aboutsummaryrefslogtreecommitdiffhomepage
path: root/kernel/uGraph.ml
diff options
context:
space:
mode:
authorGravatar Pierre-Marie Pédrot <pierre-marie.pedrot@inria.fr>2015-10-06 19:09:10 +0200
committerGravatar Pierre-Marie Pédrot <pierre-marie.pedrot@inria.fr>2015-10-06 20:09:06 +0200
commit84add29c036735ceacde73ea98a9a5a454a5e3a0 (patch)
treebaee8c0b023277d43366996685503c9d1f855413 /kernel/uGraph.ml
parentc4db6fc1086d984fd983ff9a6797ad108d220b98 (diff)
Splitting kernel universe code in two modules.
1. The Univ module now only cares about definitions about universes. 2. The UGraph module contains the algorithm responsible for aciclicity.
Diffstat (limited to 'kernel/uGraph.ml')
-rw-r--r--kernel/uGraph.ml868
1 files changed, 868 insertions, 0 deletions
diff --git a/kernel/uGraph.ml b/kernel/uGraph.ml
new file mode 100644
index 000000000..356cf4da6
--- /dev/null
+++ b/kernel/uGraph.ml
@@ -0,0 +1,868 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+open Pp
+open Errors
+open Util
+open Univ
+
+(* Created in Caml by Gérard Huet for CoC 4.8 [Dec 1988] *)
+(* Functional code by Jean-Christophe Filliâtre for Coq V7.0 [1999] *)
+(* Extension with algebraic universes by HH for Coq V7.0 [Sep 2001] *)
+(* Additional support for sort-polymorphic inductive types by HH [Mar 2006] *)
+(* Support for universe polymorphism by MS [2014] *)
+
+(* Revisions by Bruno Barras, Hugo Herbelin, Pierre Letouzey, Matthieu Sozeau,
+ Pierre-Marie Pédrot *)
+
+let error_inconsistency o u v (p:explanation option) =
+ raise (UniverseInconsistency (o,Universe.make u,Universe.make v,p))
+
+type status = Unset | SetLe | SetLt
+
+(* Comparison on this type is pointer equality *)
+type canonical_arc =
+ { univ: Level.t;
+ lt: Level.t list;
+ le: Level.t list;
+ rank : int;
+ mutable status : status;
+ (** Guaranteed to be unset out of the [compare_neq] functions. It is used
+ to do an imperative traversal of the graph, ensuring a O(1) check that
+ a node has already been visited. Quite performance critical indeed. *)
+ }
+
+let arc_is_le arc = match arc.status with
+| Unset -> false
+| SetLe | SetLt -> true
+
+let arc_is_lt arc = match arc.status with
+| Unset | SetLe -> false
+| SetLt -> true
+
+let terminal u = {univ=u; lt=[]; le=[]; rank=0; status = Unset}
+
+module UMap :
+sig
+ type key = Level.t
+ type +'a t
+ val empty : 'a t
+ val add : key -> 'a -> 'a t -> 'a t
+ val find : key -> 'a t -> 'a
+ val equal : ('a -> 'a -> bool) -> 'a t -> 'a t -> bool
+ val fold : (key -> 'a -> 'b -> 'b) -> 'a t -> 'b -> 'b
+ val iter : (key -> 'a -> unit) -> 'a t -> unit
+ val mapi : (key -> 'a -> 'b) -> 'a t -> 'b t
+end = HMap.Make(Level)
+
+(* A Level.t is either an alias for another one, or a canonical one,
+ for which we know the universes that are above *)
+
+type univ_entry =
+ Canonical of canonical_arc
+ | Equiv of Level.t
+
+type universes = univ_entry UMap.t
+
+type t = universes
+
+(** Used to cleanup universes if a traversal function is interrupted before it
+ has the opportunity to do it itself. *)
+let unsafe_cleanup_universes g =
+ let iter _ arc = match arc with
+ | Equiv _ -> ()
+ | Canonical arc -> arc.status <- Unset
+ in
+ UMap.iter iter g
+
+let rec cleanup_universes g =
+ try unsafe_cleanup_universes g
+ with e ->
+ (** The only way unsafe_cleanup_universes may raise an exception is when
+ a serious error (stack overflow, out of memory) occurs, or a signal is
+ sent. In this unlikely event, we relaunch the cleanup until we finally
+ succeed. *)
+ cleanup_universes g; raise e
+
+let enter_equiv_arc u v g =
+ UMap.add u (Equiv v) g
+
