aboutsummaryrefslogtreecommitdiffhomepage
path: root/contrib
diff options
context:
space:
mode:
authorGravatar filliatr <filliatr@85f007b7-540e-0410-9357-904b9bb8a0f7>2000-04-28 17:55:54 +0000
committerGravatar filliatr <filliatr@85f007b7-540e-0410-9357-904b9bb8a0f7>2000-04-28 17:55:54 +0000
commit44d578b40ec699ea8bbd4b387c2cf7155bf1d1fe (patch)
tree967ad41944c572fc1252b31369aa0af498f14832 /contrib
parentbd182166d8a97de81b6abdb3aa434cc32d95a9dc (diff)
mise sous CVS d'Omega
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@380 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'contrib')
-rwxr-xr-xcontrib/omega/Omega.v41
-rw-r--r--contrib/omega/OmegaSyntax.v26
-rw-r--r--contrib/omega/Zcomplements.v313
-rw-r--r--contrib/omega/Zlogarithm.v267
-rw-r--r--contrib/omega/Zpower.v396
-rw-r--r--contrib/omega/coq_omega.ml1878
-rwxr-xr-xcontrib/omega/omega.ml652
7 files changed, 3573 insertions, 0 deletions
diff --git a/contrib/omega/Omega.v b/contrib/omega/Omega.v
new file mode 100755
index 000000000..185a85969
--- /dev/null
+++ b/contrib/omega/Omega.v
@@ -0,0 +1,41 @@
+(**************************************************************************)
+(* *)
+(* Omega: a solver of quantifier-free problems in Presburger Arithmetic *)
+(* *)
+(* Pierre Crégut (CNET, Lannion, France) *)
+(* *)
+(**************************************************************************)
+
+Require Export ZArith.
+(* The constant minus is required in coq_omega.ml *)
+Require Export Minus.
+
+Declare ML Module "equality".
+Declare ML Module "omega".
+Declare ML Module "coq_omega".
+
+Require Export OmegaSyntax.
+
+Hint eq_nat_Omega : zarith := Extern 10 (eq nat ? ?) Abstract Omega.
+Hint le_Omega : zarith := Extern 10 (le ? ?) Abstract Omega.
+Hint lt_Omega : zarith := Extern 10 (lt ? ?) Abstract Omega.
+Hint ge_Omega : zarith := Extern 10 (ge ? ?) Abstract Omega.
+Hint gt_Omega : zarith := Extern 10 (gt ? ?) Abstract Omega.
+
+Hint not_eq_nat_Omega : zarith := Extern 10 ~(eq nat ? ?) Abstract Omega.
+Hint not_le_Omega : zarith := Extern 10 ~(le ? ?) Abstract Omega.
+Hint not_lt_Omega : zarith := Extern 10 ~(lt ? ?) Abstract Omega.
+Hint not_ge_Omega : zarith := Extern 10 ~(ge ? ?) Abstract Omega.
+Hint not_gt_Omega : zarith := Extern 10 ~(gt ? ?) Abstract Omega.
+
+Hint eq_Z_Omega : zarith := Extern 10 (eq Z ? ?) Abstract Omega.
+Hint Zle_Omega : zarith := Extern 10 (Zle ? ?) Abstract Omega.
+Hint Zlt_Omega : zarith := Extern 10 (Zlt ? ?) Abstract Omega.
+Hint Zge_Omega : zarith := Extern 10 (Zge ? ?) Abstract Omega.
+Hint Zgt_Omega : zarith := Extern 10 (Zgt ? ?) Abstract Omega.
+
+Hint not_eq_nat_Omega : zarith := Extern 10 ~(eq Z ? ?) Abstract Omega.
+Hint not_Zle_Omega : zarith := Extern 10 ~(Zle ? ?) Abstract Omega.
+Hint not_Zlt_Omega : zarith := Extern 10 ~(Zlt ? ?) Abstract Omega.
+Hint not_Zge_Omega : zarith := Extern 10 ~(Zge ? ?) Abstract Omega.
+Hint not_Zgt_Omega : zarith := Extern 10 ~(Zgt ? ?) Abstract Omega.
diff --git a/contrib/omega/OmegaSyntax.v b/contrib/omega/OmegaSyntax.v
new file mode 100644
index 000000000..dccfc5e89
--- /dev/null
+++ b/contrib/omega/OmegaSyntax.v
@@ -0,0 +1,26 @@
+(**************************************************************************)
+(* *)
+(* Omega: a solver of quantifier-free problems in Presburger Arithmetic *)
+(* *)
+(* Pierre Crégut (CNET, Lannion, France) *)
+(* *)
+(**************************************************************************)
+
+Grammar vernac vernac :=
+ omega_sett [ "Set" "Omega" "Time" "." ] -> [(OmegaFlag "+time")]
+| omega_sets [ "Set" "Omega" "System" "." ] -> [(OmegaFlag "+system")]
+| omega_seta [ "Set" "Omega" "Action" "." ] -> [(OmegaFlag "+action")]
+| omega_unst [ "Unset" "Omega" "Time" "." ] -> [(OmegaFlag "-time")]
+| omega_unss [ "Unset" "Omega" "System" "." ] -> [(OmegaFlag "-system")]
+| omega_unsa [ "Unset" "Omega" "Action" "." ] -> [(OmegaFlag "-action")]
+| omega_swit [ "Switch" "Omega" "Time" "." ] -> [(OmegaFlag "time")]
+| omega_swis [ "Switch" "Omega" "System" "." ] -> [(OmegaFlag "system")]
+| omega_swia [ "Switch" "Omega" "Action" "." ] -> [(OmegaFlag "action")]
+| omega_set [ "Set" "Omega" stringarg($id) "." ] -> [(OmegaFlag $id)].
+
+
+Grammar tactic simple_tactic :=
+ omega [ "Omega" ] -> [(Omega)].
+
+Syntax tactic level 0:
+ omega [(Omega)] -> ["Omega"].
diff --git a/contrib/omega/Zcomplements.v b/contrib/omega/Zcomplements.v
new file mode 100644
index 000000000..6bf081781
--- /dev/null
+++ b/contrib/omega/Zcomplements.v
@@ -0,0 +1,313 @@
+(****************************************************************************)
+(* The Calculus of Inductive Constructions *)
+(* *)
+(* Projet Coq *)
+(* *)
+(* INRIA LRI-CNRS ENS-CNRS *)
+(* Rocquencourt Orsay Lyon *)
+(* *)
+(* Coq V6.3 *)
+(* July 1st 1999 *)
+(* *)
+(****************************************************************************)
+(* Zcomplements.v *)
+(****************************************************************************)
+
+Require Omega.
+Require Wf_nat.
+
+(* Multiplication by a number >0 preserves Zcompare. It also perserves
+ Zle, Zlt, Zge, Zgt *)
+
+Implicit Arguments On.
+
+Lemma Zmult_zero : (x,y:Z)`x*y=0` -> `x=0` \/ `y=0`.
+Destruct x; Destruct y; Auto.
+Simpl; Intros; Discriminate H.
+Simpl; Intros; Discriminate H.
+Simpl; Intros; Discriminate H.
+Simpl; Intros; Discriminate H.
+Save.
+
+Lemma Zeq_Zminus : (x,y:Z)x=y -> `x-y = 0`.
+Intros; Omega.
+Save.
+
+Lemma Zminus_Zeq : (x,y:Z)`x-y=0` -> x=y.
+Intros; Omega.
+Save.
+
+Lemma Zmult_Zminus_distr_l : (x,y,z:Z)`(x-y)*z = x*z - y*z`.
+Intros; Unfold Zminus.
+Rewrite <- Zopp_Zmult.
+Apply Zmult_plus_distr_l.
+Save.
+
+Lemma Zmult_Zminus_distr_r : (x,y,z:Z)`z*(x-y) = z*x - z*y`.
+Intros; Rewrite (Zmult_sym z `x-y`).
+Rewrite (Zmult_sym z x).
+Rewrite (Zmult_sym z y).
+Apply Zmult_Zminus_distr_l.
+Save.
+
+Lemma Zmult_reg_left : (x,y,z:Z)`z>0` -> `z*x=z*y` -> x=y.
+Intros.
+Generalize (Zeq_Zminus H0).
+Intro.
+Apply Zminus_Zeq.
+Rewrite <- (Zmult_Zminus_distr_r x y z) in H1.
+Elim (Zmult_zero H1).
+Omega.
+Trivial.
+Save.
+
+Lemma Zmult_reg_right : (x,y,z:Z)`z>0` -> `x*z=y*z` -> x=y.
+Intros x y z Hz.
+Rewrite (Zmult_sym x z).
+Rewrite (Zmult_sym y z).
+Intro; Apply Zmult_reg_left with z; Assumption.
+Save.
+
+Lemma Zgt0_le_pred : (y:Z) `y > 0` -> `0 <= (Zpred y)`.
+Intro; Unfold Zpred; Omega.
+Save.
+
+Lemma Zlt_Zplus :
+ (x1,x2,y1,y2:Z)`x1 < x2` -> `y1 < y2` -> `x1 + y1 < x2 + y2`.
+Intros; Omega.
+Save.
+
+Lemma Zlt_Zmult_right : (x,y,z:Z)`z>0` -> `x < y` -> `x*z < y*z`.
+
+Intros; Rewrite (Zs_pred z); Generalize (Zgt0_le_pred H); Intro;
+Apply natlike_ind with P:=[z:Z]`x*(Zs z) < y*(Zs z)`;
+[ Simpl; Do 2 (Rewrite Zmult_n_1); Assumption
+| Unfold Zs; Intros x0 Hx0; Do 6 (Rewrite Zmult_plus_distr_r);
+ Repeat (Rewrite Zmult_n_1);
+ Intro; Apply Zlt_Zplus; Assumption
+| Assumption ].
+Save.
+
+Lemma Zlt_Zmult_right2 : (x,y,z:Z)`z>0` -> `x*z < y*z` -> `x < y`.
+Intros x y z H; Rewrite (Zs_pred z).
+Apply natlike_ind with P:=[z:Z]`x*(Zs z) < y*(Zs z)`->`x < y`.
+Simpl; Do 2 Rewrite Zmult_n_1; Auto 1.
+Unfold Zs.
+Intros x0 Hx0; Repeat (Rewrite Zmult_plus_distr_r).
+Repeat Rewrite Zmult_n_1.
+Auto with zarith.
+Unfold Zpred; Omega.
+Save.
+
+Lemma Zle_Zmult_right : (x,y,z:Z)`z>0` -> `x <= y` -> `x*z <= y*z`.
+Intros x y z Hz Hxy.
+Elim (Zle_lt_or_eq x y Hxy).
+Intros; Apply Zlt_le_weak.
+Apply Zlt_Zmult_right; Trivial.
+Intros; Apply Zle_refl.
+Rewrite H; Trivial.
+Save.
+
+Lemma Zle_Zmult_right2 : (x,y,z:Z)`z>0` -> `x*z <= y*z` -> `x <= y`.
+Intros x y z Hz Hxy.
+Elim (Zle_lt_or_eq `x*z` `y*z` Hxy).
+Intros; Apply Zlt_le_weak.
+Apply Zlt_Zmult_right2 with z; Trivial.
+Intros; Apply Zle_refl.
+Apply Zmult_reg_right with z; Trivial.
+Save.
+
+Lemma Zgt_Zmult_right : (x,y,z:Z)`z>0` -> `x > y` -> `x*z > y*z`.
+
+Intros; Apply Zlt_gt; Apply Zlt_Zmult_right;
+[ Assumption | Apply Zgt_lt ; Assumption ].
+Save.
+
+Lemma Zlt_Zmult_left : (x,y,z:Z)`z>0` -> `x < y` -> `z*x < z*y`.
+
+Intros;
+Rewrite (Zmult_sym z x); Rewrite (Zmult_sym z y);
+Apply Zlt_Zmult_right; Assumption.
+Save.
+
+Lemma Zgt_Zmult_left : (x,y,z:Z)`z>0` -> `x > y` -> `z*x > z*y`.
