aboutsummaryrefslogtreecommitdiffhomepage
path: root/doc/faq
diff options
context:
space:
mode:
authorGravatar letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7>2012-07-05 16:56:16 +0000
committerGravatar letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7>2012-07-05 16:56:16 +0000
commitfc2613e871dffffa788d90044a81598f671d0a3b (patch)
treef6f308b3d6b02e1235446b2eb4a2d04b135a0462 /doc/faq
parentf93f073df630bb46ddd07802026c0326dc72dafd (diff)
ZArith + other : favor the use of modern names instead of compat notations
- For instance, refl_equal --> eq_refl - Npos, Zpos, Zneg now admit more uniform qualified aliases N.pos, Z.pos, Z.neg. - A new module BinInt.Pos2Z with results about injections from positive to Z - A result about Z.pow pushed in the generic layer - Zmult_le_compat_{r,l} --> Z.mul_le_mono_nonneg_{r,l} - Using tactic Z.le_elim instead of Zle_lt_or_eq - Some cleanup in ring, field, micromega (use of "Equivalence", "Proper" ...) - Some adaptions in QArith (for instance changed Qpower.Qpower_decomp) - In ZMake and ZMake, functor parameters are now named NN and ZZ instead of N and Z for avoiding confusions git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@15515 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'doc/faq')
-rw-r--r--doc/faq/FAQ.tex16
-rw-r--r--doc/faq/interval_discr.v14
2 files changed, 15 insertions, 15 deletions
diff --git a/doc/faq/FAQ.tex b/doc/faq/FAQ.tex
index b63f3ee26..5ce5e0436 100644
--- a/doc/faq/FAQ.tex
+++ b/doc/faq/FAQ.tex
@@ -545,7 +545,7 @@ dependent elimination of reflexive equality proofs.
\begin{coq_example*}
Axiom Streicher_K :
forall (A:Type) (x:A) (P: x=x -> Prop),
- P (refl_equal x) -> forall p: x=x, P p.
+ P (eq_refl x) -> forall p: x=x, P p.
\end{coq_example*}
In the general case, axiom $K$ is an independent statement of the
@@ -563,7 +563,7 @@ Axiom UIP : forall (A:Set) (x y:A) (p1 p2: x=y), p1 = p2.
Axiom $K$ is also equivalent to {\em Uniqueness of Reflexive Identity Proofs} \cite{HofStr98}
\begin{coq_example*}
-Axiom UIP_refl : forall (A:Set) (x:A) (p: x=x), p = refl_equal x.
+Axiom UIP_refl : forall (A:Set) (x:A) (p: x=x), p = eq_refl x.
\end{coq_example*}
Axiom $K$ is also equivalent to
@@ -2108,7 +2108,7 @@ Yes, because equality is decidable on {\tt nat}. Here is the proof.
Require Import Eqdep_dec.
Require Import Peano_dec.
Theorem K_nat :
- forall (x:nat) (P:x = x -> Prop), P (refl_equal x) -> forall p:x = x, P p.
+ forall (x:nat) (P:x = x -> Prop), P (eq_refl x) -> forall p:x = x, P p.
Proof.
intros; apply K_dec_set with (p := p).
apply eq_nat_dec.
@@ -2139,16 +2139,16 @@ Theorem le_uniqueness_proof : forall (n m : nat) (p q : n <= m), p = q.
Proof.
induction p using le_ind'; intro q.
replace (le_n n) with
- (eq_rect _ (fun n0 => n <= n0) (le_n n) _ (refl_equal n)).
+ (eq_rect _ (fun n0 => n <= n0) (le_n n) _ eq_refl).
2:reflexivity.
- generalize (refl_equal n).
+ generalize (eq_refl n).
pattern n at 2 4 6 10, q; case q; [intro | intros m l e].
rewrite <- eq_rect_eq_nat; trivial.
contradiction (le_Sn_n m); rewrite <- e; assumption.
replace (le_S n m p) with
- (eq_rect _ (fun n0 => n <= n0) (le_S n m p) _ (refl_equal (S m))).
+ (eq_rect _ (fun n0 => n <= n0) (le_S n m p) _ eq_refl).
2:reflexivity.
- generalize (refl_equal (S m)).
+ generalize (eq_refl (S m)).
pattern (S m) at 1 3 4 6, q; case q; [intro Heq | intros m0 l HeqS].
contradiction (le_Sn_n m); rewrite Heq; assumption.
injection HeqS; intro Heq; generalize l HeqS.
@@ -2536,7 +2536,7 @@ existential variables.
Lemma example_show_existentials : forall a b c:nat, a=b -> b=c -> a=c.
Proof.
intros.
-eapply trans_equal.
+eapply eq_trans.
Show Existentials.
eassumption.
assumption.
diff --git a/doc/faq/interval_discr.v b/doc/faq/interval_discr.v
index ed2c0e37e..671dc988a 100644
--- a/doc/faq/interval_discr.v
+++ b/doc/faq/interval_discr.v
@@ -32,16 +32,16 @@ Theorem le_uniqueness_proof : forall (n m : nat) (p q : n <= m), p = q.
Proof.
induction p using le_ind'; intro q.
replace (le_n n) with
- (eq_rect _ (fun n0 => n <= n0) (le_n n) _ (refl_equal n)).
+ (eq_rect _ (fun n0 => n <= n0) (le_n n) _ eq_refl).
2:reflexivity.
- generalize (refl_equal n).
+ generalize (eq_refl n).
pattern n at 2 4 6 10, q; case q; [intro | intros m l e].
rewrite <- eq_rect_eq_nat; trivial.
contradiction (le_Sn_n m); rewrite <- e; assumption.
replace (le_S n m p) with
- (eq_rect _ (fun n0 => n <= n0) (le_S n m p) _ (refl_equal (S m))).
+ (eq_rect _ (fun n0 => n <= n0) (le_S n m p) _ eq_refl).
2:reflexivity.
- generalize (refl_equal (S m)).
+ generalize (eq_refl (S m)).
pattern (S m) at 1 3 4 6, q; case q; [intro Heq | intros m0 l HeqS].
contradiction (le_Sn_n m); rewrite Heq; assumption.
injection HeqS; intro Heq; generalize l HeqS.
@@ -216,7 +216,7 @@ Lemma inj_restrict :
Proof.
intros A f x y z Hfinj Hneqx Hfy Hfx Heq.
assert (f z <> f x).
- apply sym_not_eq.
+ apply not_eq_sym.
intro Heqf.
apply Hneqx.
apply Hfinj.
@@ -292,7 +292,7 @@ destruct (le_lt_dec (f xSn) (f y)) as [Hlefy|Hgefy].
assert (Heq : x = y).
apply Hfinj.
assert (f xSn <> f y).
- apply sym_not_eq.
+ apply not_eq_sym.
intro Heqf.
apply Hneqy.
apply Hfinj.
@@ -302,7 +302,7 @@ assert (Heq : x = y).
apply le_O_n.
apply le_neq_lt; assumption.
assert (f xSn <> f x).
- apply sym_not_eq.
+ apply not_eq_sym.
intro Heqf.
apply Hneqx.
apply Hfinj.