+let enter_arc ca g =
+ UMap.add ca.univ (Canonical ca) g
+
+(* Every Level.t has a unique canonical arc representative *)
+
+(** The graph always contains nodes for Prop and Set. *)
+
+let terminal_lt u v =
+ {(terminal u) with lt=[v]}
+
+let empty_universes =
+ let g = enter_arc (terminal Level.set) UMap.empty in
+ let g = enter_arc (terminal_lt Level.prop Level.set) g in
+ g
+
+(* repr : universes -> Level.t -> canonical_arc *)
+(* canonical representative : we follow the Equiv links *)
+
+let rec repr g u =
+ let a =
+ try UMap.find u g
+ with Not_found -> anomaly ~label:"Univ.repr"
+ (str"Universe " ++ Level.pr u ++ str" undefined")
+ in
+ match a with
+ | Equiv v -> repr g v
+ | Canonical arc -> arc
+
+let get_prop_arc g = repr g Level.prop
+let get_set_arc g = repr g Level.set
+let is_set_arc u = Level.is_set u.univ
+let is_prop_arc u = Level.is_prop u.univ
+
+exception AlreadyDeclared
+
+let add_universe vlev strict g =
+ try
+ let _arcv = UMap.find vlev g in
+ raise AlreadyDeclared
+ with Not_found ->
+ let v = terminal vlev in
+ let arc =
+ let arc = get_set_arc g in
+ if strict then
+ { arc with lt=vlev::arc.lt}
+ else
+ { arc with le=vlev::arc.le}
+ in
+ let g = enter_arc arc g in
+ enter_arc v g
+
+(* reprleq : canonical_arc -> canonical_arc list *)
+(* All canonical arcv such that arcu<=arcv with arcv#arcu *)
+let reprleq g arcu =
+ let rec searchrec w = function
+ | [] -> w
+ | v :: vl ->
+ let arcv = repr g v in
+ if List.memq arcv w || arcu==arcv then
+ searchrec w vl
+ else
+ searchrec (arcv :: w) vl
+ in
+ searchrec [] arcu.le
+
+
+(* between : Level.t -> canonical_arc -> canonical_arc list *)
+(* between u v = { w | u<=w<=v, w canonical } *)
+(* between is the most costly operation *)
+
+let between g arcu arcv =
+ (* good are all w | u <= w <= v *)
+ (* bad are all w | u <= w ~<= v *)
+ (* find good and bad nodes in {w | u <= w} *)
+ (* explore b u = (b or "u is good") *)
+ let rec explore ((good, bad, b) as input) arcu =
+ if List.memq arcu good then
+ (good, bad, true) (* b or true *)
+ else if List.memq arcu bad then
+ input (* (good, bad, b or false) *)
+ else
+ let leq = reprleq g arcu in
+ (* is some universe >= u good ? *)
+ let good, bad, b_leq =
+ List.fold_left explore (good, bad, false) leq
+ in
+ if b_leq then
+ arcu::good, bad, true (* b or true *)
+ else
+ good, arcu::bad, b (* b or false *)
+ in
+ let good,_,_ = explore ([arcv],[],false) arcu in
+ good
+(* We assume compare(u,v) = LE with v canonical (see compare below).
+ In this case List.hd(between g u v) = repr u
+ Otherwise, between g u v = []
+ *)
+
+(** [fast_compare_neq] : is [arcv] in the transitive upward closure of [arcu] ?
+
+ In [strict] mode, we fully distinguish between LE and LT, while in
+ non-strict mode, we simply answer LE for both situations.
+
+ If [arcv] is encountered in a LT part, we could directly answer
+ without visiting unneeded parts of this transitive closure.
+ In [strict] mode, if [arcv] is encountered in a LE part, we could only
+ change the default answer (1st arg [c]) from NLE to LE, since a strict
+ constraint may appear later. During the recursive traversal,
+ [lt_done] and [le_done] are universes we have already visited,
+ they do not contain [arcv]. The 4rd arg is [(lt_todo,le_todo)],
+ two lists of universes not yet considered, known to be above [arcu],
+ strictly or not.
+
+ We use depth-first search, but the presence of [arcv] in [new_lt]
+ is checked as soon as possible : this seems to be slightly faster
+ on a test.
+
+ We do the traversal imperatively, setting the [status] flag on visited nodes.
