diff options
author | emakarov <emakarov@85f007b7-540e-0410-9357-904b9bb8a0f7> | 2007-10-25 10:38:52 +0000 |
---|---|---|
committer | emakarov <emakarov@85f007b7-540e-0410-9357-904b9bb8a0f7> | 2007-10-25 10:38:52 +0000 |
commit | d7690f1f394e00211802f16d07de53505ddbcd2d (patch) | |
tree | 06b450ffd7d395310298ee6b635ad2ff81b03cae /contrib | |
parent | 6d42141278905f2a2ca5cb2bc6d2d0b166b945b0 (diff) |
Added NIso.v to Makefile.common. Changed Examples.v in contrib/micromega to use NRing instead of Ring_polynom.
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@10264 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'contrib')
-rw-r--r-- | contrib/micromega/Examples.v | 26 |
1 files changed, 20 insertions, 6 deletions
diff --git a/contrib/micromega/Examples.v b/contrib/micromega/Examples.v index 976815142..6bb9311a5 100644 --- a/contrib/micromega/Examples.v +++ b/contrib/micromega/Examples.v @@ -1,10 +1,15 @@ Require Import OrderedRing. Require Import RingMicromega. -Require Import Ring_polynom. Require Import ZCoeff. Require Import Refl. Require Import ZArith. Require Import List. +(*****) +Require Import NRing. +Require Import VarMap. +(*****) +(*Require Import Ring_polynom.*) +(*****) Import OrderedRingSyntax. @@ -55,7 +60,11 @@ Lemma plus_minus : forall x y : R, x + y == 0 -> x - y == 0 -> x < 0 -> False. Proof. intros x y. Open Scope Z_scope. -set (varmap := fun (x y : R) => x :: y :: nil). +(*****) +set (env := fun x y : R => Node (Leaf y) x (Empty _)). +(*****) +(*set (env := fun (x y : R) => x :: y :: nil).*) +(*****) set (expr := Build_Formula (PEadd (PEX Z 1) (PEX Z 2)) OpEq (PEc 0) :: Build_Formula (PEsub (PEX Z 1) (PEX Z 2)) OpEq (PEc 0) @@ -63,7 +72,7 @@ set (expr := set (cert := S_Add (S_Mult (S_Pos 0 Zeq_bool Zle_bool 2 (refl_equal true)) (Z_In 2)) (S_Add (S_Ideal (PEc 1) (Z_In 1)) (S_Ideal (PEc 1) (Z_In 0)))). -change (make_impl (Zeval_formula (varmap x y)) expr False). +change (make_impl (Zeval_formula (env x y)) expr False). apply (check_formulas_sound sor ZSORaddon expr cert). reflexivity. Close Scope Z_scope. @@ -77,7 +86,11 @@ Lemma Zdiscr : a * (x * x) + b * x + c == 0 -> 0 <= b * b - four * a * c. Proof. Open Scope Z_scope. -set (varmap := fun (a b c x : R) => a :: b :: c :: x:: nil). +(*****) +set (env := fun (a b c x : R) => Node (Node (Leaf x) b (Empty _)) a (Leaf c)). +(*****) +(*set (env := fun (a b c x : R) => a :: b :: c :: x:: nil).*) +(*****) set (poly1 := (Build_Formula (PEadd @@ -93,10 +106,11 @@ set (wit := (Z_Square (PEadd (PEmul (PEc 2) (PEmul (PEX Z 1) (PEX Z 4))) (PEX Z 2))))) :: nil). intros a b c x. -change (make_impl (Zeval_formula (varmap a b c x)) poly1 - (make_conj (Zeval_formula (varmap a b c x)) poly2)). +change (make_impl (Zeval_formula (env a b c x)) poly1 + (make_conj (Zeval_formula (env a b c x)) poly2)). apply (check_conj_formulas_sound sor ZSORaddon poly1 poly2 wit). reflexivity. +Close Scope Z_scope. Qed. End Examples. |