diff options
author | Maxime Dénès <mail@maximedenes.fr> | 2017-08-16 09:34:15 +0200 |
---|---|---|
committer | Maxime Dénès <mail@maximedenes.fr> | 2017-08-16 09:34:15 +0200 |
commit | f0b4757d291ce3e07c8ccfcd4217d204fd2059ba (patch) | |
tree | 3a2a3db40ab962e91366fca5223b6f25c390a276 /doc | |
parent | 83e506e9a4b8140320e8f505b9ef6e4da05d710c (diff) | |
parent | 2f0e71c7e25eb193f252b6848dadff771dbc270d (diff) |
Merge PR #864: Some cleanups after cumulativity for inductive types
Diffstat (limited to 'doc')
-rw-r--r-- | doc/refman/Universes.tex | 65 |
1 files changed, 52 insertions, 13 deletions
diff --git a/doc/refman/Universes.tex b/doc/refman/Universes.tex index 2bb1301c7..cd36d1d32 100644 --- a/doc/refman/Universes.tex +++ b/doc/refman/Universes.tex @@ -134,12 +134,14 @@ producing global universe constraints, one can use the \asection{{\tt Cumulative, NonCumulative}} \comindex{Cumulative} \comindex{NonCumulative} -\optindex{Inductive Cumulativity} +\optindex{Polymorphic Inductive Cumulativity} -Inductive types, coinductive types, variants and records can be +Polymorphic inductive types, coinductive types, variants and records can be declared cumulative using the \texttt{Cumulative}. Alternatively, -there is an option \texttt{Set Inductive Cumulativity} which when set, -makes all subsequent inductive definitions cumulative. Consider the examples below. +there is an option \texttt{Set Polymorphic Inductive Cumulativity} which when set, +makes all subsequent \emph{polymorphic} inductive definitions cumulative. When set, +inductive types and the like can be enforced to be +\emph{non-cumulative} using the \texttt{NonCumulative} prefix. Consider the examples below. \begin{coq_example*} Polymorphic Cumulative Inductive list {A : Type} := | nil : list @@ -158,24 +160,61 @@ This also means that any two instances of \texttt{list} are convertible: $\WTEGCONV{\mathtt{list@\{i\}} A}{\mathtt{list@\{j\}} B}$ whenever $\WTEGCONV{A}{B}$ and furthermore their corresponding (when fully applied to convertible arguments) constructors. See Chapter~\ref{Cic} for more details on convertibility and subtyping. -Also notice the subtyping constraints for the \emph{non-cumulative} version of list: +The following is an example of a record with non-trivial subtyping relation: \begin{coq_example*} -Polymorphic NonCumulative Inductive list' {A : Type} := -| nil' : list' -| cons' : A -> list' -> list'. +Polymorphic Cumulative Record packType := {pk : Type}. \end{coq_example*} \begin{coq_example} -Print list'. +Print packType. +\end{coq_example} +Notice that as expected, \texttt{packType@\{i\}} and \texttt{packType@\{j\}} are +convertible if and only if \texttt{i $=$ j}. + +Cumulative inductive types, coninductive types, variants and records +only make sense when they are universe polymorphic. Therefore, an +error is issued whenever the user uses the \texttt{Cumulative} or +\texttt{NonCumulative} prefix in a monomorphic context. +Notice that this is not the case for the option \texttt{Set Polymorphic Inductive Cumulativity}. +That is, this option, when set, makes all subsequent \emph{polymorphic} +inductive declarations cumulative (unless, of course the \texttt{NonCumulative} prefix is used) +but has no effect on \emph{monomorphic} inductive declarations. +Consider the following examples. +\begin{coq_example} +Monomorphic Cumulative Inductive Unit := unit. +\end{coq_example} +\begin{coq_example} +Monomorphic NonCumulative Inductive Unit := unit. \end{coq_example} -The following is an example of a record with non-trivial subtyping relation: \begin{coq_example*} -Polymorphic Cumulative Record packType := {pk : Type}. +Set Polymorphic Inductive Cumulativity. +Inductive Unit := unit. \end{coq_example*} \begin{coq_example} -Print packType. +Print Unit. \end{coq_example} -Notice that as expected, \texttt{packType@\{i\}} and \texttt{packType@\{j\}} are convertible if and only if \texttt{i $=$ j}. +\subsection*{An example of a proof using cumulativity} + +\begin{coq_example} +Set Universe Polymorphism. +Set Polymorphic Inductive Cumulativity. + +Inductive eq@{i} {A : Type@{i}} (x : A) : A -> Type@{i} := eq_refl : eq x x. + +Definition funext_type@{a b e} (A : Type@{a}) (B : A -> Type@{b}) + := forall f g : (forall a, B a), + (forall x, eq@{e} (f x) (g x)) + -> eq@{e} f g. + +Section down. + Universes a b e e'. + Constraint e' < e. + Lemma funext_down {A B} + (H : @funext_type@{a b e} A B) : @funext_type@{a b e'} A B. + Proof. + exact H. + Defined. +\end{coq_example} \asection{Global and local universes} |