+ This ensures O(1) check, but it also requires unsetting the flag when leaving
+ the function. Some special care has to be taken in order to ensure we do not
+ recover a messed up graph at the end. This occurs in particular when the
+ traversal raises an exception. Even though the code below is exception-free,
+ OCaml may still raise random exceptions, essentially fatal exceptions or
+ signal handlers. Therefore we ensure the cleanup by a catch-all clause. Note
+ also that the use of an imperative solution does make this function
+ thread-unsafe. For now we do not check universes in different threads, but if
+ ever this is to be done, we would need some lock somewhere.
+
+*)
+
+let get_explanation strict g arcu arcv =
+ (* [c] characterizes whether (and how) arcv has already been related
+ to arcu among the lt_done,le_done universe *)
+ let rec cmp c to_revert lt_todo le_todo = match lt_todo, le_todo with
+ | [],[] -> (to_revert, c)
+ | (arc,p)::lt_todo, le_todo ->
+ if arc_is_lt arc then
+ cmp c to_revert lt_todo le_todo
+ else
+ let rec find lt_todo lt le = match le with
+ | [] ->
+ begin match lt with
+ | [] ->
+ let () = arc.status <- SetLt in
+ cmp c (arc :: to_revert) lt_todo le_todo
+ | u :: lt ->
+ let arc = repr g u in
+ let p = (Lt, Universe.make u) :: p in
+ if arc == arcv then
+ if strict then (to_revert, p) else (to_revert, p)
+ else find ((arc, p) :: lt_todo) lt le
+ end
+ | u :: le ->
+ let arc = repr g u in
+ let p = (Le, Universe.make u) :: p in
+ if arc == arcv then
+ if strict then (to_revert, p) else (to_revert, p)
+ else find ((arc, p) :: lt_todo) lt le
+ in
+ find lt_todo arc.lt arc.le
+ | [], (arc,p)::le_todo ->
+ if arc == arcv then
+ (* No need to continue inspecting universes above arc:
+ if arcv is strictly above arc, then we would have a cycle.
+ But we cannot answer LE yet, a stronger constraint may
+ come later from [le_todo]. *)
+ if strict then cmp p to_revert [] le_todo else (to_revert, p)
+ else
+ if arc_is_le arc then
+ cmp c to_revert [] le_todo
+ else
+ let rec find lt_todo lt = match lt with
+ | [] ->
+ let fold accu u =
+ let p = (Le, Universe.make u) :: p in
+ let node = (repr g u, p) in
+ node :: accu
+ in
+ let le_new = List.fold_left fold le_todo arc.le in
+ let () = arc.status <- SetLe in
+ cmp c (arc :: to_revert) lt_todo le_new
+ | u :: lt ->
+ let arc = repr g u in
+ let p = (Lt, Universe.make u) :: p in
+ if arc == arcv then
+ if strict then (to_revert, p) else (to_revert, p)
+ else find ((arc, p) :: lt_todo) lt
+ in
+ find [] arc.lt
+ in
+ let start = (* if is_prop_arc arcu then [Le, make arcv.univ] else *) [] in
+ try
+ let (to_revert, c) = cmp start [] [] [(arcu, [])] in
+ (** Reset all the touched arcs. *)
+ let () = List.iter (fun arc -> arc.status <- Unset) to_revert in
+ List.rev c
+ with e ->
+ (** Unlikely event: fatal error or signal *)
+ let () = cleanup_universes g in
+ raise e
+
+let get_explanation strict g arcu arcv =
+ if !Flags.univ_print then Some (get_explanation strict g arcu arcv)
+ else None
+
+type fast_order = FastEQ | FastLT | FastLE | FastNLE
+
+let fast_compare_neq strict g arcu arcv =
+ (* [c] characterizes whether arcv has already been related
+ to arcu among the lt_done,le_done universe *)
+ let rec cmp c to_revert lt_todo le_todo = match lt_todo, le_todo with
+ | [],[] -> (to_revert, c)
+ | arc::lt_todo, le_todo ->
+ if arc_is_lt arc then
+ cmp c to_revert lt_todo le_todo
+ else
+ let () = arc.status <- SetLt in
+ process_lt c (arc :: to_revert) lt_todo le_todo arc.lt arc.le
+ | [], arc::le_todo ->
+ if arc == arcv then
+ (* No need to continue inspecting universes above arc:
+ if arcv is strictly above arc, then we would have a cycle.
