aboutsummaryrefslogtreecommitdiffhomepage
path: root/kernel/constr.mli
diff options
context:
space:
mode:
authorGravatar Gaëtan Gilbert <gaetan.gilbert@skyskimmer.net>2018-02-16 15:44:44 +0100
committerGravatar Gaëtan Gilbert <gaetan.gilbert@skyskimmer.net>2018-03-09 16:29:06 +0100
commit17a0dccfe91d6f837ce285e62b8d843720f8c1a1 (patch)
tree605a2dae6692cec6503ab5fcdce7c90421db26f0 /kernel/constr.mli
parent3d86afb36517c9ba4200289e169239f7fa54fca1 (diff)
Allow using cumulativity without forcing strict constraints.
Previously [fun x : Ind@{i} => x : Ind@{j}] with Ind some cumulative inductive would try to generate a constraint [i = j] and use cumulativity only if this resulted in an inconsistency. This is confusingly different from the behaviour with [Type] and means cumulativity can only be used to lift between universes related by strict inequalities. (This isn't a kernel restriction so there might be some workaround to send the kernel the right constraints, but not in a nice way.) See modified test for more details of what is now possible. Technical notes: When universe constraints were inferred by comparing the shape of terms without reduction, cumulativity was not used and so too-strict equality constraints were generated. Then in order to use cumulativity we had to make this comparison fail to fall back to full conversion. When unifiying 2 instances of a cumulative inductive type, if there are any Irrelevant universes we try to unify them if they are flexible.
Diffstat (limited to 'kernel/constr.mli')
-rw-r--r--kernel/constr.mli47
1 files changed, 27 insertions, 20 deletions
diff --git a/kernel/constr.mli b/kernel/constr.mli
index f7e4eecba..98c0eaa28 100644
--- a/kernel/constr.mli
+++ b/kernel/constr.mli
@@ -402,31 +402,38 @@ val iter : (constr -> unit) -> constr -> unit
val iter_with_binders :
('a -> 'a) -> ('a -> constr -> unit) -> 'a -> constr -> unit
+type constr_compare_fn = int -> constr -> constr -> bool
+
(** [compare_head f c1 c2] compare [c1] and [c2] using [f] to compare
the immediate subterms of [c1] of [c2] if needed; Cast's, binders
name and Cases annotations are not taken into account *)
-val compare_head : (constr -> constr -> bool) -> constr -> constr -> bool
+val compare_head : constr_compare_fn -> constr_compare_fn
+
+(** Convert a global reference applied to 2 instances. The int says
+ how many arguments are given (as we can only use cumulativity for
+ fully applied inductives/constructors) .*)
+type instance_compare_fn = global_reference -> int ->
+ Univ.Instance.t -> Univ.Instance.t -> bool
-(** [compare_head_gen u s f c1 c2] compare [c1] and [c2] using [f] to compare
- the immediate subterms of [c1] of [c2] if needed, [u] to compare universe
- instances (the first boolean tells if they belong to a Constant.t), [s] to
- compare sorts; Cast's, binders name and Cases annotations are not taken
- into account *)
+(** [compare_head_gen u s f c1 c2] compare [c1] and [c2] using [f] to
+ compare the immediate subterms of [c1] of [c2] if needed, [u] to
+ compare universe instances, [s] to compare sorts; Cast's, binders
+ name and Cases annotations are not taken into account *)
-val compare_head_gen : (bool -> Univ.Instance.t -> Univ.Instance.t -> bool) ->
+val compare_head_gen : instance_compare_fn ->
(Sorts.t -> Sorts.t -> bool) ->
- (constr -> constr -> bool) ->
- constr -> constr -> bool
+ constr_compare_fn ->
+ constr_compare_fn
val compare_head_gen_leq_with :
(constr -> (constr, types, Sorts.t, Univ.Instance.t) kind_of_term) ->
(constr -> (constr, types, Sorts.t, Univ.Instance.t) kind_of_term) ->
- (bool -> Univ.Instance.t -> Univ.Instance.t -> bool) ->
+ instance_compare_fn ->
(Sorts.t -> Sorts.t -> bool) ->
- (constr -> constr -> bool) ->
- (constr -> constr -> bool) ->
- constr -> constr -> bool
+ constr_compare_fn ->
+ constr_compare_fn ->
+ constr_compare_fn
(** [compare_head_gen_with k1 k2 u s f c1 c2] compares [c1] and [c2]
like [compare_head_gen u s f c1 c2], except that [k1] (resp. [k2])
@@ -435,10 +442,10 @@ val compare_head_gen_leq_with :
val compare_head_gen_with :
(constr -> (constr, types, Sorts.t, Univ.Instance.t) kind_of_term) ->
(constr -> (constr, types, Sorts.t, Univ.Instance.t) kind_of_term) ->
- (bool -> Univ.Instance.t -> Univ.Instance.t -> bool) ->
+ instance_compare_fn ->
(Sorts.t -> Sorts.t -> bool) ->
- (constr -> constr -> bool) ->
- constr -> constr -> bool
+ constr_compare_fn ->
+ constr_compare_fn
(** [compare_head_gen_leq u s f fle c1 c2] compare [c1] and [c2] using
[f] to compare the immediate subterms of [c1] of [c2] for
@@ -447,11 +454,11 @@ val compare_head_gen_with :
[s] to compare sorts for for subtyping; Cast's, binders name and
Cases annotations are not taken into account *)
-val compare_head_gen_leq : (bool -> Univ.Instance.t -> Univ.Instance.t -> bool) ->
+val compare_head_gen_leq : instance_compare_fn ->
(Sorts.t -> Sorts.t -> bool) ->
- (constr -> constr -> bool) ->
- (constr -> constr -> bool) ->
- constr -> constr -> bool
+ constr_compare_fn ->
+ constr_compare_fn ->
+ constr_compare_fn
(** {6 Hashconsing} *)