in
-bignat_of_r
-
-let bigint_of_r = function
- | RApp (_,RRef (_,o), [a]) when o = glob_Ropp ->
- let n = bignat_of_r a in
- if n = zero then raise Non_closed_number;
- neg n
- | a -> bignat_of_r a
-
-let uninterp_r p =
- try
- Some (bigint_of_r p)
- with Non_closed_number ->
- None
-
-let _ = Notation.declare_numeral_interpreter "R_scope"
- (r_path,["Coq";"Reals";"Rdefinitions"])
- r_of_int
- ([RRef(dummy_loc,glob_Ropp);RRef(dummy_loc,glob_R0);
- RRef(dummy_loc,glob_Rplus);RRef(dummy_loc,glob_Rmult);
- RRef(dummy_loc,glob_R1)],
- uninterp_r,
- false)
diff --git a/parsing/g_string_syntax.ml b/parsing/g_string_syntax.ml
deleted file mode 100644
index a936485d9..000000000
--- a/parsing/g_string_syntax.ml
+++ /dev/null
@@ -1,69 +0,0 @@
-(***********************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
-(* \VV/ *************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(***********************************************************************)
-
-(*i $Id$ i*)
-
-open Pp
-open Util
-open Names
-open Pcoq
-open Libnames
-open Topconstr
-open G_ascii_syntax
-open Rawterm
-open Coqlib
-
-exception Non_closed_string
-
-(* make a string term from the string s *)
-
-let string_module = ["Coq";"Strings";"String"]
-
-let string_path = make_path string_module "string"
-
-let string_kn = make_kn string_module "string"
-let static_glob_EmptyString = ConstructRef ((string_kn,0),1)
-let static_glob_String = ConstructRef ((string_kn,0),2)
-
-let make_reference id = find_reference "String interpretation" string_module id
-let glob_String = lazy (make_reference "String")
-let glob_EmptyString = lazy (make_reference "EmptyString")
-
-open Lazy
-
-let interp_string dloc s =
- let le = String.length s in
- let rec aux n =
- if n = le then RRef (dloc, force glob_EmptyString) else
- RApp (dloc,RRef (dloc, force glob_String),
- [interp_ascii dloc (int_of_char s.[n]); aux (n+1)])
- in aux 0
-
-let uninterp_string r =
- try
- let b = Buffer.create 16 in
- let rec aux = function
- | RApp (_,RRef (_,k),[a;s]) when k = force glob_String ->
- (match uninterp_ascii a with
- | Some c -> Buffer.add_char b (Char.chr c); aux s
- | _ -> raise Non_closed_string)
- | RRef (_,z) when z = force glob_EmptyString ->
- Some (Buffer.contents b)
- | _ ->
- raise Non_closed_string
- in aux r
- with
- Non_closed_string -> None
-
-let _ =
- Notation.declare_string_interpreter "string_scope"
- (string_path,["Coq";"Strings";"String"])
- interp_string
- ([RRef (dummy_loc,static_glob_String);
- RRef (dummy_loc,static_glob_EmptyString)],
- uninterp_string, true)
diff --git a/parsing/g_zsyntax.ml b/parsing/g_zsyntax.ml
deleted file mode 100644
index bfbe54c28..000000000
--- a/parsing/g_zsyntax.ml
+++ /dev/null
@@ -1,194 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(* $Id$ *)
-
-open Pcoq
-open Pp
-open Util
-open Names
-open Topconstr
-open Libnames
-open Bigint
-
-exception Non_closed_number
-
-(**********************************************************************)
-(* Parsing positive via scopes *)
-(**********************************************************************)
-
-open Libnames
-open Rawterm
-let make_dir l = make_dirpath (List.map id_of_string (List.rev l))
-let positive_module = ["Coq";"NArith";"BinPos"]
-let make_path dir id = Libnames.make_path (make_dir dir) (id_of_string id)
-
-let positive_path = make_path positive_module "positive"
-
-(* TODO: temporary hack *)
-let make_kn dir id = Libnames.encode_kn dir id
-
-let positive_kn =
- make_kn (make_dir positive_module) (id_of_string "positive")
-let glob_positive = IndRef (positive_kn,0)
-let path_of_xI = ((positive_kn,0),1)
-let path_of_xO = ((positive_kn,0),2)
-let path_of_xH = ((positive_kn,0),3)
-let glob_xI = ConstructRef path_of_xI
-let glob_xO = ConstructRef path_of_xO
-let glob_xH = ConstructRef path_of_xH
-
-let pos_of_bignat dloc x =
- let ref_xI = RRef (dloc, glob_xI) in
- let ref_xH = RRef (dloc, glob_xH) in
- let ref_xO = RRef (dloc, glob_xO) in
- let rec pos_of x =
- match div2_with_rest x with
- | (q,false) -> RApp (dloc, ref_xO,[pos_of q])
- | (q,true) when q <> zero -> RApp (dloc,ref_xI,[pos_of q])
- | (q,true) -> ref_xH
- in
- pos_of x
-
-let error_non_positive dloc =
- user_err_loc (dloc, "interp_positive",
- str "Only strictly positive numbers in type \"positive\".")