+ But we cannot answer LE yet, a stronger constraint may
+ come later from [le_todo]. *)
+ if strict then cmp FastLE to_revert [] le_todo else (to_revert, FastLE)
+ else
+ if arc_is_le arc then
+ cmp c to_revert [] le_todo
+ else
+ let () = arc.status <- SetLe in
+ process_le c (arc :: to_revert) [] le_todo arc.lt arc.le
+
+ and process_lt c to_revert lt_todo le_todo lt le = match le with
+ | [] ->
+ begin match lt with
+ | [] -> cmp c to_revert lt_todo le_todo
+ | u :: lt ->
+ let arc = repr g u in
+ if arc == arcv then
+ if strict then (to_revert, FastLT) else (to_revert, FastLE)
+ else process_lt c to_revert (arc :: lt_todo) le_todo lt le
+ end
+ | u :: le ->
+ let arc = repr g u in
+ if arc == arcv then
+ if strict then (to_revert, FastLT) else (to_revert, FastLE)
+ else process_lt c to_revert (arc :: lt_todo) le_todo lt le
+
+ and process_le c to_revert lt_todo le_todo lt le = match lt with
+ | [] ->
+ let fold accu u =
+ let node = repr g u in
+ node :: accu
+ in
+ let le_new = List.fold_left fold le_todo le in
+ cmp c to_revert lt_todo le_new
+ | u :: lt ->
+ let arc = repr g u in
+ if arc == arcv then
+ if strict then (to_revert, FastLT) else (to_revert, FastLE)
+ else process_le c to_revert (arc :: lt_todo) le_todo lt le
+
+ in
+ try
+ let (to_revert, c) = cmp FastNLE [] [] [arcu] in
+ (** Reset all the touched arcs. *)
+ let () = List.iter (fun arc -> arc.status <- Unset) to_revert in
+ c
+ with e ->
+ (** Unlikely event: fatal error or signal *)
+ let () = cleanup_universes g in
+ raise e
+
+let get_explanation_strict g arcu arcv = get_explanation true g arcu arcv
+
+let fast_compare g arcu arcv =
+ if arcu == arcv then FastEQ else fast_compare_neq true g arcu arcv
+
+let is_leq g arcu arcv =
+ arcu == arcv ||
+ (match fast_compare_neq false g arcu arcv with
+ | FastNLE -> false
+ | (FastEQ|FastLE|FastLT) -> true)
+
+let is_lt g arcu arcv =
+ if arcu == arcv then false
+ else
+ match fast_compare_neq true g arcu arcv with
+ | FastLT -> true
+ | (FastEQ|FastLE|FastNLE) -> false
+
+(* Invariants : compare(u,v) = EQ <=> compare(v,u) = EQ
+ compare(u,v) = LT or LE => compare(v,u) = NLE
+ compare(u,v) = NLE => compare(v,u) = NLE or LE or LT
+
+ Adding u>=v is consistent iff compare(v,u) # LT
+ and then it is redundant iff compare(u,v) # NLE
+ Adding u>v is consistent iff compare(v,u) = NLE
+ and then it is redundant iff compare(u,v) = LT *)
+
+(** * Universe checks [check_eq] and [check_leq], used in coqchk *)
+
+(** First, checks on universe levels *)
+
+let check_equal g u v =
+ let arcu = repr g u and arcv = repr g v in
+ arcu == arcv
+
+let check_eq_level g u v = u == v || check_equal g u v
+
+let check_smaller g strict u v =
+ let arcu = repr g u and arcv = repr g v in
+ if strict then
+ is_lt g arcu arcv
+ else
+ is_prop_arc arcu
+ || (is_set_arc arcu && not (is_prop_arc arcv))
+ || is_leq g arcu arcv
+
+(** Then, checks on universes *)
+
+type 'a check_function = universes -> 'a -> 'a -> bool
+
+let check_equal_expr g x y =
+ x == y || (let (u, n) = x and (v, m) = y in
+ Int.equal n m && check_equal g u v)
+
+let check_eq_univs g l1 l2 =
+ let f x1 x2 = check_equal_expr g x1 x2 in
+ let exists x1 l = Universe.exists (fun x2 -> f x1 x2) l in
+ Universe.for_all (fun x1 -> exists x1 l2) l1
+ && Universe.for_all (fun x2 -> exists x2 l1) l2
+
+let check_eq g u v =
+ Universe.equal u v || check_eq_univs g u v
+
+let check_smaller_expr g (u,n) (v,m) =
+ let diff = n - m in
+ match diff with
+ | 0 -> check_smaller g false u v
+ | 1 -> check_smaller g true u v
+ | x when x < 0 -> check_smaller g false u v
+ | _ -> false
+
+let exists_bigger g ul l =
+ Universe.exists (fun ul' ->