+Intros;
+Rewrite (Zmult_sym z x); Rewrite (Zmult_sym z y);
+Apply Zgt_Zmult_right; Assumption.
+Save.
+
+Theorem Zcompare_Zmult_right : (x,y,z:Z)` z>0` -> `x ?= y`=`x*z ?= y*z`.
+
+Intros; Apply Zcompare_egal_dec;
+[ Intros; Apply Zlt_Zmult_right; Trivial
+| Intro Hxy; Apply [a,b:Z](let (t1,t2)=(Zcompare_EGAL a b) in t2);
+ Rewrite ((let (t1,t2)=(Zcompare_EGAL x y) in t1) Hxy); Trivial
+| Intros; Apply Zgt_Zmult_right; Trivial
+].
+Save.
+
+Theorem Zcompare_Zmult_left : (x,y,z:Z)`z>0` -> `x ?= y`=`z*x ?= z*y`.
+Intros;
+Rewrite (Zmult_sym z x);
+Rewrite (Zmult_sym z y);
+Apply Zcompare_Zmult_right; Assumption.
+Save.
+
+
+Section diveucl.
+
+Lemma two_or_two_plus_one : (x:Z) { y:Z | `x = 2*y`}+{ y:Z | `x = 2*y+1`}.
+Destruct x.
+Left ; Split with ZERO; Reflexivity.
+
+Destruct p.
+Right ; Split with (POS p0); Reflexivity.
+
+Left ; Split with (POS p0); Reflexivity.
+
+Right ; Split with ZERO; Reflexivity.
+
+Destruct p.
+Right ; Split with (NEG (add xH p0)).
+Rewrite NEG_xI.
+Rewrite NEG_add.
+Omega.
+
+Left ; Split with (NEG p0); Reflexivity.
+
+Right ; Split with `-1`; Reflexivity.
+Save.
+
+(* The biggest power of 2 that is stricly less than a *)
+(* Easy to compute : replace all "1" of the binary representation by
+ "0", except the first "1" (or the first one :-) *)
+Fixpoint floor_pos [a : positive] : positive :=
+ Cases a of
+ | xH => xH
+ | (xO a') => (xO (floor_pos a'))
+ | (xI b') => (xO (floor_pos b'))
+ end.
+
+Definition floor := [a:positive](POS (floor_pos a)).
+
+Lemma floor_gt0 : (x:positive) `(floor x) > 0`.
+Intro.
+Compute.
+Trivial.
+Save.
+
+Lemma floor_ok : (a:positive)
+ `(floor a) <= (POS a) < 2*(floor a)`.
+Unfold floor.
+Induction a.
+
+Intro p; Simpl.
+Repeat Rewrite POS_xI.
+Rewrite (POS_xO (xO (floor_pos p))).
+Rewrite (POS_xO (floor_pos p)).
+Omega.
+
+Intro p; Simpl.
+Repeat Rewrite POS_xI.
+Rewrite (POS_xO (xO (floor_pos p))).
+Rewrite (POS_xO (floor_pos p)).
+Rewrite (POS_xO p).
+Omega.
+
+Simpl; Omega.
+Save.
+
+Lemma Zdiv_eucl_POS : (b:Z)`b > 0` -> (p:positive)
+ { qr:Z*Z | let (q,r)=qr in `(POS p)=b*q+r` /\ `0 <= r < b` }.
+
+Induction p.
+
+(* p => (xI p) *)
+(* Notez l'utilisation des nouveaux patterns Intro *)
+Intros p' ((q,r), (Hrec1, Hrec2)).
+Elim (Z_lt_ge_dec `2*r+1` b);
+[ Exists `(2*q, 2*r+1)`;
+ Rewrite POS_xI;
+ Rewrite Hrec1;
+ Split;
+ [ Rewrite Zmult_Zplus_distr;
+ Rewrite Zplus_assoc_l;
+ Rewrite (Zmult_permute b `2`);
+ Reflexivity
+ | Omega ]
+| Exists `(2*q+1, 2*r+1-b)`;
+ Rewrite POS_xI;
+ Rewrite Hrec1;
+ Split;
+ [ Do 2 Rewrite Zmult_Zplus_distr;
+ Unfold Zminus;
+ Do 2 Rewrite Zplus_assoc_l;
+ Rewrite <- (Zmult_permute `2` b);
+ Generalize `b*q`; Intros; Omega
+ | Omega ]
+].
+
+(* p => (xO p) *)
+Intros p' ((q,r), (Hrec1, Hrec2)).
+Elim (Z_lt_ge_dec `2*r` b);
+[ Exists `(2*q,2*r)`;
+ Rewrite POS_xO;
+ Rewrite Hrec1;
+ Split;
+ [ Rewrite Zmult_Zplus_distr;
+ Rewrite (Zmult_permute b `2`);
+ Reflexivity
+ | Omega ]
+| Exists `(2*q+1, 2*r-b)`;
+ Rewrite POS_xO;
+ Rewrite Hrec1;
+ Split;
+ [ Do 2 Rewrite Zmult_Zplus_distr;
+ Unfold Zminus;
+ Rewrite <- (Zmult_permute `2` b);
+ Generalize `b*q`; Intros; Omega
+ | Omega ]
+].
+(* xH *)
+Elim (Z_le_gt_dec `2` b);
+[ Exists `(0,1)`; Omega
+| Exists `(1,0)`; Omega
+].
+Save.
+
+Theorem Zdiv_eucl : (b:Z)`b > 0` -> (a:Z)
+ { qr:Z*Z | let (q,r)=qr in `a=b*q+r` /\ `0 <= r < b` }.
+Destruct a;
+
+[ (* a=0 *) Exists `(0,0)`; Omega
+| (* a = (POS p) *) Intros; Apply Zdiv_eucl_POS; Auto
+| (* a = (NEG p) *) Intros; Elim (Zdiv_eucl_POS H p);
+ Intros (q,r) (Hp1, Hp2);
+ Elim (Z_le_gt_dec r `0`);
+ [ Exists `(-q,0)`; Split;
+ [ Apply Zopp_intro; Simpl; Rewrite Hp1;
+ Rewrite Zero_right;
+ Rewrite <- Zopp_Zmult;
+ Rewrite Zmult_Zopp_Zopp;
+ Generalize `b*q`; Intro; Omega
+ | Omega
+ ]
+ | Exists `(-(q+1),b-r)`; Split;
+ [ Apply Zopp_intro;
+ Unfold Zminus; Simpl; Rewrite Hp1;
+ Repeat Rewrite Zopp_Zplus;
+ Repeat Rewrite <- Zopp_Zmult;
+ Rewrite Zmult_Zplus_distr;
+ Rewrite Zmult_Zopp_Zopp;
+ Rewrite Zplus_assoc_r;
+ Apply f_equal with f:=[c:Z]`b*q+c`;
+ Omega
+ | Omega ]
+ ]
+].
+Save.
+
+End diveucl.
+
+(* $Id$ *)
+
diff --git a/contrib/omega/Zlogarithm.v b/contrib/omega/Zlogarithm.v
new file mode 100644
index 000000000..87f1f87c5
--- /dev/null
+++ b/contrib/omega/Zlogarithm.v
@@ -0,0 +1,267 @@
+(****************************************************************************)
+(* The Calculus of Inductive Constructions *)
+(* *)
+(* Projet Coq *)
+(* *)
+(* INRIA LRI-CNRS ENS-CNRS *)
+(* Rocquencourt Orsay Lyon *)
+(* *)
+(* Coq V6.3 *)
+(* July 1st 1999 *)
+(* *)
+(****************************************************************************)
+(* Zlogarithm.v *)
+(****************************************************************************)
+
+(****************************************************************************)
+(* The integer logarithms with base 2. There are three logarithms, *)
+(* depending on the rounding of the real 2-based logarithm : *)
+(* *)
+(* Log_inf : y = (Log_inf x) iff 2^y <= x < 2^(y+1) *)
+(* Log_sup : y = (Log_sup x) iff 2^(y-1) < x <= 2^y *)
+(* Log_nearest : y= (Log_nearest x) iff 2^(y-1/2) < x <= 2^(y+1/2) *)
+(* *)
+(* (Log_inf x) is the biggest integer that is smaller than (Log x) *)
+(* (Log_inf x) is the smallest integer that is bigger than (Log x) *)
+(* (Log_nearest x) is the integer nearest from (Log x). *)
+(****************************************************************************)
+
+Require Omega.
+Require Zcomplements.
+Require Zpower.
+
+Section Log_pos. (* Log of positive integers *)
+
+(* First we build log_inf and log_sup *)
+
+Fixpoint log_inf [p:positive] : Z :=
+ Cases p of
+ xH => `0` (* 1 *)
+ | (xO q) => (Zs (log_inf q)) (* 2n *)
+ | (xI q) => (Zs (log_inf q)) (* 2n+1 *)
+ end.
+Fixpoint log_sup [p:positive] : Z :=
+ Cases p of
+ xH => `0` (* 1 *)
+ | (xO n) => (Zs (log_sup n)) (* 2n *)
+ | (xI n) => (Zs (Zs (log_inf n))) (* 2n+1 *)
+ end.
+
+Hints Unfold log_inf log_sup.
+
+(* Then we give the specifications of log_inf and log_sup
+ and prove their validity *)
+
+(* Hints Resolve ZERO_le_S : zarith. *)
+Hints Resolve Zle_trans : zarith.
+
+Theorem log_inf_correct : (x:positive) ` 0 <= (log_inf x)` /\
+ ` (two_p (log_inf x)) <= (POS x) < (two_p (Zs (log_inf x)))`.
+Induction x; Intros; Simpl;
+[ Elim H; Intros Hp HR; Clear H; Split;
+ [ Auto with zarith
+ | Rewrite (two_p_S (Zs (log_inf p)) (Zle_le_S `0` (log_inf p) Hp));
+ Rewrite (two_p_S (log_inf p) Hp);
+ Rewrite (two_p_S (log_inf p) Hp) in HR;
+ Rewrite (POS_xI p); Omega ]
+| Elim H; Intros Hp HR; Clear H; Split;
+ [ Auto with zarith
+ | Rewrite (two_p_S (Zs (log_inf p)) (Zle_le_S `0` (log_inf p) Hp));
+ Rewrite (two_p_S (log_inf p) Hp);
+ Rewrite (two_p_S (log_inf p) Hp) in HR;
+ Rewrite (POS_xO p); Omega ]
+| Unfold two_power_pos; Unfold shift_pos; Simpl; Omega
+].
+Save.
+
+Definition log_inf_correct1 :=
+ [p:positive](proj1 ? ? (log_inf_correct p)).
+Definition log_inf_correct2 :=
+ [p:positive](proj2 ? ? (log_inf_correct p)).
+
+Opaque log_inf_correct1 log_inf_correct2.
+Hints Resolve log_inf_correct1 log_inf_correct2 : zarith.
+
+Lemma log_sup_correct1 : (p:positive)` 0 <= (log_sup p)`.
+Induction p; Intros; Simpl; Auto with zarith.
+Save.
+
+(* For every p, either p is a power of two and (log_inf p)=(log_sup p)
+ either (log_sup p)=(log_inf p)+1 *)
+
+Theorem log_sup_log_inf : (p:positive)
+ either (POS p)=(two_p (log_inf p))
+ and_then (POS p)=(two_p (log_sup p))
+ or_else ` (log_sup p)=(Zs (log_inf p))`.
+
+Induction p; Intros;
+[ Elim H; Right; Simpl;
+ Rewrite (two_p_S (log_inf p0) (log_inf_correct1 p0));
+ Rewrite POS_xI; Unfold Zs; Omega
+| Elim H; Clear H; Intro Hif;
+ [ Left; Simpl;
+ Rewrite (two_p_S (log_inf p0) (log_inf_correct1 p0));
+ Rewrite (two_p_S (log_sup p0) (log_sup_correct1 p0));
+ Rewrite <- (proj1 ? ? Hif); Rewrite <- (proj2 ? ? Hif);
+ Auto
+ | Right; Simpl;
+ Rewrite (two_p_S (log_inf p0) (log_inf_correct1 p0));
+ Rewrite POS_xO; Unfold Zs; Omega ]
+| Left; Auto ].