-
-let interp_positive dloc n =
- if is_strictly_pos n then pos_of_bignat dloc n
- else error_non_positive dloc
-
-(**********************************************************************)
-(* Printing positive via scopes *)
-(**********************************************************************)
-
-let rec bignat_of_pos = function
- | RApp (_, RRef (_,b),[a]) when b = glob_xO -> mult_2(bignat_of_pos a)
- | RApp (_, RRef (_,b),[a]) when b = glob_xI -> add_1(mult_2(bignat_of_pos a))
- | RRef (_, a) when a = glob_xH -> Bigint.one
- | _ -> raise Non_closed_number
-
-let uninterp_positive p =
- try
- Some (bignat_of_pos p)
- with Non_closed_number ->
- None
-
-(************************************************************************)
-(* Declaring interpreters and uninterpreters for positive *)
-(************************************************************************)
-
-let _ = Notation.declare_numeral_interpreter "positive_scope"
- (positive_path,positive_module)
- interp_positive
- ([RRef (dummy_loc, glob_xI);
- RRef (dummy_loc, glob_xO);
- RRef (dummy_loc, glob_xH)],
- uninterp_positive,
- true)
-
-(**********************************************************************)
-(* Parsing N via scopes *)
-(**********************************************************************)
-
-let binnat_module = ["Coq";"NArith";"BinNat"]
-let n_kn = make_kn (make_dir binnat_module) (id_of_string "N")
-let glob_n = IndRef (n_kn,0)
-let path_of_N0 = ((n_kn,0),1)
-let path_of_Npos = ((n_kn,0),2)
-let glob_N0 = ConstructRef path_of_N0
-let glob_Npos = ConstructRef path_of_Npos
-
-let n_path = make_path binnat_module "N"
-
-let n_of_binnat dloc pos_or_neg n =
- if n <> zero then
- RApp(dloc, RRef (dloc,glob_Npos), [pos_of_bignat dloc n])
- else
- RRef (dloc, glob_N0)
-
-let error_negative dloc =
- user_err_loc (dloc, "interp_N", str "No negative numbers in type \"N\".")
-
-let n_of_int dloc n =
- if is_pos_or_zero n then n_of_binnat dloc true n
- else error_negative dloc
-
-(**********************************************************************)
-(* Printing N via scopes *)
-(**********************************************************************)
-
-let bignat_of_n = function
- | RApp (_, RRef (_,b),[a]) when b = glob_Npos -> bignat_of_pos a
- | RRef (_, a) when a = glob_N0 -> Bigint.zero
- | _ -> raise Non_closed_number
-
-let uninterp_n p =
- try Some (bignat_of_n p)
- with Non_closed_number -> None
-
-(************************************************************************)
-(* Declaring interpreters and uninterpreters for N *)
-
-let _ = Notation.declare_numeral_interpreter "N_scope"
- (n_path,binnat_module)
- n_of_int
- ([RRef (dummy_loc, glob_N0);
- RRef (dummy_loc, glob_Npos)],
- uninterp_n,
- true)
-
-(**********************************************************************)
-(* Parsing Z via scopes *)
-(**********************************************************************)
-
-let binint_module = ["Coq";"ZArith";"BinInt"]
-let z_path = make_path binint_module "Z"
-let z_kn = make_kn (make_dir binint_module) (id_of_string "Z")
-let glob_z = IndRef (z_kn,0)
-let path_of_ZERO = ((z_kn,0),1)
-let path_of_POS = ((z_kn,0),2)
-let path_of_NEG = ((z_kn,0),3)
-let glob_ZERO = ConstructRef path_of_ZERO
-let glob_POS = ConstructRef path_of_POS
-let glob_NEG = ConstructRef path_of_NEG
-
-let z_of_int dloc n =
- if n <> zero then
- let sgn, n =
- if is_pos_or_zero n then glob_POS, n else glob_NEG, Bigint.neg n in
- RApp(dloc, RRef (dloc,sgn), [pos_of_bignat dloc n])
- else
- RRef (dloc, glob_ZERO)
-
-(**********************************************************************)
-(* Printing Z via scopes *)
-(**********************************************************************)
-
-let bigint_of_z = function
- | RApp (_, RRef (_,b),[a]) when b = glob_POS -> bignat_of_pos a
- | RApp (_, RRef (_,b),[a]) when b = glob_NEG -> Bigint.neg (bignat_of_pos a)
- | RRef (_, a) when a = glob_ZERO -> Bigint.zero
- | _ -> raise Non_closed_number
-
-let uninterp_z p =
- try
- Some (bigint_of_z p)
- with Non_closed_number -> None
-
-(************************************************************************)
-(* Declaring interpreters and uninterpreters for Z *)
-
-let _ = Notation.declare_numeral_interpreter "Z_scope"
- (z_path,binint_module)
- z_of_int
- ([RRef (dummy_loc, glob_ZERO);
- RRef (dummy_loc, glob_POS);
- RRef (dummy_loc, glob_NEG)],
- uninterp_z,
- true)
diff --git a/parsing/highparsing.mllib b/parsing/highparsing.mllib
index 03fb9c629..3eb27abbb 100644
--- a/parsing/highparsing.mllib
+++ b/parsing/highparsing.mllib
@@ -4,10 +4,4 @@ G_prim
G_proofs
G_tactic
G_ltac
-G_natsyntax
-G_zsyntax
-G_rsyntax
-G_ascii_syntax
-G_string_syntax
G_decl_mode
-G_intsyntax