+ check_smaller_expr g ul ul') l
+
+let real_check_leq g u v =
+ Universe.for_all (fun ul -> exists_bigger g ul v) u
+
+let check_leq g u v =
+ Universe.equal u v ||
+ is_type0m_univ u ||
+ check_eq_univs g u v || real_check_leq g u v
+
+(** Enforcing new constraints : [setlt], [setleq], [merge], [merge_disc] *)
+
+(* setlt : Level.t -> Level.t -> reason -> unit *)
+(* forces u > v *)
+(* this is normally an update of u in g rather than a creation. *)
+let setlt g arcu arcv =
+ let arcu' = {arcu with lt=arcv.univ::arcu.lt} in
+ enter_arc arcu' g, arcu'
+
+(* checks that non-redundant *)
+let setlt_if (g,arcu) v =
+ let arcv = repr g v in
+ if is_lt g arcu arcv then g, arcu
+ else setlt g arcu arcv
+
+(* setleq : Level.t -> Level.t -> unit *)
+(* forces u >= v *)
+(* this is normally an update of u in g rather than a creation. *)
+let setleq g arcu arcv =
+ let arcu' = {arcu with le=arcv.univ::arcu.le} in
+ enter_arc arcu' g, arcu'
+
+(* checks that non-redundant *)
+let setleq_if (g,arcu) v =
+ let arcv = repr g v in
+ if is_leq g arcu arcv then g, arcu
+ else setleq g arcu arcv
+
+(* merge : Level.t -> Level.t -> unit *)
+(* we assume compare(u,v) = LE *)
+(* merge u v forces u ~ v with repr u as canonical repr *)
+let merge g arcu arcv =
+ (* we find the arc with the biggest rank, and we redirect all others to it *)
+ let arcu, g, v =
+ let best_ranked (max_rank, old_max_rank, best_arc, rest) arc =
+ if Level.is_small arc.univ ||
+ (arc.rank >= max_rank && not (Level.is_small best_arc.univ))
+ then (arc.rank, max_rank, arc, best_arc::rest)
+ else (max_rank, old_max_rank, best_arc, arc::rest)
+ in
+ match between g arcu arcv with
+ | [] -> anomaly (str "Univ.between")
+ | arc::rest ->
+ let (max_rank, old_max_rank, best_arc, rest) =
+ List.fold_left best_ranked (arc.rank, min_int, arc, []) rest in
+ if max_rank > old_max_rank then best_arc, g, rest
+ else begin
+ (* one redirected node also has max_rank *)
+ let arcu = {best_arc with rank = max_rank + 1} in
+ arcu, enter_arc arcu g, rest
+ end
+ in
+ let redirect (g,w,w') arcv =
+ let g' = enter_equiv_arc arcv.univ arcu.univ g in
+ (g',List.unionq arcv.lt w,arcv.le@w')
+ in
+ let (g',w,w') = List.fold_left redirect (g,[],[]) v in
+ let g_arcu = (g',arcu) in
+ let g_arcu = List.fold_left setlt_if g_arcu w in
+ let g_arcu = List.fold_left setleq_if g_arcu w' in
+ fst g_arcu
+
+(* merge_disc : Level.t -> Level.t -> unit *)
+(* we assume compare(u,v) = compare(v,u) = NLE *)
+(* merge_disc u v forces u ~ v with repr u as canonical repr *)
+let merge_disc g arc1 arc2 =
+ let arcu, arcv = if Level.is_small arc2.univ || arc1.rank < arc2.rank then arc2, arc1 else arc1, arc2 in
+ let arcu, g =
+ if not (Int.equal arc1.rank arc2.rank) then arcu, g
+ else
+ let arcu = {arcu with rank = succ arcu.rank} in
+ arcu, enter_arc arcu g
+ in
+ let g' = enter_equiv_arc arcv.univ arcu.univ g in
+ let g_arcu = (g',arcu) in
+ let g_arcu = List.fold_left setlt_if g_arcu arcv.lt in
+ let g_arcu = List.fold_left setleq_if g_arcu arcv.le in
+ fst g_arcu
+
+(* enforce_univ_eq : Level.t -> Level.t -> unit *)
+(* enforce_univ_eq u v will force u=v if possible, will fail otherwise *)
+
+let enforce_univ_eq u v g =
+ let arcu = repr g u and arcv = repr g v in
+ match fast_compare g arcu arcv with
+ | FastEQ -> g
+ | FastLT ->
+ let p = get_explanation_strict g arcu arcv in
+ error_inconsistency Eq v u p
+ | FastLE -> merge g arcu arcv
+ | FastNLE ->
+ (match fast_compare g arcv arcu with
+ | FastLT ->
+ let p = get_explanation_strict g arcv arcu in
+ error_inconsistency Eq u v p
+ | FastLE -> merge g arcv arcu
+ | FastNLE -> merge_disc g arcu arcv
