aboutsummaryrefslogtreecommitdiffhomepage
path: root/doc/refman
diff options
context:
space:
mode:
authorGravatar Théo Zimmermann <theo.zimmermann@univ-paris-diderot.fr>2017-05-01 17:48:57 +0200
committerGravatar Théo Zimmermann <theo.zimmermann@univ-paris-diderot.fr>2017-05-01 17:48:57 +0200
commitd0252cac3167ef1e5cd26c1b9b40aea06d343413 (patch)
tree9748fb6a7260592a1e0baca9da37c22d400ee51d /doc/refman
parent5365971dfdf4136586527aa4f4c85fbfebeee0bd (diff)
More consistent writing of de Bruijn.
Diffstat (limited to 'doc/refman')
-rw-r--r--doc/refman/RefMan-tus.tex18
1 files changed, 9 insertions, 9 deletions
diff --git a/doc/refman/RefMan-tus.tex b/doc/refman/RefMan-tus.tex
index c55b3775c..017de6d48 100644
--- a/doc/refman/RefMan-tus.tex
+++ b/doc/refman/RefMan-tus.tex
@@ -288,8 +288,8 @@ constructors:
\item $(\texttt{VAR}\;id)$, a reference to a global identifier called $id$;
\item $(\texttt{Rel}\;n)$, a bound variable, whose binder is the $nth$
binder up in the term;
-\item $\texttt{DLAM}\;(x,t)$, a deBruijn's binder on the term $t$;
-\item $\texttt{DLAMV}\;(x,vt)$, a deBruijn's binder on all the terms of
+\item $\texttt{DLAM}\;(x,t)$, a de Bruijn's binder on the term $t$;
+\item $\texttt{DLAMV}\;(x,vt)$, a de Bruijn's binder on all the terms of
the vector $vt$;
\item $(\texttt{DOP0}\;op)$, a unary operator $op$;
\item $\texttt{DOP2}\;(op,t_1,t_2)$, the application of a binary
@@ -299,7 +299,7 @@ vector of terms $vt$.
\end{itemize}
In this meta-language, bound variables are represented using the
-so-called deBruijn's indexes. In this representation, an occurrence of
+so-called de Bruijn's indexes. In this representation, an occurrence of
a bound variable is denoted by an integer, meaning the number of
binders that must be traversed to reach its own
binder\footnote{Actually, $(\texttt{Rel}\;n)$ means that $(n-1)$ binders
@@ -339,7 +339,7 @@ on the terms of the meta-language:
\fun{val Generic.dependent : 'op term -> 'op term -> bool}
{Returns true if the first term is a sub-term of the second.}
%\fun{val Generic.subst\_var : identifier -> 'op term -> 'op term}
-% { $(\texttt{subst\_var}\;id\;t)$ substitutes the deBruijn's index
+% { $(\texttt{subst\_var}\;id\;t)$ substitutes the de Bruijn's index
% associated to $id$ to every occurrence of the term
% $(\texttt{VAR}\;id)$ in $t$.}
\end{description}
@@ -482,7 +482,7 @@ following constructor functions:
\begin{description}
\fun{val Term.mkRel : int -> constr}
- {$(\texttt{mkRel}\;n)$ represents deBruijn's index $n$.}
+ {$(\texttt{mkRel}\;n)$ represents de Bruijn's index $n$.}
\fun{val Term.mkVar : identifier -> constr}
{$(\texttt{mkVar}\;id)$
@@ -545,7 +545,7 @@ following constructor functions:
\fun{val Term.mkProd : name ->constr ->constr -> constr}
{$(\texttt{mkProd}\;x\;A\;B)$ represents the product $(x:A)B$.
- The free ocurrences of $x$ in $B$ are represented by deBruijn's
+ The free ocurrences of $x$ in $B$ are represented by de Bruijn's
indexes.}
\fun{val Term.mkNamedProd : identifier -> constr -> constr -> constr}
@@ -553,14 +553,14 @@ following constructor functions:
but the bound occurrences of $x$ in $B$ are denoted by
the identifier $(\texttt{mkVar}\;x)$. The function automatically
changes each occurrences of this identifier into the corresponding
- deBruijn's index.}
+ de Bruijn's index.}
\fun{val Term.mkArrow : constr -> constr -> constr}
{$(\texttt{arrow}\;A\;B)$ represents the type $(A\rightarrow B)$.}
\fun{val Term.mkLambda : name -> constr -> constr -> constr}
{$(\texttt{mkLambda}\;x\;A\;b)$ represents the lambda abstraction
- $[x:A]b$. The free ocurrences of $x$ in $B$ are represented by deBruijn's
+ $[x:A]b$. The free ocurrences of $x$ in $B$ are represented by de Bruijn's
indexes.}
\fun{val Term.mkNamedLambda : identifier -> constr -> constr -> constr}
@@ -666,7 +666,7 @@ use the primitive \textsl{Case} described in Chapter \ref{Cic}
\item Restoring type coercions and synthesizing the implicit arguments
(the one denoted by question marks in
{\Coq} syntax: see Section~\ref{Coercions}).
-\item Transforming the named bound variables into deBruijn's indexes.
+\item Transforming the named bound variables into de Bruijn's indexes.
\item Classifying the global names into the different classes of
constants (defined constants, constructors, inductive types, etc).
\end{enumerate}