aboutsummaryrefslogtreecommitdiffhomepage
path: root/doc
diff options
context:
space:
mode:
authorGravatar Matej Kosik <m4tej.kosik@gmail.com>2015-11-24 18:12:32 +0100
committerGravatar Hugo Herbelin <Hugo.Herbelin@inria.fr>2015-12-10 09:35:20 +0100
commit9e12f35ddf03dd47af99284fa9bfbb14759834b8 (patch)
tree500e5917a0f5636e1d326888aec0491ccfc5d5d0 /doc
parentf43f474fe3ba0b01115ef02b0032f706879ee521 (diff)
ENH: redundant examples were removed
Diffstat (limited to 'doc')
-rw-r--r--doc/refman/RefMan-cic.tex198
1 files changed, 0 insertions, 198 deletions
diff --git a/doc/refman/RefMan-cic.tex b/doc/refman/RefMan-cic.tex
index 1b461afcb..3e50ac0de 100644
--- a/doc/refman/RefMan-cic.tex
+++ b/doc/refman/RefMan-cic.tex
@@ -532,10 +532,8 @@ These inductive definitions, together with global assumptions and global definit
Additionally, for any $p$ there always exists $\Gamma_P=[a_1:A_1;\dots;a_p:A_p]$
such that each $(t:T)\in\Gamma_I\cup\Gamma_C$ can be written as:
$\forall\Gamma_P, T^\prime$ where $\Gamma_P$ is called the {\em context of parameters\index{context of parameters}}.
-Figures~\ref{fig:bool}--\ref{fig:tree:forest} show formal representation of several inductive definitions.
\begin{latexonly}%
- \newpage
\def\captionstrut{\vbox to 1.5em{}}
\newcommand\ind[3]{$\mathsf{Ind}~[#1]\left(\hskip-.4em
\begin{array}{r @{\mathrm{~:=~}} l}
@@ -547,104 +545,6 @@ Figures~\ref{fig:bool}--\ref{fig:tree:forest} show formal representation of seve
\def\colon{@{\hskip.5em:\hskip.5em}}
\begin{figure}[H]
- \strut If we take the following inductive definition (denoted in concrete syntax):
-\begin{verbatim}
-Inductive bool : Set :=
- | true : bool
- | false : bool.
-\end{verbatim}
- then:
- \def\GammaI{\left[\begin{array}{r \colon l}
- \bool & \Set
- \end{array}
- \right]}
- \def\GammaC{\left[\begin{array}{r \colon l}
- \true & \bool\\
- \false & \bool
- \end{array}
- \right]}
- \begin{itemize}
- \item $p = 0$
- \item $\Gamma_I = \GammaI$
- \item $\Gamma_C = \GammaC$
- \item $\Gamma_P=[\,]$.
- \end{itemize}
- and thus it enriches the global environment with the following entry:
- \vskip.5em
- \ind{p}{\Gamma_I}{\Gamma_C}
- \vskip.5em
- \noindent that is:
- \vskip.5em
- \ind{0}{\GammaI}{\GammaC}
- \caption{\captionstrut Formal representation of the {\bool} inductive type.}
- \label{fig:bool}
- \end{figure}
-
- \begin{figure}[H]
- \strut If we take the followig inductive definition:
-\begin{verbatim}
-Inductive nat : Set :=
- | O : nat
- | S : nat -> nat.
-\end{verbatim}
- then:
- \def\GammaI{\left[\begin{array}{r \colon l}
- \nat & \Set
- \end{array}
- \right]}
- \def\GammaC{\left[\begin{array}{r \colon l}
- \nO & \nat\\
- \nS & \nat\ra\nat
- \end{array}
- \right]}
- \begin{itemize}
- \item $p = 0$
- \item $\Gamma_I = \GammaI$
- \item $\Gamma_C = \GammaC$
- \item $\Gamma_P=[\,]$.
- \end{itemize}
- and thus it enriches the global environment with the following entry:
- \vskip.5em
- \ind{p}{\Gamma_I}{\Gamma_C}
- \vskip.5em
- \noindent that is:
- \vskip.5em
- \ind{0}{\GammaI}{\GammaC}
- \caption{\captionstrut Formal representation of the {\nat} inductive type.}
- \label{fig:nat}
- \end{figure}
-
- \begin{figure}[H]
- \strut If we take the following inductive definition:
-\begin{verbatim}
-Inductive list (A : Type) : Type :=
- | nil : list A
- | cons : A -> list A -> list A.
-\end{verbatim}
- then:
- \def\GammaI{\left[\begin{array}{r \colon l}
- \List & \Type\ra\Type
- \end{array}
- \right]}
- \def\GammaC{\left[\begin{array}{r \colon l}
- \Nil & \forall~A\!:\!\Type,~\List~A\\
- \cons & \forall~A\!:\!\Type,~A\ra\List~A\ra\List~A
- \end{array}
- \right]}
- \begin{itemize}
- \item $p = 1$
- \item $\Gamma_I = \GammaI$
- \item $\Gamma_C = \GammaC$
- \item $\Gamma_P=[A:\Type]$
- \end{itemize}
- and thus it enriches the global environment with the following entry:
- \vskip.5em
- \ind{1}{\GammaI}{\GammaC}
- \caption{\captionstrut Formal representation of the {\List} inductive type.}
- \label{fig:list}
- \end{figure}
-
- \begin{figure}[H]
\strut If we take the following inductive definition:
\begin{verbatim}
Inductive even : nat -> Prop :=
@@ -677,76 +577,6 @@ with odd : nat -> Prop :=
\caption{\captionstrut Formal representation of the {\even} and {\odd} inductive types.}
\label{fig:even:odd}
\end{figure}
-
- \begin{figure}[H]
- \strut If we take the following inductive definition:
-\begin{verbatim}
-Inductive has_length (A : Type) : list A -> nat -> Prop :=
- | nil_hl : has_length A (nil A) O
- | cons_hl : forall (a:A) (l:list A) (n:nat),
- has_length A l n -> has_length A (cons A a l) (S n).