+ | FastEQ -> anomaly (Pp.str "Univ.compare"))
+
+(* enforce_univ_leq : Level.t -> Level.t -> unit *)
+(* enforce_univ_leq u v will force u<=v if possible, will fail otherwise *)
+let enforce_univ_leq u v g =
+ let arcu = repr g u and arcv = repr g v in
+ if is_leq g arcu arcv then g
+ else
+ match fast_compare g arcv arcu with
+ | FastLT ->
+ let p = get_explanation_strict g arcv arcu in
+ error_inconsistency Le u v p
+ | FastLE -> merge g arcv arcu
+ | FastNLE -> fst (setleq g arcu arcv)
+ | FastEQ -> anomaly (Pp.str "Univ.compare")
+
+(* enforce_univ_lt u v will force u<v if possible, will fail otherwise *)
+let enforce_univ_lt u v g =
+ let arcu = repr g u and arcv = repr g v in
+ match fast_compare g arcu arcv with
+ | FastLT -> g
+ | FastLE -> fst (setlt g arcu arcv)
+ | FastEQ -> error_inconsistency Lt u v (Some [(Eq,Universe.make v)])
+ | FastNLE ->
+ match fast_compare_neq false g arcv arcu with
+ FastNLE -> fst (setlt g arcu arcv)
+ | FastEQ -> anomaly (Pp.str "Univ.compare")
+ | (FastLE|FastLT) ->
+ let p = get_explanation false g arcv arcu in
+ error_inconsistency Lt u v p
+
+(* Prop = Set is forbidden here. *)
+let initial_universes = empty_universes
+
+let is_initial_universes g = UMap.equal (==) g initial_universes
+
+let enforce_constraint cst g =
+ match cst with
+ | (u,Lt,v) -> enforce_univ_lt u v g
+ | (u,Le,v) -> enforce_univ_leq u v g
+ | (u,Eq,v) -> enforce_univ_eq u v g
+
+let merge_constraints c g =
+ Constraint.fold enforce_constraint c g
+
+let check_constraint g (l,d,r) =
+ match d with
+ | Eq -> check_equal g l r
+ | Le -> check_smaller g false l r
+ | Lt -> check_smaller g true l r
+
+let check_constraints c g =
+ Constraint.for_all (check_constraint g) c
+
+(* Normalization *)
+
+let lookup_level u g =
+ try Some (UMap.find u g) with Not_found -> None
+
+(** [normalize_universes g] returns a graph where all edges point
+ directly to the canonical representent of their target. The output
+ graph should be equivalent to the input graph from a logical point
+ of view, but optimized. We maintain the invariant that the key of
+ a [Canonical] element is its own name, by keeping [Equiv] edges
+ (see the assertion)... I (Stéphane Glondu) am not sure if this
+ plays a role in the rest of the module. *)
+let normalize_universes g =
+ let rec visit u arc cache = match lookup_level u cache with
+ | Some x -> x, cache
+ | None -> match Lazy.force arc with
+ | None ->
+ u, UMap.add u u cache
+ | Some (Canonical {univ=v; lt=_; le=_}) ->
+ v, UMap.add u v cache
+ | Some (Equiv v) ->
+ let v, cache = visit v (lazy (lookup_level v g)) cache in
+ v, UMap.add u v cache
+ in
+ let cache = UMap.fold
+ (fun u arc cache -> snd (visit u (Lazy.lazy_from_val (Some arc)) cache))
+ g UMap.empty
+ in
+ let repr x = UMap.find x cache in
+ let lrepr us = List.fold_left
+ (fun e x -> LSet.add (repr x) e) LSet.empty us
+ in
+ let canonicalize u = function
+ | Equiv _ -> Equiv (repr u)
+ | Canonical {univ=v; lt=lt; le=le; rank=rank} ->
+ assert (u == v);
+ (* avoid duplicates and self-loops *)
+ let lt = lrepr lt and le = lrepr le in
+ let le = LSet.filter
+ (fun x -> x != u && not (LSet.mem x lt)) le
+ in
+ LSet.iter (fun x -> assert (x != u)) lt;
+ Canonical {
+ univ = v;
+ lt = LSet.elements lt;
+ le = LSet.elements le;
+ rank = rank;
+ status = Unset;
+ }
+ in
+ UMap.mapi canonicalize g
+
+let constraints_of_universes g =
+ let constraints_of u v acc =
+ match v with
+ | Canonical {univ=u; lt=lt; le=le} ->
+ let acc = List.fold_left (fun acc v -> Constraint.add (u,Lt,v) acc) acc lt in
+ let acc = List.fold_left (fun acc v -> Constraint.add (u,Le,v) acc) acc le in
+ acc
