diff options
author | Théo Zimmermann <theo.zimmermann@univ-paris-diderot.fr> | 2017-05-01 17:48:57 +0200 |
---|---|---|
committer | Théo Zimmermann <theo.zimmermann@univ-paris-diderot.fr> | 2017-05-01 17:48:57 +0200 |
commit | d0252cac3167ef1e5cd26c1b9b40aea06d343413 (patch) | |
tree | 9748fb6a7260592a1e0baca9da37c22d400ee51d /doc/refman | |
parent | 5365971dfdf4136586527aa4f4c85fbfebeee0bd (diff) |
More consistent writing of de Bruijn.
Diffstat (limited to 'doc/refman')
-rw-r--r-- | doc/refman/RefMan-tus.tex | 18 |
1 files changed, 9 insertions, 9 deletions
diff --git a/doc/refman/RefMan-tus.tex b/doc/refman/RefMan-tus.tex index c55b3775c..017de6d48 100644 --- a/doc/refman/RefMan-tus.tex +++ b/doc/refman/RefMan-tus.tex @@ -288,8 +288,8 @@ constructors: \item $(\texttt{VAR}\;id)$, a reference to a global identifier called $id$; \item $(\texttt{Rel}\;n)$, a bound variable, whose binder is the $nth$ binder up in the term; -\item $\texttt{DLAM}\;(x,t)$, a deBruijn's binder on the term $t$; -\item $\texttt{DLAMV}\;(x,vt)$, a deBruijn's binder on all the terms of +\item $\texttt{DLAM}\;(x,t)$, a de Bruijn's binder on the term $t$; +\item $\texttt{DLAMV}\;(x,vt)$, a de Bruijn's binder on all the terms of the vector $vt$; \item $(\texttt{DOP0}\;op)$, a unary operator $op$; \item $\texttt{DOP2}\;(op,t_1,t_2)$, the application of a binary @@ -299,7 +299,7 @@ vector of terms $vt$. \end{itemize} In this meta-language, bound variables are represented using the -so-called deBruijn's indexes. In this representation, an occurrence of +so-called de Bruijn's indexes. In this representation, an occurrence of a bound variable is denoted by an integer, meaning the number of binders that must be traversed to reach its own binder\footnote{Actually, $(\texttt{Rel}\;n)$ means that $(n-1)$ binders @@ -339,7 +339,7 @@ on the terms of the meta-language: \fun{val Generic.dependent : 'op term -> 'op term -> bool} {Returns true if the first term is a sub-term of the second.} %\fun{val Generic.subst\_var : identifier -> 'op term -> 'op term} -% { $(\texttt{subst\_var}\;id\;t)$ substitutes the deBruijn's index +% { $(\texttt{subst\_var}\;id\;t)$ substitutes the de Bruijn's index % associated to $id$ to every occurrence of the term % $(\texttt{VAR}\;id)$ in $t$.} \end{description} @@ -482,7 +482,7 @@ following constructor functions: \begin{description} \fun{val Term.mkRel : int -> constr} - {$(\texttt{mkRel}\;n)$ represents deBruijn's index $n$.} + {$(\texttt{mkRel}\;n)$ represents de Bruijn's index $n$.} \fun{val Term.mkVar : identifier -> constr} {$(\texttt{mkVar}\;id)$ @@ -545,7 +545,7 @@ following constructor functions: \fun{val Term.mkProd : name ->constr ->constr -> constr} {$(\texttt{mkProd}\;x\;A\;B)$ represents the product $(x:A)B$. - The free ocurrences of $x$ in $B$ are represented by deBruijn's + The free ocurrences of $x$ in $B$ are represented by de Bruijn's indexes.} \fun{val Term.mkNamedProd : identifier -> constr -> constr -> constr} @@ -553,14 +553,14 @@ following constructor functions: but the bound occurrences of $x$ in $B$ are denoted by the identifier $(\texttt{mkVar}\;x)$. The function automatically changes each occurrences of this identifier into the corresponding - deBruijn's index.} + de Bruijn's index.} \fun{val Term.mkArrow : constr -> constr -> constr} {$(\texttt{arrow}\;A\;B)$ represents the type $(A\rightarrow B)$.} \fun{val Term.mkLambda : name -> constr -> constr -> constr} {$(\texttt{mkLambda}\;x\;A\;b)$ represents the lambda abstraction - $[x:A]b$. The free ocurrences of $x$ in $B$ are represented by deBruijn's + $[x:A]b$. The free ocurrences of $x$ in $B$ are represented by de Bruijn's indexes.} \fun{val Term.mkNamedLambda : identifier -> constr -> constr -> constr} @@ -666,7 +666,7 @@ use the primitive \textsl{Case} described in Chapter \ref{Cic} \item Restoring type coercions and synthesizing the implicit arguments (the one denoted by question marks in {\Coq} syntax: see Section~\ref{Coercions}). -\item Transforming the named bound variables into deBruijn's indexes. +\item Transforming the named bound variables into de Bruijn's indexes. \item Classifying the global names into the different classes of constants (defined constants, constructors, inductive types, etc). \end{enumerate} |