-\end{verbatim}
- then:
- \def\GammaI{\left[\begin{array}{r \colon l}
- \haslength & \forall~A\!:\!\Type,~\List~A\ra\nat\ra\Prop
- \end{array}
- \right]}
- \def\GammaC{\left[\begin{array}{r c l}
- \nilhl & \hskip.1em:\hskip.1em & \forall~A\!:\!\Type,~\haslength~A~(\Nil~A)~\nO\\
- \conshl & \hskip.1em:\hskip.1em & \forall~A\!:\!\Type,~\forall~a\!:\!A,~\forall~l\!:\!\List~A,~\forall~n\!:\!\nat,\\
- & & \haslength~A~l~n\ra \haslength~A~(\cons~A~a~l)~(\nS~n)
- \end{array}
- \right]}
- \begin{itemize}
- \item $p = 1$
- \item $\Gamma_I = \GammaI$
- \item $\Gamma_C = \GammaC$
- \item $\Gamma_P=[A:\Type]$.
- \end{itemize}
- and thus it enriches the global environment with the following entry:
- \vskip.5em
- \ind{p}{\Gamma_I}{\Gamma_C}
- %\vskip.5em
- %\noindent that is:
- %\vskip.5em
- %\ind{1}{\GammaI}{\GammaC}
- \caption{\captionstrut Formal representation of the {\haslength} inductive type.}
- \label{fig:haslength}
- \end{figure}
-
- \begin{figure}[H]
- \strut If we take the following inductive definition:
-\begin{verbatim}
-Inductive tree : Set :=
- | node : forest -> tree
-with forest : Set :=
- | emptyf : forest
- | consf : tree -> forest -> forest.
-\end{verbatim}
- then:
- \def\GammaI{\left[\begin{array}{r \colon l}
- \tree & \Set\\
- \forest & \Set
- \end{array}
- \right]}
- \def\GammaC{\left[\begin{array}{r \colon l}
- \node & \forest\ra\tree\\
- \emptyf & \forest\\
- \consf & \tree\ra\forest\ra\forest
- \end{array}
- \right]}
- \begin{itemize}
- \item $p = 0$
- \item $\Gamma_I = \GammaI$
- \item $\Gamma_C = \GammaC$
- \end{itemize}
- and thus it enriches the global environment with the following entry:
- \vskip.5em
- \ind{0}{\GammaI}{\GammaC}
- \caption{\captionstrut Formal representation of the {\tree} and {\forest} inductive types.}
- \label{fig:tree:forest}
- \end{figure}%
- \newpage
\end{latexonly}%
\subsection{Types of inductive objects}
@@ -872,7 +702,6 @@ the type $V$ satisfies the nested positivity condition for $X$
\end{itemize}
\begin{latexonly}%
- \newpage
\newcommand\vv{\textSFxi} % │
\newcommand\hh{\textSFx} % ─
\newcommand\vh{\textSFviii} % ├
@@ -884,32 +713,6 @@ the type $V$ satisfies the nested positivity condition for $X$
\def\captionstrut{\vbox to 1.5em{}}
\begin{figure}[H]
- \ws\strut $X$ occurs strictly positively in $A\ra X$\ruleref5\\
- \ws\vv\\
- \ws\vh\hh\ws $X$does not occur in $A$\\
- \ws\vv\\
- \ws\hv\hh\ws $X$ occurs strictly positively in $X$\ruleref4
- \caption{\captionstrut A proof that $X$ occurs strictly positively in $A\ra X$.}
- \end{figure}
-
-% \begin{figure}[H]
-% \strut $X$ occurs strictly positively in $X*A$\\
-% \vv\\
-% \hv\hh $X$ occurs strictly positively in $(\Prod~X~A)$\ruleref6\\
-% \ws\ws\vv\\
-% \ws\ws\vv\ws\verb|Inductive prod (A B : Type) : Type :=|\\
-% \ws\ws\vv\ws\verb| pair : A -> B -> prod A B.|\\
-% \ws\ws\vv\\
-% \ws\ws\vh\hh $X$ does not occur in any (real) arguments of $\Prod$ in the original term $(\Prod~X~A)$\\
-% \ws\ws\vv\\
-% \ws\ws\hv\hh\ws the (instantiated) type $\Prod~X~A$ of constructor $\Pair$,\\
-% \ws\ws\ws\ws\ws satisfies the nested positivity condition for $X$\ruleref7\\
-% \ws\ws\ws\ws\ws\vv\\
-% \ws\ws\ws\ws\ws\hv\hh\ws $X$ does not occur in any (real) arguments of $(\Prod~X~A)$
-% \caption{\captionstrut A proof that $X$ occurs strictly positively in $X*A$}
-% \end{figure}
-
- \begin{figure}[H]
\ws\strut $X$ occurs strictly positively in $\ListA$\ruleref6\\
\ws\vv\\
\ws\vv\ws\verb|Inductive list (A:Type) : Type :=|\\
@@ -942,7 +745,6 @@ the type $V$ satisfies the nested positivity condition for $X$
\ws\ws\ws\ws\ws\ws\ws\ws\ws\ws\ws\ws\ws\ws\hv\hh\ws $X$ satisfies the nested positivity condition for $\ListA$\ruleref7
\caption{\captionstrut A proof that $X$ occurs strictly positively in $\ListA$}
\end{figure}
- \newpage
\end{latexonly}%
\paragraph{Correctness rules.}