+Save.
+
+Theorem log_sup_correct2 : (x:positive)
+ ` (two_p (Zpred (log_sup x))) < (POS x) <= (two_p (log_sup x))`.
+
+Intro.
+Elim (log_sup_log_inf x).
+(* x is a power of two and log_sup = log_inf *)
+Intros (E1,E2); Rewrite E2.
+Split ; [ Apply two_p_pred; Apply log_sup_correct1 | Apply Zle_n ].
+Intros (E1,E2); Rewrite E2.
+Rewrite <- (Zpred_Sn (log_inf x)).
+Generalize (log_inf_correct2 x); Omega.
+Save.
+
+Lemma log_inf_le_log_sup :
+ (p:positive) `(log_inf p) <= (log_sup p)`.
+Induction p; Simpl; Intros; Omega.
+Save.
+
+Lemma log_sup_le_Slog_inf :
+ (p:positive) `(log_sup p) <= (Zs (log_inf p))`.
+Induction p; Simpl; Intros; Omega.
+Save.
+
+(* Now it's possible to specify and build the Log rounded to the nearest *)
+
+Fixpoint log_near[x:positive] : Z :=
+ Cases x of
+ xH => `0`
+ | (xO xH) => `1`
+ | (xI xH) => `2`
+ | (xO y) => (Zs (log_near y))
+ | (xI y) => (Zs (log_near y))
+ end.
+
+Theorem log_near_correct1 : (p:positive)` 0 <= (log_near p)`.
+Induction p; Simpl; Intros;
+[Elim p0; Auto with zarith | Elim p0; Auto with zarith | Trivial with zarith ].
+Intros; Apply Zle_le_S.
+Generalize H0; Elim p1; Intros; Simpl;
+ [ Tauto | Tauto | Apply ZERO_le_POS ].
+Intros; Apply Zle_le_S.
+Generalize H0; Elim p1; Intros; Simpl;
+ [ Tauto | Tauto | Apply ZERO_le_POS ].
+Save.
+
+Theorem log_near_correct2: (p:positive)
+ (log_near p)=(log_inf p)
+\/(log_near p)=(log_sup p).
+Induction p.
+Intros p0 [Einf|Esup].
+Simpl. Rewrite Einf.
+Case p0; [Left | Left | Right]; Reflexivity.
+Simpl; Rewrite Esup.
+Elim (log_sup_log_inf p0).
+Generalize (log_inf_le_log_sup p0).
+Generalize (log_sup_le_Slog_inf p0).
+Case p0; Auto with zarith.
+Intros; Omega.
+Case p0; Intros; Auto with zarith.
+Intros p0 [Einf|Esup].
+Simpl.
+Repeat Rewrite Einf.
+Case p0; Intros; Auto with zarith.
+Simpl.
+Repeat Rewrite Esup.
+Case p0; Intros; Auto with zarith.
+Auto.
+Save.
+
+(*******************
+Theorem log_near_correct: (p:positive)
+ `| (two_p (log_near p)) - (POS p) | <= (POS p)-(two_p (log_inf p))`
+ /\`| (two_p (log_near p)) - (POS p) | <= (two_p (log_sup p))-(POS p)`.
+Intro.
+Induction p.
+Intros p0 [(Einf1,Einf2)|(Esup1,Esup2)].
+Unfold log_near log_inf log_sup. Fold log_near log_inf log_sup.
+Rewrite Einf1.
+Repeat Rewrite two_p_S.
+Case p0; [Left | Left | Right].
+
+Split.
+Simpl.
+Rewrite E1; Case p0; Try Reflexivity.
+Compute.
+Unfold log_near; Fold log_near.
+Unfold log_inf; Fold log_inf.
+Repeat Rewrite E1.
+Split.
+***********************************)
+
+End Log_pos.
+
+Section divers.
+
+(* Number of significative digits. *)
+
+Definition N_digits :=
+ [x:Z]Cases x of
+ (POS p) => (log_inf p)
+ | (NEG p) => (log_inf p)
+ | ZERO => `0`
+ end.
+
+Lemma ZERO_le_N_digits : (x:Z) ` 0 <= (N_digits x)`.
+Induction x; Simpl;
+[ Apply Zle_n
+| Exact log_inf_correct1
+| Exact log_inf_correct1].
+Save.
+
+Lemma log_inf_shift_nat :
+ (n:nat)(log_inf (shift_nat n xH))=(inject_nat n).
+Induction n; Intros;
+[ Try Trivial
+| Rewrite -> inj_S; Rewrite <- H; Reflexivity].
+Save.
+
+Lemma log_sup_shift_nat :
+ (n:nat)(log_sup (shift_nat n xH))=(inject_nat n).
+Induction n; Intros;
+[ Try Trivial
+| Rewrite -> inj_S; Rewrite <- H; Reflexivity].
+Save.
+
+(* (Is_power p) means that p is a power of two *)
+Fixpoint Is_power[p:positive] : Prop :=
+ Cases p of
+ xH => True
+ | (xO q) => (Is_power q)
+ | (xI q) => False
+ end.
+
+Lemma Is_power_correct :
+ (p:positive) (Is_power p) <-> (Ex [y:nat](p=(shift_nat y xH))).
+
+Split;
+[ Elim p;
+ [ Simpl; Tauto
+ | Simpl; Intros; Generalize (H H0); Intro H1; Elim H1; Intros y0 Hy0;
+ Exists (S y0); Rewrite Hy0; Reflexivity
+ | Intro; Exists O; Reflexivity]
+| Intros; Elim H; Intros; Rewrite -> H0; Elim x; Intros; Simpl; Trivial].
+Save.
+
+Lemma Is_power_or : (p:positive) (Is_power p)\/~(Is_power p).
+Induction p;
+[ Intros; Right; Simpl; Tauto
+| Intros; Elim H;
+ [ Intros; Left; Simpl; Exact H0
+ | Intros; Right; Simpl; Exact H0]
+| Left; Simpl; Trivial].
+Save.
+
+End divers.
diff --git a/contrib/omega/Zpower.v b/contrib/omega/Zpower.v
new file mode 100644
index 000000000..475638ce2
--- /dev/null
+++ b/contrib/omega/Zpower.v
@@ -0,0 +1,396 @@
+(****************************************************************************)
+(* The Calculus of Inductive Constructions *)
+(* *)
+(* Projet Coq *)
+(* *)
+(* INRIA LRI-CNRS ENS-CNRS *)
+(* Rocquencourt Orsay Lyon *)
+(* *)
+(* Coq V6.3 *)
+(* July 1st 1999 *)
+(* *)
+(****************************************************************************)
+(* Zpower.v *)
+(****************************************************************************)
+
+Require Omega.
+Require Zcomplements.
+
+Section section1.
+
+(* (Zpower_nat z n) is the n-th power of x when n is an unary
+ integer (type nat) and z an signed integer (type Z) *)
+
+Definition Zpower_nat :=
+ [z:Z][n:nat] (iter_nat n Z ([x:Z]` z * x `) `1`).
+
+(* Zpower_nat_is_exp says Zpower_nat is a morphism for
+ plus : nat->nat and Zmult : Z->Z *)
+
+Lemma Zpower_nat_is_exp :
+ (n,m:nat)(z:Z)
+ `(Zpower_nat z (plus n m)) = (Zpower_nat z n)*(Zpower_nat z m)`.
+
+Intros; Elim n;
+[ Simpl; Elim (Zpower_nat z m); Auto with zarith
+| Unfold Zpower_nat; Intros; Simpl; Rewrite H;
+ Apply Zmult_assoc].
+Save.
+
+(* (Zpower_nat z n) is the n-th power of x when n is an binary
+ integer (type positive) and z an signed integer (type Z) *)
+
+Definition Zpower_pos :=
+ [z:Z][n:positive] (iter_pos n Z ([x:Z]`z * x`) `1`).
+
+(* This theorem shows that powers of unary and binary integers
+ are the same thing, modulo the function convert : positive -> nat *)
+
+Theorem Zpower_pos_nat :
+ (z:Z)(p:positive)(Zpower_pos z p) = (Zpower_nat z (convert p)).
+
+Intros; Unfold Zpower_pos; Unfold Zpower_nat; Apply iter_convert.
+Save.
+
+(* Using the theorem Zpower_pos_nat and the lemma Zpower_nat_is_exp we
+ deduce that the function [n:positive](Zpower_pos z n) is a morphism
+ for add : positive->positive and Zmult : Z->Z *)
+
+Theorem Zpower_pos_is_exp :
+ (n,m:positive)(z:Z)
+ ` (Zpower_pos z (add n m)) = (Zpower_pos z n)*(Zpower_pos z m)`.
+
+Intros.
+Rewrite -> (Zpower_pos_nat z n).
+Rewrite -> (Zpower_pos_nat z m).
+Rewrite -> (Zpower_pos_nat z (add n m)).
+Rewrite -> (convert_add n m).
+Apply Zpower_nat_is_exp.
+Save.
+
+Definition Zpower :=
+ [x,y:Z]Cases y of
+ (POS p) => (Zpower_pos x p)
+ | ZERO => `1`
+ | (NEG p) => `0`
+ end.
+
+Hints Immediate Zpower_nat_is_exp : zarith.
+Hints Immediate Zpower_pos_is_exp : zarith.
+Hints Unfold Zpower_pos : zarith.
+Hints Unfold Zpower_nat : zarith.
+
+Lemma Zpower_exp : (x:Z)(n,m:Z)
+ `n >= 0` -> `m >= 0` -> `(Zpower x (n+m))=(Zpower x n)*(Zpower x m)`.
+Destruct n; Destruct m; Auto with zarith.
+Simpl; Intros; Apply Zred_factor0.
+Simpl; Auto with zarith.
+Intros; Compute in H0; Absurd INFERIEUR=INFERIEUR; Auto with zarith.
+Intros; Compute in H0; Absurd INFERIEUR=INFERIEUR; Auto with zarith.
+Save.
+
+End section1.
+
+Hints Immediate Zpower_nat_is_exp : zarith.
+Hints Immediate Zpower_pos_is_exp : zarith.
+Hints Unfold Zpower_pos : zarith.
+Hints Unfold Zpower_nat : zarith.
+
+Section Powers_of_2.
+
+(* For the powers of two, that will be widely used, a more direct
+ calculus is possible. We will also prove some properties such
+ as (x:positive) x < 2^x that are true for all integers bigger
+ than 2 but more difficult to prove and useless. *)
+
+(* shift n m computes 2^n * m, or m shifted by n positions *)
+
+Definition shift_nat :=
+ [n:nat][z:positive](iter_nat n positive xO z).
+Definition shift_pos :=
+ [n:positive][z:positive](iter_pos n positive xO z).
+Definition shift :=
+ [n:Z][z:positive]
+ Cases n of
+ ZERO => z
+ | (POS p) => (iter_pos p positive xO z)
+ | (NEG p) => z
+ end.
+
+Definition two_power_nat := [n:nat] (POS (shift_nat n xH)).
+Definition two_power_pos := [x:positive] (POS (shift_pos x xH)).
+
+Lemma two_power_nat_S :
+ (n:nat)` (two_power_nat (S n)) = 2*(two_power_nat n)`.
+Intro; Simpl; Apply refl_equal.
+Save.
+
+Lemma shift_nat_plus :
+ (n,m:nat)(x:positive)
+ (shift_nat (plus n m) x)=(shift_nat n (shift_nat m x)).
+
+Intros; Unfold shift_nat; Apply iter_nat_plus.
+Save.
+
+Theorem shift_nat_correct :
+ (n:nat)(x:positive)(POS (shift_nat n x))=`(Zpower_nat 2 n)*(POS x)`.
+
+Unfold shift_nat; Induction n;
+[ Simpl; Trivial with zarith
+| Intros; Simpl;
+Replace (Zpower_nat `2` (S n0)) with `2 * (Zpower_nat 2 n0)`;
+[ Replace (POS (xO (iter_nat n0 positive xO x)))
+ with `2 * (POS (iter_nat n0 positive xO x))`;
+ [ Rewrite -> (H x); Apply Zmult_assoc
+ | Auto with zarith ]
+| Auto with zarith ]
+].
