diff options
author | Théo Zimmermann <theo.zimmermann@univ-paris-diderot.fr> | 2017-05-01 15:00:56 +0200 |
---|---|---|
committer | Théo Zimmermann <theo.zimmermann@univ-paris-diderot.fr> | 2017-05-01 15:00:56 +0200 |
commit | 5365971dfdf4136586527aa4f4c85fbfebeee0bd (patch) | |
tree | c01b0e83e290cedcb828754cdbcf61a065c22bf0 /doc | |
parent | 991b78fd9627ee76f1a1a39b8460bf361c6af53d (diff) |
Fix for bug 5507. Mispelt de Bruijn.
Diffstat (limited to 'doc')
-rw-r--r-- | doc/refman/RefMan-tus.tex | 12 |
1 files changed, 6 insertions, 6 deletions
diff --git a/doc/refman/RefMan-tus.tex b/doc/refman/RefMan-tus.tex index 797b0aded..c55b3775c 100644 --- a/doc/refman/RefMan-tus.tex +++ b/doc/refman/RefMan-tus.tex @@ -299,7 +299,7 @@ vector of terms $vt$. \end{itemize} In this meta-language, bound variables are represented using the -so-called deBrujin's indexes. In this representation, an occurrence of +so-called deBruijn's indexes. In this representation, an occurrence of a bound variable is denoted by an integer, meaning the number of binders that must be traversed to reach its own binder\footnote{Actually, $(\texttt{Rel}\;n)$ means that $(n-1)$ binders @@ -482,7 +482,7 @@ following constructor functions: \begin{description} \fun{val Term.mkRel : int -> constr} - {$(\texttt{mkRel}\;n)$ represents deBrujin's index $n$.} + {$(\texttt{mkRel}\;n)$ represents deBruijn's index $n$.} \fun{val Term.mkVar : identifier -> constr} {$(\texttt{mkVar}\;id)$ @@ -545,7 +545,7 @@ following constructor functions: \fun{val Term.mkProd : name ->constr ->constr -> constr} {$(\texttt{mkProd}\;x\;A\;B)$ represents the product $(x:A)B$. - The free ocurrences of $x$ in $B$ are represented by deBrujin's + The free ocurrences of $x$ in $B$ are represented by deBruijn's indexes.} \fun{val Term.mkNamedProd : identifier -> constr -> constr -> constr} @@ -553,14 +553,14 @@ following constructor functions: but the bound occurrences of $x$ in $B$ are denoted by the identifier $(\texttt{mkVar}\;x)$. The function automatically changes each occurrences of this identifier into the corresponding - deBrujin's index.} + deBruijn's index.} \fun{val Term.mkArrow : constr -> constr -> constr} {$(\texttt{arrow}\;A\;B)$ represents the type $(A\rightarrow B)$.} \fun{val Term.mkLambda : name -> constr -> constr -> constr} {$(\texttt{mkLambda}\;x\;A\;b)$ represents the lambda abstraction - $[x:A]b$. The free ocurrences of $x$ in $B$ are represented by deBrujin's + $[x:A]b$. The free ocurrences of $x$ in $B$ are represented by deBruijn's indexes.} \fun{val Term.mkNamedLambda : identifier -> constr -> constr -> constr} @@ -666,7 +666,7 @@ use the primitive \textsl{Case} described in Chapter \ref{Cic} \item Restoring type coercions and synthesizing the implicit arguments (the one denoted by question marks in {\Coq} syntax: see Section~\ref{Coercions}). -\item Transforming the named bound variables into deBrujin's indexes. +\item Transforming the named bound variables into deBruijn's indexes. \item Classifying the global names into the different classes of constants (defined constants, constructors, inductive types, etc). \end{enumerate} |