aboutsummaryrefslogtreecommitdiffhomepage
path: root/contrib
diff options
context:
space:
mode:
authorGravatar emakarov <emakarov@85f007b7-540e-0410-9357-904b9bb8a0f7>2007-10-25 10:38:52 +0000
committerGravatar emakarov <emakarov@85f007b7-540e-0410-9357-904b9bb8a0f7>2007-10-25 10:38:52 +0000
commitd7690f1f394e00211802f16d07de53505ddbcd2d (patch)
tree06b450ffd7d395310298ee6b635ad2ff81b03cae /contrib
parent6d42141278905f2a2ca5cb2bc6d2d0b166b945b0 (diff)
Added NIso.v to Makefile.common. Changed Examples.v in contrib/micromega to use NRing instead of Ring_polynom.
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@10264 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'contrib')
-rw-r--r--contrib/micromega/Examples.v26
1 files changed, 20 insertions, 6 deletions
diff --git a/contrib/micromega/Examples.v b/contrib/micromega/Examples.v
index 976815142..6bb9311a5 100644
--- a/contrib/micromega/Examples.v
+++ b/contrib/micromega/Examples.v
@@ -1,10 +1,15 @@
Require Import OrderedRing.
Require Import RingMicromega.
-Require Import Ring_polynom.
Require Import ZCoeff.
Require Import Refl.
Require Import ZArith.
Require Import List.
+(*****)
+Require Import NRing.
+Require Import VarMap.
+(*****)
+(*Require Import Ring_polynom.*)
+(*****)
Import OrderedRingSyntax.
@@ -55,7 +60,11 @@ Lemma plus_minus : forall x y : R, x + y == 0 -> x - y == 0 -> x < 0 -> False.
Proof.
intros x y.
Open Scope Z_scope.
-set (varmap := fun (x y : R) => x :: y :: nil).
+(*****)
+set (env := fun x y : R => Node (Leaf y) x (Empty _)).
+(*****)
+(*set (env := fun (x y : R) => x :: y :: nil).*)
+(*****)
set (expr :=
Build_Formula (PEadd (PEX Z 1) (PEX Z 2)) OpEq (PEc 0)
:: Build_Formula (PEsub (PEX Z 1) (PEX Z 2)) OpEq (PEc 0)
@@ -63,7 +72,7 @@ set (expr :=
set (cert :=
S_Add (S_Mult (S_Pos 0 Zeq_bool Zle_bool 2 (refl_equal true)) (Z_In 2))
(S_Add (S_Ideal (PEc 1) (Z_In 1)) (S_Ideal (PEc 1) (Z_In 0)))).
-change (make_impl (Zeval_formula (varmap x y)) expr False).
+change (make_impl (Zeval_formula (env x y)) expr False).
apply (check_formulas_sound sor ZSORaddon expr cert).
reflexivity.
Close Scope Z_scope.
@@ -77,7 +86,11 @@ Lemma Zdiscr :
a * (x * x) + b * x + c == 0 -> 0 <= b * b - four * a * c.
Proof.
Open Scope Z_scope.
-set (varmap := fun (a b c x : R) => a :: b :: c :: x:: nil).
+(*****)
+set (env := fun (a b c x : R) => Node (Node (Leaf x) b (Empty _)) a (Leaf c)).
+(*****)
+(*set (env := fun (a b c x : R) => a :: b :: c :: x:: nil).*)
+(*****)
set (poly1 :=
(Build_Formula
(PEadd
@@ -93,10 +106,11 @@ set (wit :=
(Z_Square
(PEadd (PEmul (PEc 2) (PEmul (PEX Z 1) (PEX Z 4))) (PEX Z 2))))) :: nil).
intros a b c x.
-change (make_impl (Zeval_formula (varmap a b c x)) poly1
- (make_conj (Zeval_formula (varmap a b c x)) poly2)).
+change (make_impl (Zeval_formula (env a b c x)) poly1
+ (make_conj (Zeval_formula (env a b c x)) poly2)).
apply (check_conj_formulas_sound sor ZSORaddon poly1 poly2 wit).
reflexivity.
+Close Scope Z_scope.
Qed.
End Examples.