+Save.
+
+Theorem two_power_nat_correct :
+ (n:nat)(two_power_nat n)=(Zpower_nat `2` n).
+
+Intro n.
+Unfold two_power_nat.
+Rewrite -> (shift_nat_correct n).
+Omega.
+Save.
+
+(* Second we show that two_power_pos and two_power_nat are the same *)
+Lemma shift_pos_nat : (p:positive)(x:positive)
+ (shift_pos p x)=(shift_nat (convert p) x).
+
+Unfold shift_pos.
+Unfold shift_nat.
+Intros; Apply iter_convert.
+Save.
+
+Lemma two_power_pos_nat :
+ (p:positive) (two_power_pos p)=(two_power_nat (convert p)).
+
+Intro; Unfold two_power_pos; Unfold two_power_nat.
+Apply f_equal with f:=POS.
+Apply shift_pos_nat.
+Save.
+
+(* Then we deduce that two_power_pos is also correct *)
+
+Theorem shift_pos_correct :
+ (p,x:positive) ` (POS (shift_pos p x)) = (Zpower_pos 2 p) * (POS x)`.
+
+Intros.
+Rewrite -> (shift_pos_nat p x).
+Rewrite -> (Zpower_pos_nat `2` p).
+Apply shift_nat_correct.
+Save.
+
+Theorem two_power_pos_correct :
+ (x:positive) (two_power_pos x)=(Zpower_pos `2` x).
+
+Intro.
+Rewrite -> two_power_pos_nat.
+Rewrite -> Zpower_pos_nat.
+Apply two_power_nat_correct.
+Save.
+
+(* Some consequences *)
+
+Theorem two_power_pos_is_exp :
+ (x,y:positive) (two_power_pos (add x y))
+ =(Zmult (two_power_pos x) (two_power_pos y)).
+Intros.
+Rewrite -> (two_power_pos_correct (add x y)).
+Rewrite -> (two_power_pos_correct x).
+Rewrite -> (two_power_pos_correct y).
+Apply Zpower_pos_is_exp.
+Save.
+
+(* The exponentiation z -> 2^z for z a signed integer. *)
+(* For convenience, we assume that 2^z = 0 for all z <0 *)
+(* We could also define a inductive type Log_result with *)
+(* 3 contructors Zero | Pos positive -> | minus_infty *)
+(* but it's more complexe and not so useful. *)
+
+Definition two_p :=
+ [x:Z]Cases x of
+ ZERO => `1`
+ | (POS y) => (two_power_pos y)
+ | (NEG y) => `0`
+ end.
+
+Theorem two_p_is_exp :
+ (x,y:Z) ` 0 <= x` -> ` 0 <= y` ->
+ ` (two_p (x+y)) = (two_p x)*(two_p y)`.
+Induction x;
+[ Induction y; Simpl; Auto with zarith
+| Induction y;
+ [ Unfold two_p; Rewrite -> (Zmult_sym (two_power_pos p) `1`);
+ Rewrite -> (Zmult_one (two_power_pos p)); Auto with zarith
+ | Unfold Zplus; Unfold two_p;
+ Intros; Apply two_power_pos_is_exp
+ | Intros; Unfold Zle in H0; Unfold Zcompare in H0;
+ Absurd SUPERIEUR=SUPERIEUR; Trivial with zarith
+ ]
+| Induction y;
+ [ Simpl; Auto with zarith
+ | Intros; Unfold Zle in H; Unfold Zcompare in H;
+ Absurd (SUPERIEUR=SUPERIEUR); Trivial with zarith
+ | Intros; Unfold Zle in H; Unfold Zcompare in H;
+ Absurd (SUPERIEUR=SUPERIEUR); Trivial with zarith
+ ]
+].
+Save.
+
+Lemma two_p_gt_ZERO : (x:Z) ` 0 <= x` -> ` (two_p x) > 0`.
+Induction x; Intros;
+[ Simpl; Omega
+| Simpl; Unfold two_power_pos; Apply POS_gt_ZERO
+| Absurd ` 0 <= (NEG p)`;
+ [ Simpl; Unfold Zle; Unfold Zcompare;
+ Do 2 Unfold not; Auto with zarith
+ | Assumption ]
+].
+Save.
+
+Lemma two_p_S : (x:Z) ` 0 <= x` ->
+ `(two_p (Zs x)) = 2 * (two_p x)`.
+Intros; Unfold Zs.
+Rewrite (two_p_is_exp x `1` H (ZERO_le_POS xH)).
+Apply Zmult_sym.
+Save.
+
+Lemma two_p_pred :
+ (x:Z)` 0 <= x` -> ` (two_p (Zpred x)) < (two_p x)`.
+Intros; Apply natlike_ind
+with P:=[x:Z]` (two_p (Zpred x)) < (two_p x)`;
+[ Simpl; Unfold Zlt; Auto with zarith
+| Intros; Elim (Zle_lt_or_eq `0` x0 H0);
+ [ Intros;
+ Replace (two_p (Zpred (Zs x0)))
+ with (two_p (Zs (Zpred x0)));
+ [ Rewrite -> (two_p_S (Zpred x0));
+ [ Rewrite -> (two_p_S x0);
+ [ Omega
+ | Assumption]
+ | Apply Zlt_ZERO_pred_le_ZERO; Assumption]
+ | Rewrite <- (Zs_pred x0); Rewrite <- (Zpred_Sn x0); Trivial with zarith]
+ | Intro Hx0; Rewrite <- Hx0; Simpl; Unfold Zlt; Auto with zarith]
+| Assumption].
+Save.
+
+Lemma Zlt_lt_double : (x,y:Z) ` 0 <= x < y` -> ` x < 2*y`.
+Intros; Omega. Save.
+
+End Powers_of_2.
+
+Hints Resolve two_p_gt_ZERO : zarith.
+Hints Immediate two_p_pred two_p_S : zarith.
+
+Section power_div_with_rest.
+
+(* Division by a power of two
+ To n:Z and p:positive q,r are associated such that
+ n = 2^p.q + r and 0 <= r < 2^p *)
+
+(* Invariant : d*q + r = d'*q + r /\ d' = 2*d /\ 0<= r < d /\ 0 <= r' < d' *)
+Definition Zdiv_rest_aux :=
+ [qrd:(Z*Z)*Z]
+ let (qr,d)=qrd in let (q,r)=qr in
+ (Cases q of
+ ZERO => ` (0, r)`
+ | (POS xH) => ` (0, d + r)`
+ | (POS (xI n)) => ` ((POS n), d + r)`
+ | (POS (xO n)) => ` ((POS n), r)`
+ | (NEG xH) => ` (-1, d + r)`
+ | (NEG (xI n)) => ` ((NEG n) - 1, d + r)`
+ | (NEG (xO n)) => ` ((NEG n), r)`
+ end, ` 2*d`).
+
+Definition Zdiv_rest :=
+ [x:Z][p:positive]let (qr,d)=(iter_pos p ? Zdiv_rest_aux ((x,`0`),`1`)) in qr.
+
+Lemma Zdiv_rest_correct1 :
+ (x:Z)(p:positive)
+ let (qr,d)=(iter_pos p ? Zdiv_rest_aux ((x,`0`),`1`)) in d=(two_power_pos p).
+
+Intros x p;
+Rewrite (iter_convert p ? Zdiv_rest_aux ((x,`0`),`1`));
+Rewrite (two_power_pos_nat p);
+Elim (convert p); Simpl;
+[ Trivial with zarith
+| Intro n; Rewrite (two_power_nat_S n);
+ Unfold 2 Zdiv_rest_aux;
+ Elim (iter_nat n (Z*Z)*Z Zdiv_rest_aux ((x,`0`),`1`));
+ Destruct y; Intros; Apply f_equal with f:=[z:Z]`2*z`; Assumption ].
+Save.
+
+Lemma Zdiv_rest_correct2 :
+ (x:Z)(p:positive)
+ let (qr,d)=(iter_pos p ? Zdiv_rest_aux ((x,`0`),`1`)) in
+ let (q,r)=qr in
+ ` x=q*d + r` /\ ` 0 <= r < d`.
+
+Intros; Apply iter_pos_invariant with
+ f:=Zdiv_rest_aux
+ Inv:=[qrd:(Z*Z)*Z]let (qr,d)=qrd in let (q,r)=qr in
+ ` x=q*d + r` /\ ` 0 <= r < d`;
+[ Intro x0; Elim x0; Intro y0; Elim y0;
+ Intros q r d; Unfold Zdiv_rest_aux;
+ Elim q;
+ [ Omega
+ | Destruct p0;
+ [ Intro; Rewrite POS_xI; Intro; Elim H; Intros; Split;
+ [ Rewrite H0; Rewrite Zplus_assoc;
+ Rewrite Zmult_plus_distr_l;
+ Rewrite Zmult_1_n; Rewrite Zmult_assoc;
+ Rewrite (Zmult_sym (POS p1) `2`); Apply refl_equal
+ | Omega ]
+ | Intro; Rewrite POS_xO; Intro; Elim H; Intros; Split;
+ [ Rewrite H0;
+ Rewrite Zmult_assoc; Rewrite (Zmult_sym (POS p1) `2`);
+ Apply refl_equal
+ | Omega ]
+ | Omega ]
+ | Destruct p0;
+ [ Intro; Rewrite NEG_xI; Unfold Zminus; Intro; Elim H; Intros; Split;
+ [ Rewrite H0; Rewrite Zplus_assoc;
+ Apply f_equal with f:=[z:Z]`z+r`;
+ Do 2 (Rewrite Zmult_plus_distr_l);
+ Rewrite Zmult_assoc;
+ Rewrite (Zmult_sym (NEG p1) `2`);
+ Rewrite <- Zplus_assoc;
+ Apply f_equal with f:=[z:Z]`2 * (NEG p1) * d + z`;
+ Omega
+ | Omega ]
+ | Intro; Rewrite NEG_xO; Unfold Zminus; Intro; Elim H; Intros; Split;
+ [ Rewrite H0;
+ Rewrite Zmult_assoc; Rewrite (Zmult_sym (NEG p1) `2`);
+ Apply refl_equal
+ | Omega ]
+ | Omega ] ]
+| Omega].
+Save.
+
+Inductive Set Zdiv_rest_proofs[x:Z; p:positive] :=
+ Zdiv_rest_proof : (q:Z)(r:Z)
+ `x = q * (two_power_pos p) + r`
+ -> `0 <= r`
+ -> `r < (two_power_pos p)`
+ -> (Zdiv_rest_proofs x p).
+
+Lemma Zdiv_rest_correct :
+ (x:Z)(p:positive)(Zdiv_rest_proofs x p).
+Intros x p.
+Generalize (Zdiv_rest_correct1 x p); Generalize (Zdiv_rest_correct2 x p).
+Elim (iter_pos p (Z*Z)*Z Zdiv_rest_aux ((x,`0`),`1`)).
+Induction y.
+Intros.
+Elim H; Intros H1 H2; Clear H.
+Rewrite -> H0 in H1; Rewrite -> H0 in H2;
+Elim H2; Intros;
+Apply Zdiv_rest_proof with q:=y0 r:=y1; Assumption.
+Save.
+
+End power_div_with_rest.