+ | Equiv v -> Constraint.add (u,Eq,v) acc
+ in
+ UMap.fold constraints_of g Constraint.empty
+
+let constraints_of_universes g =
+ constraints_of_universes (normalize_universes g)
+
+(** Longest path algorithm. This is used to compute the minimal number of
+ universes required if the only strict edge would be the Lt one. This
+ algorithm assumes that the given universes constraints are a almost DAG, in
+ the sense that there may be {Eq, Le}-cycles. This is OK for consistent
+ universes, which is the only case where we use this algorithm. *)
+
+(** Adjacency graph *)
+type graph = constraint_type LMap.t LMap.t
+
+exception Connected
+
+(** Check connectedness *)
+let connected x y (g : graph) =
+ let rec connected x target seen g =
+ if Level.equal x target then raise Connected
+ else if not (LSet.mem x seen) then
+ let seen = LSet.add x seen in
+ let fold z _ seen = connected z target seen g in
+ let neighbours = try LMap.find x g with Not_found -> LMap.empty in
+ LMap.fold fold neighbours seen
+ else seen
+ in
+ try ignore(connected x y LSet.empty g); false with Connected -> true
+
+let add_edge x y v (g : graph) =
+ try
+ let neighbours = LMap.find x g in
+ let neighbours = LMap.add y v neighbours in
+ LMap.add x neighbours g
+ with Not_found ->
+ LMap.add x (LMap.singleton y v) g
+
+(** We want to keep the graph DAG. If adding an edge would cause a cycle, that
+ would necessarily be an {Eq, Le}-cycle, otherwise there would have been a
+ universe inconsistency. Therefore we may omit adding such a cycling edge
+ without changing the compacted graph. *)
+let add_eq_edge x y v g = if connected y x g then g else add_edge x y v g
+
+(** Construct the DAG and its inverse at the same time. *)
+let make_graph g : (graph * graph) =
+ let fold u arc accu = match arc with
+ | Equiv v ->
+ let (dir, rev) = accu in
+ (add_eq_edge u v Eq dir, add_eq_edge v u Eq rev)
+ | Canonical { univ; lt; le; } ->
+ let () = assert (u == univ) in
+ let fold_lt (dir, rev) v = (add_edge u v Lt dir, add_edge v u Lt rev) in
+ let fold_le (dir, rev) v = (add_eq_edge u v Le dir, add_eq_edge v u Le rev) in
+ (** Order is important : lt after le, because of the possible redundancy
+ between [le] and [lt] in a canonical arc. This way, the [lt] constraint
+ is the last one set, which is correct because it implies [le]. *)
+ let accu = List.fold_left fold_le accu le in
+ let accu = List.fold_left fold_lt accu lt in
+ accu
+ in
+ UMap.fold fold g (LMap.empty, LMap.empty)
+
+(** Construct a topological order out of a DAG. *)
+let rec topological_fold u g rem seen accu =
+ let is_seen =
+ try
+ let status = LMap.find u seen in
+ assert status; (** If false, not a DAG! *)
+ true
+ with Not_found -> false
+ in
+ if not is_seen then
+ let rem = LMap.remove u rem in
+ let seen = LMap.add u false seen in
+ let neighbours = try LMap.find u g with Not_found -> LMap.empty in
+ let fold v _ (rem, seen, accu) = topological_fold v g rem seen accu in
+ let (rem, seen, accu) = LMap.fold fold neighbours (rem, seen, accu) in
+ (rem, LMap.add u true seen, u :: accu)
+ else (rem, seen, accu)
+
+let rec topological g rem seen accu =
+ let node = try Some (LMap.choose rem) with Not_found -> None in
+ match node with
+ | None -> accu
+ | Some (u, _) ->
+ let rem, seen, accu = topological_fold u g rem seen accu in
+ topological g rem seen accu
+
+(** Compute the longest path from any vertex. *)
+let constraint_cost = function
+| Eq | Le -> 0
+| Lt -> 1
+
+(** This algorithm browses the graph in topological order, computing for each
+ encountered node the length of the longest path leading to it. Should be
+ O(|V|) or so (modulo map representation). *)
