diff options
author | gareuselesinge <gareuselesinge@85f007b7-540e-0410-9357-904b9bb8a0f7> | 2013-08-08 18:52:02 +0000 |
---|---|---|
committer | gareuselesinge <gareuselesinge@85f007b7-540e-0410-9357-904b9bb8a0f7> | 2013-08-08 18:52:02 +0000 |
commit | 0a329ae992825e98314ba4c6c4c6152d60b2bbeb (patch) | |
tree | 68d3810338a72046f259e2ae0a44a3f316b9c0cd /doc/refman | |
parent | b2f2727670853183bfbcbafb9dc19f0f71494a7b (diff) |
Manual fixed w.r.t. STM
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@16675 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'doc/refman')
-rw-r--r-- | doc/refman/RefMan-ext.tex | 4 | ||||
-rw-r--r-- | doc/refman/RefMan-lib.tex | 24 | ||||
-rw-r--r-- | doc/refman/RefMan-ltac.tex | 3 | ||||
-rw-r--r-- | doc/refman/RefMan-tac.tex | 2 |
4 files changed, 19 insertions, 14 deletions
diff --git a/doc/refman/RefMan-ext.tex b/doc/refman/RefMan-ext.tex index fc511a45c..f5ad9d913 100644 --- a/doc/refman/RefMan-ext.tex +++ b/doc/refman/RefMan-ext.tex @@ -417,9 +417,9 @@ patterns to do the deconstruction. For example: \begin{coq_example} Definition deep_tuple (A:Set) (x:(A*A)*(A*A)) : A*A*A*A := let '((a,b), (c, d)) := x in (a,b,c,d). -Notation " x 'with' p " := (exist _ x p) (at level 20). +Notation " x 'With' p " := (exist _ x p) (at level 20). Definition proj1_sig' (A:Set) (P:A->Prop) (t:{ x:A | P x }) : A := - let 'x with p := t in x. + let 'x With p := t in x. \end{coq_example} When printing definitions which are written using this construct it diff --git a/doc/refman/RefMan-lib.tex b/doc/refman/RefMan-lib.tex index 26c564e52..da2e099f9 100644 --- a/doc/refman/RefMan-lib.tex +++ b/doc/refman/RefMan-lib.tex @@ -156,11 +156,13 @@ Section Projections. Variables A B : Prop. Theorem proj1 : A /\ B -> A. Theorem proj2 : A /\ B -> B. -End Projections. \end{coq_example*} \begin{coq_eval} Abort All. \end{coq_eval} +\begin{coq_example*} +End Projections. +\end{coq_example*} \ttindex{or} \ttindex{or\_introl} \ttindex{or\_intror} @@ -384,10 +386,10 @@ Inductive prod (A B:Set) : Set := pair (_:A) (_:B). Section projections. Variables A B : Set. Definition fst (H: prod A B) := match H with - | pair x y => x + | pair _ _ x y => x end. Definition snd (H: prod A B) := match H with - | pair x y => y + | pair _ _ x y => y end. End projections. \end{coq_example*} @@ -443,15 +445,15 @@ constructor of types in \verb:Type:. \begin{coq_example*} Inductive sigT (A:Type) (P:A -> Type) : Type := existT (x:A) (_:P x). -Section Projections. +Section Projections2. Variable A : Type. Variable P : A -> Type. Definition projT1 (H:sigT A P) := let (x, h) := H in x. Definition projT2 (H:sigT A P) := match H return P (projT1 H) with - existT x h => h + existT _ _ x h => h end. -End Projections. +End Projections2. Inductive sigT2 (A: Type) (P Q:A -> Type) : Type := existT2 (x:A) (_:P x) (_:Q x). \end{coq_example*} @@ -537,7 +539,7 @@ interpretation. \begin{coq_example*} Definition except := False_rec. Theorem absurd_set : forall (A:Prop) (C:Set), A -> ~ A -> C. -Theorem and_rect : +Theorem and_rect2 : forall (A B:Prop) (P:Type), (A -> B -> P) -> A /\ B -> P. \end{coq_example*} %\begin{coq_eval} @@ -626,7 +628,7 @@ Fixpoint plus (n m:nat) {struct n} : nat := match n with | 0 => m | S p => S (p + m) - end. + end where "n + m" := (plus n m) : nat_scope. Lemma plus_n_O : forall n:nat, n = n + 0. Lemma plus_n_Sm : forall n m:nat, S (n + m) = n + S m. @@ -639,7 +641,7 @@ Fixpoint mult (n m:nat) {struct n} : nat := match n with | 0 => 0 | S p => m + p * m - end. + end where "n * m" := (mult n m) : nat_scope. Lemma mult_n_O : forall n:nat, 0 = n * 0. Lemma mult_n_Sm : forall n m:nat, n * m + n = n * (S m). @@ -660,7 +662,7 @@ Finally, it gives the definition of the usual orderings \verb:le:, \begin{coq_example*} Inductive le (n:nat) : nat -> Prop := | le_n : le n n - | le_S : forall m:nat, n <= m -> n <= (S m). + | le_S : forall m:nat, n <= m -> n <= (S m) where "n <= m" := (le n m) : nat_scope. Definition lt (n m:nat) := S n <= m. Definition ge (n m:nat) := m <= n. @@ -712,7 +714,7 @@ Variable A : Type. Variable R : A -> A -> Prop. Inductive Acc (x:A) : Prop := Acc_intro : (forall y:A, R y x -> Acc y) -> Acc x. -Lemma Acc_inv : Acc x -> forall y:A, R y x -> Acc y. +Lemma Acc_inv x : Acc x -> forall y:A, R y x -> Acc y. \end{coq_example*} \begin{coq_eval} destruct 1; trivial. diff --git a/doc/refman/RefMan-ltac.tex b/doc/refman/RefMan-ltac.tex index 4029e4e28..5f8bd300f 100644 --- a/doc/refman/RefMan-ltac.tex +++ b/doc/refman/RefMan-ltac.tex @@ -956,6 +956,9 @@ r {\qstring}: & advance up to the next call to ``{\tt idtac} {\qstring}''\\ \begin{figure}[b] \begin{center} \fbox{\begin{minipage}{0.95\textwidth} +\begin{coq_eval} +Reset Initial. +\end{coq_eval} \begin{coq_example*} Require Import List. Section Sort. diff --git a/doc/refman/RefMan-tac.tex b/doc/refman/RefMan-tac.tex index a091da2df..805b2cee0 100644 --- a/doc/refman/RefMan-tac.tex +++ b/doc/refman/RefMan-tac.tex @@ -882,7 +882,7 @@ Qed. Goal forall n:nat, n = 0 -> n = 0. intros [ | ] H. Show 2. -Undo. +Undo 2. intros [ | ]; intros H. Show 2. \end{coq_example} |