+
+
diff --git a/contrib/omega/coq_omega.ml b/contrib/omega/coq_omega.ml
new file mode 100644
index 000000000..9fb2f918b
--- /dev/null
+++ b/contrib/omega/coq_omega.ml
@@ -0,0 +1,1878 @@
+(**************************************************************************)
+(* *)
+(* Omega: a solver of quantifier-free problems in Presburger Arithmetic *)
+(* *)
+(* Pierre Crégut (CNET, Lannion, France) *)
+(* *)
+(**************************************************************************)
+
+(* $Id$ *)
+
+open Util
+open Pp
+open Reduction
+open Proof_trees
+open Ast
+open Names
+open Generic
+open Term
+open Sign
+open Inductive
+open Tacmach
+open Tactics
+open Clenv
+open Logic
+open Omega
+
+(* Added by JCF, 09/03/98 *)
+
+let elim_id id gl = simplest_elim (pf_global gl id) gl
+let resolve_id id gl = apply (pf_global gl id) gl
+
+let timing timer_name f arg = f arg
+
+let display_time_flag = ref false
+let display_system_flag = ref false
+let display_action_flag = ref false
+let old_style_flag = ref false
+
+let all_time = timing "Omega "
+let solver_time = timing "Solver "
+let exact_time = timing "Rewrites "
+let elim_time = timing "Elim "
+let simpl_time = timing "Simpl "
+let generalize_time = timing "Generalize"
+
+let new_identifier =
+ let cpt = ref 0 in
+ (fun () -> let s = "Omega" ^ string_of_int !cpt in incr cpt; id_of_string s)
+
+let new_identifier_state =
+ let cpt = ref 0 in
+ (fun () -> let s = make_ident "State" !cpt in incr cpt; s)
+
+let new_identifier_var =
+ let cpt = ref 0 in
+ (fun () -> let s = "Zvar" ^ string_of_int !cpt in incr cpt; id_of_string s)
+
+let rec mk_then =
+ function [t] -> t | (t::l) -> (tclTHEN (t) (mk_then l)) | [] -> tclIDTAC
+
+let collect_com lbind =
+ map_succeed (function (Com,c)->c | _ -> failwith "Com") lbind
+
+(*** EST-CE QUE CES FONCTIONS NE SONT PAS AILLEURS DANS LE CODE ?? *)
+
+let make_clenv_binding_apply wc (c,t) lbind =
+ let largs = collect_com lbind in
+ let lcomargs = List.length largs in
+ if lcomargs = List.length lbind then
+ let clause = mk_clenv_from wc (c,t) in
+ clenv_constrain_missing_args largs clause
+ else if lcomargs = 0 then
+ let clause = mk_clenv_rename_from wc (c,t) in
+ clenv_match_args lbind clause
+ else
+ errorlabstrm "make_clenv_bindings"
+ [<'sTR "Cannot mix bindings and free associations">]
+
+let resolve_with_bindings_tac (c,lbind) gl =
+ let (wc,kONT) = startWalk gl in
+ let t = w_hnf_constr wc (w_type_of wc c) in
+ let clause = make_clenv_binding_apply wc (c,t) lbind in
+ res_pf kONT clause gl
+
+let reduce_to_mind gl t =
+ let rec elimrec t l = match whd_castapp_stack t [] with
+ | (DOPN(MutInd (x0,x1),_) as mind,_) -> (mind,prod_it t l)
+ | (DOPN(Const _,_),_) ->
+ (try
+ let t' = pf_nf_betaiota gl (pf_one_step_reduce gl t) in elimrec t' l
+ with e when catchable_exception e ->
+ errorlabstrm "tactics__reduce_to_mind"
+ [< 'sTR"Not an inductive product" >])
+ | (DOPN(MutCase _,_),_) ->
+ (try
+ let t' = pf_nf_betaiota gl (pf_one_step_reduce gl t) in elimrec t' l
+ with e when catchable_exception e ->
+ errorlabstrm "tactics__reduce_to_mind"
+ [< 'sTR"Not an inductive product" >])
+ | (DOP2(Cast,c,_),[]) -> elimrec c l
+ | (DOP2(Prod,ty,DLAM(n,t')),[]) -> elimrec t' ((n,ty)::l)
+ | _ -> error "Not an inductive product"
+ in
+ elimrec t []
+
+let constructor_tac nconstropt i lbind gl =
+ let cl = pf_concl gl in
+ let (mind, redcl) = reduce_to_mind gl cl in
+ let ((x0,x1),args) as mindspec= destMutInd mind in
+ let nconstr = Global.mind_nconstr mindspec
+ and sigma = project gl in
+ (match nconstropt with
+ | Some expnconstr ->
+ if expnconstr <> nconstr then
+ error "Not the expected number of constructors"
+ | _ -> ());
+ if i > nconstr then error "Not enough Constructors";
+ let c = DOPN(MutConstruct((x0,x1),i),args) in
+ let resolve_tac = resolve_with_bindings_tac (c,lbind) in
+ (tclTHEN (tclTHEN (change_in_concl redcl) intros) resolve_tac) gl
+
+let exists_tac c= constructor_tac (Some 1) 1 [Com,c]
+
+let generalize_tac t = generalize_time (generalize t)
+let elim t = elim_time (simplest_elim t)
+let exact t = exact_time (Tactics.refine t)
+
+let unfold s = Tactics.unfold_in_concl [[], s]
+
+(*** fin de EST-CE QUE CES FONCTIONS NE SONT PAS AILLEURS DANS LE CODE ?? *)
+(****************************************************************)
+
+let rev_assoc k =
+ let rec loop = function
+ | [] -> raise Not_found | (v,k')::_ when k = k' -> v | _ :: l -> loop l
+ in
+ loop
+
+let tag_hypothesis,tag_of_hyp, hyp_of_tag =
+ let l = ref ([]:(identifier * int) list) in
+ (fun h id -> l := (h,id):: !l),
+ (fun h -> try List.assoc h !l with Not_found -> failwith "tag_hypothesis"),
+ (fun h -> try rev_assoc h !l with Not_found -> failwith "tag_hypothesis")
+
+let hide_constr,find_constr,clear_tables,dump_tables =
+ let l = ref ([]:(constr * (identifier * identifier * bool)) list) in
+ (fun h id eg b -> l := (h,(id,eg,b)):: !l),
+ (fun h -> try List.assoc h !l with Not_found -> failwith "find_contr"),
+ (fun () -> l := []),
+ (fun () -> !l)
+
+let get_applist =
+ let rec loop accu = function
+ | DOPN(AppL,cl) ->
+ begin match Array.to_list cl with
+ | h :: l -> loop (l @ accu) h
+ | [] -> failwith "get_applist" end
+ | DOP2(Cast,c,t) -> loop accu c
+ | t -> t,accu
+ in
+ loop []
+
+exception Destruct
+
+let dest_const_apply t =
+ let f,args = get_applist t in
+ match f with
+ | DOPN((Const _ | MutConstruct _ | MutInd _) as s,_) ->
+ Global.id_of_global s,args
+ | _ -> raise Destruct
+
+type result =
+ | Kvar of string
+ | Kapp of string * constr list
+ | Kimp of constr * constr
+ | Kufo
+
+let destructurate t =
+ match get_applist t with
+ | DOPN ((Const _ | MutConstruct _ | MutInd _) as c,_),args ->
+ Kapp (string_of_id (Global.id_of_global c),args)
+ | VAR id,[] -> Kvar(string_of_id id)
+ | DOP2(Prod,typ,DLAM(Anonymous,body)),[] -> Kimp(typ,body)
+ | DOP2(Prod,_,DLAM(Name _,_)),[] ->
+ error "Omega: Not a quantifier-free goal"
+ | _ -> Kufo
+
+let recognize_number t =
+ let rec loop t =
+ let f,l = dest_const_apply t in
+ match string_of_id f,l with
+ | "xI",[t] -> 1 + 2 * loop t
+ | "xO",[t] -> 2 * loop t
+ | "xH",[] -> 1
+ | _ -> failwith "not a number"
+ in
+ let f,l = dest_const_apply t in
+ match string_of_id f,l with
+ | "POS",[t] -> loop t | "NEG",[t] -> - (loop t) | "ZERO",[] -> 0
+ | _ -> failwith "not a number"
+
+(* Lazy evaluation is used for Coq constants, because this code
+ is evaluated before the compiled modules are loaded.
+ To use the constant Zplus, one must type "Lazy.force coq_Zplus"
+ This is the right way to access to Coq constants in tactics ML code *)
+
+let constant sp id =
+ Declare.global_sp_reference (path_of_string sp) (id_of_string id)
+
+(* fast_integer *)
+let coq_xH = lazy (constant "#fast_integer#positive.cci" "xH")
+let coq_xO = lazy (constant "#fast_integer#positive.cci" "xO")
+let coq_xI = lazy (constant "#fast_integer#positive.cci" "xI")
+let coq_ZERO = lazy (constant "#fast_integer#Z.cci" "ZERO")
+let coq_POS = lazy (constant "#fast_integer#Z.cci" "POS")
+let coq_NEG = lazy (constant "#fast_integer#Z.cci" "NEG")
+let coq_Z = lazy (constant "#fast_integer#Z.cci" "Z")
+let coq_relation = lazy (constant "#fast_integer#relation.cci" "relation")
+let coq_SUPERIEUR = lazy (constant "#fast_integer#relation.cci" "SUPERIEUR")
+let coq_INFEEIEUR = lazy (constant "#fast_integer#relation.cci" "INFERIEUR")
+let coq_EGAL = lazy (constant "#fast_integer#relation.cci" "EGAL")
+let coq_Zplus = lazy (constant "#fast_integer#Zplus.cci" "Zplus")
+let coq_Zmult = lazy (constant "#fast_integer#Zmult.cci" "Zmult")
+let coq_Zopp = lazy (constant "#fast_integer#Zopp.cci" "Zopp")
+
+(* zarith_aux *)
+let coq_Zminus = lazy (constant "#zarith_aux#Zminus.cci" "Zminus")
+let coq_Zs = lazy (constant "#zarith_aux#Zs.cci" "Zs")
+let coq_Zgt = lazy (constant "#zarith_aux#Zgt.cci" "Zgt")
+let coq_Zle = lazy (constant "#zarith_aux#Zle.cci" "Zle")
+let coq_inject_nat = lazy (constant "#zarith_aux#inject_nat.cci" "inject_nat")
+
+(* auxiliary *)
+let coq_inj_plus = lazy (constant "#auxiliary#inj_plus.cci" "inj_plus")
+let coq_inj_mult = lazy (constant "#auxiliary#inj_mult.cci" "inj_mult")