+let rec flatten_graph rem (rev : graph) map mx = match rem with
+| [] -> map, mx
+| u :: rem ->
+ let prev = try LMap.find u rev with Not_found -> LMap.empty in
+ let fold v cstr accu =
+ let v_cost = LMap.find v map in
+ max (v_cost + constraint_cost cstr) accu
+ in
+ let u_cost = LMap.fold fold prev 0 in
+ let map = LMap.add u u_cost map in
+ flatten_graph rem rev map (max mx u_cost)
+
+(** [sort_universes g] builds a map from universes in [g] to natural
+ numbers. It outputs a graph containing equivalence edges from each
+ level appearing in [g] to [Type.n], and [lt] edges between the
+ [Type.n]s. The output graph should imply the input graph (and the
+ [Type.n]s. The output graph should imply the input graph (and the
+ implication will be strict most of the time), but is not
+ necessarily minimal. Note: the result is unspecified if the input
+ graph already contains [Type.n] nodes (calling a module Type is
+ probably a bad idea anyway). *)
+let sort_universes orig =
+ let (dir, rev) = make_graph orig in
+ let order = topological dir dir LMap.empty [] in
+ let compact, max = flatten_graph order rev LMap.empty 0 in
+ let mp = Names.DirPath.make [Names.Id.of_string "Type"] in
+ let types = Array.init (max + 1) (fun n -> Level.make mp n) in
+ (** Old universes are made equal to [Type.n] *)
+ let fold u level accu = UMap.add u (Equiv types.(level)) accu in
+ let sorted = LMap.fold fold compact UMap.empty in
+ (** Add all [Type.n] nodes *)
+ let fold i accu u =
+ if i < max then
+ let pred = types.(i + 1) in
+ let arc = {univ = u; lt = [pred]; le = []; rank = 0; status = Unset; } in
+ UMap.add u (Canonical arc) accu
+ else accu
+ in
+ Array.fold_left_i fold sorted types
+
+(** Instances *)
+
+let check_eq_instances g t1 t2 =
+ let t1 = Instance.to_array t1 in
+ let t2 = Instance.to_array t2 in
+ t1 == t2 ||
+ (Int.equal (Array.length t1) (Array.length t2) &&
+ let rec aux i =
+ (Int.equal i (Array.length t1)) || (check_eq_level g t1.(i) t2.(i) && aux (i + 1))
+ in aux 0)
+
+let pr_arc prl = function
+ | _, Canonical {univ=u; lt=[]; le=[]} ->
+ mt ()
+ | _, Canonical {univ=u; lt=lt; le=le} ->
+ let opt_sep = match lt, le with
+ | [], _ | _, [] -> mt ()
+ | _ -> spc ()
+ in
+ prl u ++ str " " ++
+ v 0
+ (pr_sequence (fun v -> str "< " ++ prl v) lt ++
+ opt_sep ++
+ pr_sequence (fun v -> str "<= " ++ prl v) le) ++
+ fnl ()
+ | u, Equiv v ->
+ prl u ++ str " = " ++ prl v ++ fnl ()
+
+let pr_universes prl g =
+ let graph = UMap.fold (fun u a l -> (u,a)::l) g [] in
+ prlist (pr_arc prl) graph
+
+(* Dumping constraints to a file *)
+
+let dump_universes output g =
+ let dump_arc u = function
+ | Canonical {univ=u; lt=lt; le=le} ->
+ let u_str = Level.to_string u in
+ List.iter (fun v -> output Lt (Level.to_string v) u_str) lt;
+ List.iter (fun v -> output Le (Level.to_string v) u_str) le
+ | Equiv v ->
+ output Eq (Level.to_string u) (Level.to_string v)
+ in
+ UMap.iter dump_arc g
+
+(** Profiling *)
+
+let merge_constraints =
+ if Flags.profile then
+ let key = Profile.declare_profile "merge_constraints" in
+ Profile.profile2 key merge_constraints
+ else merge_constraints
+
+let check_constraints =
+ if Flags.profile then
+ let key = Profile.declare_profile "check_constraints" in
+ Profile.profile2 key check_constraints
+ else check_constraints
+
+let check_eq =
+ if Flags.profile then
+ let check_eq_key = Profile.declare_profile "check_eq" in
+ Profile.profile3 check_eq_key check_eq
+ else check_eq
+
+let check_leq =
+ if Flags.profile then
+ let check_leq_key = Profile.declare_profile "check_leq" in
+ Profile.profile3 check_leq_key check_leq
+ else check_leq