+let coq_inj_minus1 = lazy (constant "#auxiliary#inj_minus1.cci" "inj_minus1")
+let coq_inj_minus2 = lazy (constant "#auxiliary#inj_minus2.cci" "inj_minus2")
+let coq_inj_S = lazy (constant "#auxiliary#inj_S.cci" "inj_S")
+let coq_inj_le = lazy (constant "#auxiliary#inj_le.cci" "inj_le")
+let coq_inj_lt = lazy (constant "#auxiliary#inj_lt.cci" "inj_lt")
+let coq_inj_ge = lazy (constant "#auxiliary#inj_ge.cci" "inj_ge")
+let coq_inj_gt = lazy (constant "#auxiliary#inj_gt.cci" "inj_gt")
+let coq_inj_neq = lazy (constant "#auxiliary#inj_neq.cci" "inj_neq")
+let coq_inj_eq = lazy (constant "#auxiliary#inj_eq.cci" "inj_eq")
+let coq_pred_of_minus =
+ lazy (constant "#auxiliary#pred_of_minus.cci" "pred_of_minus")
+let coq_fast_Zplus_assoc_r =
+ lazy (constant "#auxiliary#fast_Zplus_assoc_r.cci" "fast_Zplus_assoc_r")
+let coq_fast_Zplus_assoc_l =
+ lazy (constant "#auxiliary#fast_Zplus_assoc_l.cci" "fast_Zplus_assoc_l")
+let coq_fast_Zmult_assoc_r =
+ lazy (constant "#auxiliary#fast_Zmult_assoc_r.cci" "fast_Zmult_assoc_r")
+let coq_fast_Zplus_permute =
+ lazy (constant "#auxiliary#fast_Zplus_permute.cci" "fast_Zplus_permute")
+let coq_fast_Zplus_sym =
+ lazy (constant "#auxiliary#fast_Zplus_sym.cci" "fast_Zplus_sym")
+let coq_fast_Zmult_sym =
+ lazy (constant "#auxiliary#fast_Zmult_sym.cci" "fast_Zmult_sym")
+let coq_Zmult_le_approx =
+ lazy (constant "#auxiliary#Zmult_le_approx.cci" "Zmult_le_approx")
+let coq_OMEGA1 = lazy (constant "#auxiliary#OMEGA1.cci" "OMEGA1")
+let coq_OMEGA2 = lazy (constant "#auxiliary#OMEGA2.cci" "OMEGA2")
+let coq_OMEGA3 = lazy (constant "#auxiliary#OMEGA3.cci" "OMEGA3")
+let coq_OMEGA4 = lazy (constant "#auxiliary#OMEGA4.cci" "OMEGA4")
+let coq_OMEGA5 = lazy (constant "#auxiliary#OMEGA5.cci" "OMEGA5")
+let coq_OMEGA6 = lazy (constant "#auxiliary#OMEGA6.cci" "OMEGA6")
+let coq_OMEGA7 = lazy (constant "#auxiliary#OMEGA7.cci" "OMEGA7")
+let coq_OMEGA8 = lazy (constant "#auxiliary#OMEGA8.cci" "OMEGA8")
+let coq_OMEGA9 = lazy (constant "#auxiliary#OMEGA9.cci" "OMEGA9")
+let coq_fast_OMEGA10 =
+ lazy (constant "#auxiliary#fast_OMEGA10.cci" "fast_OMEGA10")
+let coq_fast_OMEGA11 =
+ lazy (constant "#auxiliary#fast_OMEGA11.cci" "fast_OMEGA11")
+let coq_fast_OMEGA12 =
+ lazy (constant "#auxiliary#fast_OMEGA12.cci" "fast_OMEGA12")
+let coq_fast_OMEGA13 =
+ lazy (constant "#auxiliary#fast_OMEGA13.cci" "fast_OMEGA13")
+let coq_fast_OMEGA14 =
+ lazy (constant "#auxiliary#fast_OMEGA14.cci" "fast_OMEGA14")
+let coq_fast_OMEGA15 =
+ lazy (constant "#auxiliary#fast_OMEGA15.cci" "fast_OMEGA15")
+let coq_fast_OMEGA16 =
+ lazy (constant "#auxiliary#fast_OMEGA16.cci" "fast_OMEGA16")
+let coq_OMEGA17 = lazy (constant "#auxiliary#OMEGA17.cci" "OMEGA17")
+let coq_OMEGA18 = lazy (constant "#auxiliary#OMEGA18.cci" "OMEGA18")
+let coq_OMEGA19 = lazy (constant "#auxiliary#OMEGA19.cci" "OMEGA19")
+let coq_OMEGA20 = lazy (constant "#auxiliary#OMEGA20.cci" "OMEGA20")
+let coq_fast_Zred_factor0 =
+ lazy (constant "#auxiliary#fast_Zred_factor0.cci" "fast_Zred_factor0")
+let coq_fast_Zred_factor1 =
+ lazy (constant "#auxiliary#fast_Zred_factor1.cci" "fast_Zred_factor1")
+let coq_fast_Zred_factor2 =
+ lazy (constant "#auxiliary#fast_Zred_factor2.cci" "fast_Zred_factor2")
+let coq_fast_Zred_factor3 =
+ lazy (constant "#auxiliary#fast_Zred_factor3.cci" "fast_Zred_factor3")
+let coq_fast_Zred_factor4 =
+ lazy (constant "#auxiliary#fast_Zred_factor4.cci" "fast_Zred_factor4")
+let coq_fast_Zred_factor5 =
+ lazy (constant "#auxiliary#fast_Zred_factor5.cci" "fast_Zred_factor5")
+let coq_fast_Zred_factor6 =
+ lazy (constant "#auxiliary#fast_Zred_factor6.cci" "fast_Zred_factor6")
+let coq_fast_Zmult_plus_distr =
+ lazy
+ (constant "#auxiliary#fast_Zmult_plus_distr.cci" "fast_Zmult_plus_distr")
+let coq_fast_Zmult_Zopp_left =
+ lazy (constant "#auxiliary#fast_Zmult_Zopp_left.cci" "fast_Zmult_Zopp_left")
+let coq_fast_Zopp_Zplus =
+ lazy (constant "#auxiliary#fast_Zopp_Zplus.cci" "fast_Zopp_Zplus")
+let coq_fast_Zopp_Zmult_r =
+ lazy (constant "#auxiliary#fast_Zopp_Zmult_r.cci" "fast_Zopp_Zmult_r")
+let coq_fast_Zopp_one =
+ lazy (constant "#auxiliary#fast_Zopp_one.cci" "fast_Zopp_one")
+let coq_fast_Zopp_Zopp =
+ lazy (constant "#auxiliary#fast_Zopp_Zopp.cci" "fast_Zopp_Zopp")
+let coq_Zegal_left = lazy (constant "#auxiliary#Zegal_left.cci" "Zegal_left")
+let coq_Zne_left = lazy (constant "#auxiliary#Zne_left.cci" "Zne_left")
+let coq_Zlt_left = lazy (constant "#auxiliary#Zlt_left.cci" "Zlt_left")
+let coq_Zge_left = lazy (constant "#auxiliary#Zge_left.cci" "Zge_left")
+let coq_Zgt_left = lazy (constant "#auxiliary#Zgt_left.cci" "Zgt_left")
+let coq_Zle_left = lazy (constant "#auxiliary#Zle_left.cci" "Zle_left")
+let coq_eq_ind_r = lazy (constant "#auxiliary#eq_ind_r.cci" "eq_ind_r")
+let coq_new_var = lazy (constant "#auxiliary#new_var.cci" "new_var")
+let coq_intro_Z = lazy (constant "#auxiliary#intro_Z.cci" "intro_Z")
+let coq_dec_or = lazy (constant "#auxiliary#dec_or.cci" "dec_or")
+let coq_dec_and = lazy (constant "#auxiliary#dec_and.cci" "dec_and")
+let coq_dec_imp = lazy (constant "#auxiliary#dec_imp.cci" "dec_imp")
+let coq_dec_not = lazy (constant "#auxiliary#dec_not.cci" "dec_not")
+let coq_dec_eq_nat = lazy (constant "#auxiliary#dec_eq_nat.cci" "dec_eq_nat")
+let coq_dec_eq = lazy (constant "#auxiliary#dec_eq.cci" "dec_eq")
+let coq_dec_Zne = lazy (constant "#auxiliary#dec_Zne.cci" "dec_Zne")
+let coq_dec_Zle = lazy (constant "#auxiliary#dec_Zle.cci" "dec_Zle")
+let coq_dec_Zlt = lazy (constant "#auxiliary#dec_Zlt.cci" "dec_Zlt")
+let coq_dec_Zgt = lazy (constant "#auxiliary#dec_Zgt.cci" "dec_Zgt")
+let coq_dec_Zge = lazy (constant "#auxiliary#dec_Zge.cci" "dec_Zge")
+let coq_dec_le = lazy (constant "#auxiliary#dec_le.cci" "dec_le")
+let coq_dec_lt = lazy (constant "#auxiliary#dec_lt.cci" "dec_lt")
+let coq_dec_ge = lazy (constant "#auxiliary#dec_ge.cci" "dec_ge")
+let coq_dec_gt = lazy (constant "#auxiliary#dec_gt.cci" "dec_gt")
+let coq_dec_False = lazy (constant "#auxiliary#dec_False.cci" "dec_False")
+let coq_dec_not_not =
+ lazy (constant "#auxiliary#dec_not_not.cci" "dec_not_not")
+let coq_dec_True = lazy (constant "#auxiliary#dec_True.cci" "dec_True")
+let coq_not_Zeq = lazy (constant "#auxiliary#not_Zeq.cci" "not_Zeq")
+let coq_not_Zle = lazy (constant "#auxiliary#not_Zle.cci" "not_Zle")
+let coq_not_Zlt = lazy (constant "#auxiliary#not_Zlt.cci" "not_Zlt")
+let coq_not_Zge = lazy (constant "#auxiliary#not_Zge.cci" "not_Zge")
+let coq_not_Zgt = lazy (constant "#auxiliary#not_Zgt.cci" "not_Zgt")
+let coq_not_le = lazy (constant "#auxiliary#not_le.cci" "not_le")
+let coq_not_lt = lazy (constant "#auxiliary#not_lt.cci" "not_lt")
+let coq_not_ge = lazy (constant "#auxiliary#not_ge.cci" "not_ge")
+let coq_not_gt = lazy (constant "#auxiliary#not_gt.cci" "not_gt")
+let coq_not_eq = lazy (constant "#auxiliary#not_eq.cci" "not_eq")
+let coq_not_or = lazy (constant "#auxiliary#not_or.cci" "not_or")
+let coq_not_and = lazy (constant "#auxiliary#not_and.cci" "not_and")
+let coq_not_imp = lazy (constant "#auxiliary#not_imp.cci" "not_imp")
+let coq_not_not = lazy (constant "#auxiliary#not_not.cci" "not_not")
+let coq_imp_simp = lazy (constant "#auxiliary#imp_simp.cci" "imp_simp")
+let coq_neq = lazy (constant "#auxiliary#neq.cci" "neq")
+let coq_Zne = lazy (constant "#auxiliary#Zne.cci" "Zne")
+
+(* Compare_dec *)
+let coq_le_gt_dec = lazy (constant "#Compare_dec#le_gt_dec.cci" "le_gt_dec")
+
+(* Peano *)
+let coq_le = lazy (constant "#Peano#le.cci" "le")
+let coq_gt = lazy (constant "#Peano#gt.cci" "gt")
+
+(* Datatypes *)
+let coq_nat = lazy (constant "#Datatypes#nat.cci" "nat")
+let coq_S = lazy (constant "#Datatypes#nat.cci" "S")
+let coq_O = lazy (constant "#Datatypes#nat.cci" "O")
+
+(* Minus *)
+let coq_minus = lazy (constant "#Minus#minus.cci" "minus")
+
+(* Logic *)
+let coq_eq = lazy (constant "#Logic#eq.cci" "eq")
+let coq_and = lazy (constant "#Logic#and.cci" "and")
+let coq_not = lazy (constant "#Logic#not.cci" "not")
+let coq_or = lazy (constant "#Logic#or.cci" "or")
+let coq_ex = lazy (constant "#Logic#ex.cci" "ex")
+
+(* Section paths for unfold *)
+let sp_Zs = path_of_string "#zarith_aux#Zs.cci"
+let sp_Zminus = path_of_string "#zarith_aux#Zminus.cci"
+let sp_Zle = path_of_string "#zarith_aux#Zle.cci"
+let sp_Zgt = path_of_string "#zarith_aux#Zgt.cci"
+let sp_Zge = path_of_string "#zarith_aux#Zge.cci"
+let sp_Zlt = path_of_string "#zarith_aux#Zlt.cci"
+let sp_not = path_of_string "#Logic#not.cci"
+
+let mk_var v = VAR(id_of_string v)
+let mk_plus t1 t2 = mkAppL [| Lazy.force coq_Zplus; t1; t2 |]
+let mk_times t1 t2 = mkAppL [| Lazy.force coq_Zmult; t1; t2 |]
+let mk_minus t1 t2 = mkAppL [| Lazy.force coq_Zminus ; t1;t2 |]
+let mk_eq t1 t2 = mkAppL [| Lazy.force coq_eq; Lazy.force coq_Z; t1; t2 |]
+let mk_le t1 t2 = mkAppL [| Lazy.force coq_Zle; t1; t2 |]
+let mk_gt t1 t2 = mkAppL [| Lazy.force coq_Zgt; t1; t2 |]
+let mk_inv t = mkAppL [| Lazy.force coq_Zopp; t |]
+let mk_and t1 t2 = mkAppL [| Lazy.force coq_and; t1; t2 |]
+let mk_or t1 t2 = mkAppL [| Lazy.force coq_or; t1; t2 |]
+let mk_not t = mkAppL [| Lazy.force coq_not; t |]
+let mk_eq_rel t1 t2 = mkAppL [| Lazy.force coq_eq;
+ Lazy.force coq_relation; t1; t2 |]
+let mk_inj t = mkAppL [| Lazy.force coq_inject_nat; t |]
+
+let mk_integer n =
+ let rec loop n =
+ if n=1 then Lazy.force coq_xH else
+ mkAppL [| if n mod 2 = 0 then Lazy.force coq_xO else Lazy.force coq_xI;
+ loop (n/2) |]
+ in
+ if n = 0 then Lazy.force coq_ZERO
+ else mkAppL [| if n > 0 then Lazy.force coq_POS else Lazy.force coq_NEG;
+ loop (abs n) |]
+
+type constr_path =
+ | P_APP of int
+ (* Abstraction and product *)
+ | P_BODY
+ | P_TYPE
+ (* Mutcase *)
+ | P_BRANCH of int
+ | P_ARITY
+ | P_ARG
+
+let context operation path (t:constr) =
+ let rec loop i p0 p1 =
+ match (p0,p1) with
+ | (p, (DOP2(Cast,c,t))) -> DOP2(Cast,loop i p c,t)
+ | ([], t) -> operation i t
+ | (p, (DLAM(n,t))) -> DLAM(n,loop (i+1) p t)
+ | ((P_APP n :: p), (DOPN(AppL,v) as t)) ->
+ let f,l = get_applist t in
+ let v' = Array.of_list (f::l) in
+ v'.(n) <- loop i p v'.(n); (DOPN(AppL,v'))
+ | ((P_BRANCH n :: p), (DOPN(MutCase _,_) as t)) ->
+ let (_,_,_,v) = destCase t in
+ v.(n) <- loop i p v.(n); (DOPN(AppL,v))
+ | ((P_ARITY :: p), (DOPN(AppL,v))) ->
+ let v' = Array.copy v in
+ v'.(0) <- loop i p v.(0); (DOPN(AppL,v'))
+ | ((P_ARG :: p), (DOPN(AppL,v))) ->
+ let v' = Array.copy v in
+ v'.(1) <- loop i p v.(1); (DOPN(AppL,v'))
+ | (p, (DOPN(Fix(_,n) as f,v))) ->
+ let v' = Array.copy v in
+ let l = Array.length v - 1 in
+ v'.(l) <- loop i (P_BRANCH n :: p) v.(l); (DOPN(f,v'))
+ | ((P_BRANCH n :: p), (DLAMV(name,v))) ->
+ let v' = Array.copy v in
+ v'.(n) <- loop (i+1) p v.(n); DLAMV(name,v')
+ | ((P_BODY :: p), (DOP2((Prod | Lambda) as k, t,c))) ->
+ (DOP2(k,t,loop i p c))
+ | ((P_TYPE :: p), (DOP2((Prod | Lambda) as k, term,c))) ->
+ (DOP2(k,loop i p term, c))
+ | (p, t) ->
+ pPNL [<Printer.prterm t>];
+ failwith ("abstract_path " ^ string_of_int(List.length p))
+ in
+ loop 1 path t
+
+let occurence path (t:constr) =
+ let rec loop p0 p1 = match (p0,p1) with
+ | (p, (DOP2(Cast,c,t))) -> loop p c
+ | ([], t) -> t
+ | (p, (DLAM(n,t))) -> loop p t
+ | ((P_APP n :: p), (DOPN(AppL,v) as t)) ->
+ let f,l = get_applist t in loop p v.(n)
+ | ((P_BRANCH n :: p), (DOPN(MutCase _,_) as t)) ->
+ let (_,_,_,v) = destCase t in loop p v.(n)
+ | ((P_ARITY :: p), (DOPN(AppL,v))) -> loop p v.(0)
+ | ((P_ARG :: p), (DOPN(AppL,v))) -> loop p v.(1)
+ | (p, (DOPN(Fix(_,n) as f,v))) ->
+ let l = Array.length v - 1 in loop (P_BRANCH n :: p) v.(l)
+ | ((P_BRANCH n :: p), (DLAMV(name,v))) -> loop p v.(n)
+ | ((P_BODY :: p), (DOP2((Prod | Lambda) as k, t,c))) -> loop p c
+ | ((P_TYPE :: p), (DOP2((Prod | Lambda) as k, term,c))) -> loop p term
+ | (p, t) ->
+ pPNL [<Printer.prterm t>];
+ failwith ("occurence " ^ string_of_int(List.length p))
+ in
+ loop path t
+
+let abstract_path typ path t =
+ let term_occur = ref (Rel 0) in
+ let abstract = context (fun i t -> term_occur:= t; Rel i) path t in
+ mkLambda (Name (id_of_string "x")) typ abstract, !term_occur
+
+let focused_simpl path gl =
+ let newc = context (fun i t -> pf_nf gl t) (List.rev path) (pf_concl gl) in
+ convert_concl newc gl
+
+let focused_simpl path = simpl_time (focused_simpl path)
+
+type oformula =
+ | Oplus of oformula * oformula
+ | Oinv of oformula
+ | Otimes of oformula * oformula
+ | Oatom of string
+ | Oz of int
+ | Oufo of constr
+
+let rec oprint = function
+ | Oplus(t1,t2) ->
+ print_string "("; oprint t1; print_string "+";
+ oprint t2; print_string ")"
+ | Oinv t -> print_string "~"; oprint t
+ | Otimes (t1,t2) ->
+ print_string "("; oprint t1; print_string "*";
+ oprint t2; print_string ")"
+ | Oatom s -> print_string s
+ | Oz i -> print_int i
+ | Oufo f -> print_string "?"
+
+let rec weight = function
+ | Oatom c -> intern_id c
+ | Oz _ -> -1
+ | Oinv c -> weight c
+ | Otimes(c,_) -> weight c
+ | Oplus _ -> failwith "weight"
+ | Oufo _ -> -1
+
+let rec val_of = function
+ | Oatom c -> (VAR (id_of_string c))
+ | Oz c -> mk_integer c
+ | Oinv c -> mkAppL [| Lazy.force coq_Zopp; val_of c |]
+ | Otimes (t1,t2) -> mkAppL [| Lazy.force coq_Zmult; val_of t1; val_of t2 |]
+ | Oplus(t1,t2) -> mkAppL [| Lazy.force coq_Zplus; val_of t1; val_of t2 |]
+ | Oufo c -> c
+
+let compile name kind =
+ let rec loop accu = function
+ | Oplus(Otimes(Oatom v,Oz n),r) -> loop ({v=intern_id v; c=n} :: accu) r
+ | Oz n ->
+ let id = new_id () in
+ tag_hypothesis name id;
+ {kind = kind; body = List.rev accu; constant = n; id = id}
+ | _ -> anomaly "compile_equation"
+ in
+ loop []
+
+let rec decompile af =
+ let rec loop = function
+ | ({v=v; c=n}::r) -> Oplus(Otimes(Oatom (unintern_id v),Oz n),loop r)
+ | [] -> Oz af.constant
+ in
+ loop af.body
+
+let mkNewMeta () = mkMeta (Environ.new_meta())
+
+let clever_rewrite_base_poly typ p result theorem gl =
+ let full = pf_concl gl in
+ let (abstracted,occ) = abstract_path typ (List.rev p) full in
+ let t =
+ applist
+ ((mkLambda (Name (id_of_string "P"))
+ (mkArrow typ mkProp)
+ (mkLambda (Name (id_of_string "H"))
+ (applist (Rel 1,[result]))
+ (mkAppL [| Lazy.force coq_eq_ind_r;
+ typ; result; Rel 2; Rel 1; occ; theorem |]))),
+ [abstracted])
+ in
+ exact (applist(t,[mkNewMeta()])) gl
+
+let clever_rewrite_base p result theorem gl =
+ clever_rewrite_base_poly (Lazy.force coq_Z) p result theorem gl
+
+let clever_rewrite_base_nat p result theorem gl =
+ clever_rewrite_base_poly (Lazy.force coq_nat) p result theorem gl
+
+let clever_rewrite_gen p result (t,args) =
+ let theorem = applist(t, args) in
+ clever_rewrite_base p result theorem
+
+let clever_rewrite_gen_nat p result (t,args) =
+ let theorem = applist(t, args) in
+ clever_rewrite_base_nat p result theorem
+
+let clever_rewrite p vpath t gl =
+ let full = pf_concl gl in
+ let (abstracted,occ) = abstract_path (Lazy.force coq_Z) (List.rev p) full in
+ let vargs = List.map (fun p -> occurence p occ) vpath in
+ let t' = applist(t, (vargs @ [abstracted])) in
+ exact (applist(t',[mkNewMeta()])) gl
+
+let rec shuffle p (t1,t2) =
+ match t1,t2 with
+ | Oplus(l1,r1), Oplus(l2,r2) ->
+ if weight l1 > weight l2 then
+ let (tac,t') = shuffle (P_APP 2 :: p) (r1,t2) in
+ (clever_rewrite p [[P_APP 1;P_APP 1];
+ [P_APP 1; P_APP 2];[P_APP 2]]
+ (Lazy.force coq_fast_Zplus_assoc_r)
+ :: tac,
+ Oplus(l1,t'))
+ else
+ let (tac,t') = shuffle (P_APP 2 :: p) (t1,r2) in
+ (clever_rewrite p [[P_APP 1];[P_APP 2;P_APP 1];[P_APP 2;P_APP 2]]
+ (Lazy.force coq_fast_Zplus_permute)
+ :: tac,
+ Oplus(l2,t'))
+ | Oplus(l1,r1), t2 ->
+ if weight l1 > weight t2 then
+ let (tac,t') = shuffle (P_APP 2 :: p) (r1,t2) in
+ clever_rewrite p [[P_APP 1;P_APP 1]; [P_APP 1; P_APP 2];[P_APP 2]]
+ (Lazy.force coq_fast_Zplus_assoc_r)
+ :: tac,
+ Oplus(l1, t')
+ else
+ [clever_rewrite p [[P_APP 1];[P_APP 2]]
+ (Lazy.force coq_fast_Zplus_sym)],
+ Oplus(t2,t1)
+ | t1,Oplus(l2,r2) ->
+ if weight l2 > weight t1 then
+ let (tac,t') = shuffle (P_APP 2 :: p) (t1,r2) in
+ clever_rewrite p [[P_APP 1];[P_APP 2;P_APP 1];[P_APP 2;P_APP 2]]
+ (Lazy.force coq_fast_Zplus_permute)
+ :: tac,
+ Oplus(l2,t')
+ else [],Oplus(t1,t2)
+ | Oz t1,Oz t2 ->
+ [focused_simpl p], Oz(t1+t2)
+ | t1,t2 ->
+ if weight t1 < weight t2 then
+ [clever_rewrite p [[P_APP 1];[P_APP 2]]
+ (Lazy.force coq_fast_Zplus_sym)],
+ Oplus(t2,t1)
+ else [],Oplus(t1,t2)
+
+let rec shuffle_mult p_init k1 e1 k2 e2 =
+ let rec loop p = function
+ | (({c=c1;v=v1}::l1) as l1'),(({c=c2;v=v2}::l2) as l2') ->
+ if v1 = v2 then
+ let tac =
+ clever_rewrite p [[P_APP 1; P_APP 1; P_APP 1; P_APP 1];
+ [P_APP 1; P_APP 1; P_APP 1; P_APP 2];
+ [P_APP 2; P_APP 1; P_APP 1; P_APP 2];
+ [P_APP 1; P_APP 1; P_APP 2];
+ [P_APP 2; P_APP 1; P_APP 2];
+ [P_APP 1; P_APP 2];
+ [P_APP 2; P_APP 2]]
+ (Lazy.force coq_fast_OMEGA10)
+ in
+ if k1*c1 + k2 * c2 = 0 then
+ let tac' =
+ clever_rewrite p [[P_APP 1;P_APP 1];[P_APP 2]]
+ (Lazy.force coq_fast_Zred_factor5) in
+ tac :: focused_simpl (P_APP 1::P_APP 2:: p) :: tac' ::
+ loop p (l1,l2)
+ else tac :: loop (P_APP 2 :: p) (l1,l2)
+ else if v1 > v2 then
+ clever_rewrite p [[P_APP 1; P_APP 1; P_APP 1; P_APP 1];
+ [P_APP 1; P_APP 1; P_APP 1; P_APP 2];
+ [P_APP 1; P_APP 1; P_APP 2];
+ [P_APP 2];
+ [P_APP 1; P_APP 2]]
+ (Lazy.force coq_fast_OMEGA11) ::
+ loop (P_APP 2 :: p) (l1,l2')
+ else
+ clever_rewrite p [[P_APP 2; P_APP 1; P_APP 1; P_APP 1];
+ [P_APP 2; P_APP 1; P_APP 1; P_APP 2];
+ [P_APP 1];
+ [P_APP 2; P_APP 1; P_APP 2];
+ [P_APP 2; P_APP 2]]
+ (Lazy.force coq_fast_OMEGA12) ::
+ loop (P_APP 2 :: p) (l1',l2)
+ | ({c=c1;v=v1}::l1), [] ->
+ clever_rewrite p [[P_APP 1; P_APP 1; P_APP 1; P_APP 1];
+ [P_APP 1; P_APP 1; P_APP 1; P_APP 2];
+ [P_APP 1; P_APP 1; P_APP 2];
+ [P_APP 2];
+ [P_APP 1; P_APP 2]]
+ (Lazy.force coq_fast_OMEGA11) ::
+ loop (P_APP 2 :: p) (l1,[])
+ | [],({c=c2;v=v2}::l2) ->
+ clever_rewrite p [[P_APP 2; P_APP 1; P_APP 1; P_APP 1];
+ [P_APP 2; P_APP 1; P_APP 1; P_APP 2];
+ [P_APP 1];
+ [P_APP 2; P_APP 1; P_APP 2];
+ [P_APP 2; P_APP 2]]
+ (Lazy.force coq_fast_OMEGA12) ::
+ loop (P_APP 2 :: p) ([],l2)
+ | [],[] -> [focused_simpl p_init]
+ in
+ loop p_init (e1,e2)
+
+let rec shuffle_mult_right p_init e1 k2 e2 =
+ let rec loop p = function
+ | (({c=c1;v=v1}::l1) as l1'),(({c=c2;v=v2}::l2) as l2') ->
+ if v1 = v2 then
+ let tac =
+ clever_rewrite p
+ [[P_APP 1; P_APP 1; P_APP 1];
+ [P_APP 1; P_APP 1; P_APP 2];
+ [P_APP 2; P_APP 1; P_APP 1; P_APP 2];
+ [P_APP 1; P_APP 2];
+ [P_APP 2; P_APP 1; P_APP 2];
+ [P_APP 2; P_APP 2]]
+ (Lazy.force coq_fast_OMEGA15)
+ in
+ if c1 + k2 * c2 = 0 then
+ let tac' =
+ clever_rewrite p [[P_APP 1;P_APP 1];[P_APP 2]]
+ (Lazy.force coq_fast_Zred_factor5)
+ in
+ tac :: focused_simpl (P_APP 1::P_APP 2:: p) :: tac' ::
+ loop p (l1,l2)
+ else tac :: loop (P_APP 2 :: p) (l1,l2)
+ else if v1 > v2 then
+ clever_rewrite p [[P_APP 1;P_APP 1]; [P_APP 1; P_APP 2];[P_APP 2]]
+ (Lazy.force coq_fast_Zplus_assoc_r) ::
+ loop (P_APP 2 :: p) (l1,l2')
+ else
+ clever_rewrite p [[P_APP 2; P_APP 1; P_APP 1; P_APP 1];
+ [P_APP 2; P_APP 1; P_APP 1; P_APP 2];
+ [P_APP 1];
+ [P_APP 2; P_APP 1; P_APP 2];
+ [P_APP 2; P_APP 2]]
+ (Lazy.force coq_fast_OMEGA12) ::
+ loop (P_APP 2 :: p) (l1',l2)
+ | ({c=c1;v=v1}::l1), [] ->
+ clever_rewrite p [[P_APP 1;P_APP 1]; [P_APP 1; P_APP 2];[P_APP 2]]
+ (Lazy.force coq_fast_Zplus_assoc_r) ::
+ loop (P_APP 2 :: p) (l1,[])
+ | [],({c=c2;v=v2}::l2) ->
+ clever_rewrite p [[P_APP 2; P_APP 1; P_APP 1; P_APP 1];
+ [P_APP 2; P_APP 1; P_APP 1; P_APP 2];
+ [P_APP 1];
+ [P_APP 2; P_APP 1; P_APP 2];
+ [P_APP 2; P_APP 2]]
+ (Lazy.force coq_fast_OMEGA12) ::
+ loop (P_APP 2 :: p) ([],l2)
+ | [],[] -> [focused_simpl p_init]
+ in
+ loop p_init (e1,e2)
+
+let rec shuffle_cancel p = function
+ | [] -> [focused_simpl p]
+ | ({c=c1}::l1) ->
+ let tac =
+ clever_rewrite p [[P_APP 1; P_APP 1; P_APP 1];[P_APP 1; P_APP 2];
+ [P_APP 2; P_APP 2];
+ [P_APP 1; P_APP 1; P_APP 2; P_APP 1]]
+ (if c1 > 0 then
+ (Lazy.force coq_fast_OMEGA13)
+ else
+ (Lazy.force coq_fast_OMEGA14))
+ in
+ tac :: shuffle_cancel p l1
+
+let rec scalar p n = function
+ | Oplus(t1,t2) ->
+ let tac1,t1' = scalar (P_APP 1 :: p) n t1 and
+ tac2,t2' = scalar (P_APP 2 :: p) n t2 in
+ clever_rewrite p [[P_APP 1;P_APP 1];[P_APP 1;P_APP 2];[P_APP 2]]
+ (Lazy.force coq_fast_Zmult_plus_distr) ::
+ (tac1 @ tac2), Oplus(t1',t2')
+ | Oinv t ->
+ [clever_rewrite p [[P_APP 1;P_APP 1];[P_APP 2]]
+ (Lazy.force coq_fast_Zmult_Zopp_left);
+ focused_simpl (P_APP 2 :: p)], Otimes(t,Oz(-n))
+ | Otimes(t1,Oz x) ->
+ [clever_rewrite p [[P_APP 1;P_APP 1];[P_APP 1;P_APP 2];[P_APP 2]]
+ (Lazy.force coq_fast_Zmult_assoc_r);
+ focused_simpl (P_APP 2 :: p)],
+ Otimes(t1,Oz (n*x))
+ | Otimes(t1,t2) -> error "Omega: Can't solve a goal with non-linear products"
+ | (Oatom _ as t) -> [], Otimes(t,Oz n)
+ | Oz i -> [focused_simpl p],Oz(n*i)
+ | Oufo c -> [], Oufo (mkAppL [| Lazy.force coq_Zmult; mk_integer n |])
+
+let rec scalar_norm p_init =
+ let rec loop p = function
+ | [] -> [focused_simpl p_init]
+ | (_::l) ->
+ clever_rewrite p
+ [[P_APP 1; P_APP 1; P_APP 1];[P_APP 1; P_APP 1; P_APP 2];
+ [P_APP 1; P_APP 2];[P_APP 2]]
+ (Lazy.force coq_fast_OMEGA16) :: loop (P_APP 2 :: p) l
+ in
+ loop p_init
+
+let rec norm_add p_init =
+ let rec loop p = function
+ | [] -> [focused_simpl p_init]
+ | _:: l ->
+ clever_rewrite p [[P_APP 1;P_APP 1]; [P_APP 1; P_APP 2];[P_APP 2]]
+ (Lazy.force coq_fast_Zplus_assoc_r) ::
+ loop (P_APP 2 :: p) l
+ in
+ loop p_init
+
+let rec scalar_norm_add p_init =
+ let rec loop p = function
+ | [] -> [focused_simpl p_init]
+ | _ :: l ->
+ clever_rewrite p
+ [[P_APP 1; P_APP 1; P_APP 1; P_APP 1];
+ [P_APP 1; P_APP 1; P_APP 1; P_APP 2];
+ [P_APP 1; P_APP 1; P_APP 2]; [P_APP 2]; [P_APP 1; P_APP 2]]
+ (Lazy.force coq_fast_OMEGA11) :: loop (P_APP 2 :: p) l
+ in
+ loop p_init
+
+let rec negate p = function
+ | Oplus(t1,t2) ->
+ let tac1,t1' = negate (P_APP 1 :: p) t1 and
+ tac2,t2' = negate (P_APP 2 :: p) t2 in
+ clever_rewrite p [[P_APP 1;P_APP 1];[P_APP 1;P_APP 2]]
+ (Lazy.force coq_fast_Zopp_Zplus) ::
+ (tac1 @ tac2),
+ Oplus(t1',t2')
+ | Oinv t ->
+ [clever_rewrite p [[P_APP 1;P_APP 1]] (Lazy.force coq_fast_Zopp_Zopp)], t
+ | Otimes(t1,Oz x) ->
+ [clever_rewrite p [[P_APP 1;P_APP 1];[P_APP 1;P_APP 2]]
+ (Lazy.force coq_fast_Zopp_Zmult_r);
+ focused_simpl (P_APP 2 :: p)], Otimes(t1,Oz (-x))
+ | Otimes(t1,t2) -> error "Omega: Can't solve a goal with non-linear products"
+ | (Oatom _ as t) ->
+ let r = Otimes(t,Oz(-1)) in
+ [clever_rewrite p [[P_APP 1]] (Lazy.force coq_fast_Zopp_one)], r
+ | Oz i -> [focused_simpl p],Oz(-i)
+ | Oufo c -> [], Oufo (mkAppL [| Lazy.force coq_Zopp; c |])
+
+let rec transform p t =
+ let default () =
+ try
+ let v,th,_ = find_constr t in
+ [clever_rewrite_base p (VAR v) (VAR th)], Oatom (string_of_id v)
+ with _ ->
+ let v = new_identifier_var ()
+ and th = new_identifier () in
+ hide_constr t v th false;
+ [clever_rewrite_base p (VAR v) (VAR th)], Oatom (string_of_id v)
+ in
+ try match destructurate t with
+ | Kapp("Zplus",[t1;t2]) ->
+ let tac1,t1' = transform (P_APP 1 :: p) t1
+ and tac2,t2' = transform (P_APP 2 :: p) t2 in
+ let tac,t' = shuffle p (t1',t2') in
+ tac1 @ tac2 @ tac, t'
+ | Kapp("Zminus",[t1;t2]) ->
+ let tac,t =
+ transform p (mkAppL [| Lazy.force coq_Zplus; t1;
+ (mkAppL [| Lazy.force coq_Zopp; t2 |]) |]) in
+ unfold sp_Zminus :: tac,t
+ | Kapp("Zs",[t1]) ->
+ let tac,t = transform p (mkAppL [| Lazy.force coq_Zplus; t1;
+ mk_integer 1 |]) in
+ unfold sp_Zs :: tac,t
+ | Kapp("Zmult",[t1;t2]) ->
+ let tac1,t1' = transform (P_APP 1 :: p) t1
+ and tac2,t2' = transform (P_APP 2 :: p) t2 in
+ begin match t1',t2' with
+ | (_,Oz n) -> let tac,t' = scalar p n t1' in tac1 @ tac2 @ tac,t'
+ | (Oz n,_) ->
+ let sym =
+ clever_rewrite p [[P_APP 1];[P_APP 2]]
+ (Lazy.force coq_fast_Zmult_sym) in
+ let tac,t' = scalar p n t2' in tac1 @ tac2 @ (sym :: tac),t'
+ | _ -> default ()
+ end
+ | Kapp(("POS"|"NEG"|"ZERO"),_) ->
+ (try ([],Oz(recognize_number t)) with _ -> default ())
+ | Kvar s -> [],Oatom s
+ | Kapp("Zopp",[t]) ->
+ let tac,t' = transform (P_APP 1 :: p) t in
+ let tac',t'' = negate p t' in
+ tac @ tac', t''
+ | Kapp("inject_nat",[t']) ->
+ begin try
+ let v,th,_ = find_constr t' in
+ [clever_rewrite_base p (VAR v) (VAR th)],Oatom(string_of_id v)
+ with _ ->
+ let v = new_identifier_var () and th = new_identifier () in
+ hide_constr t' v th true;
+ [clever_rewrite_base p (VAR v) (VAR th)], Oatom (string_of_id v)
+ end
+ | _ -> default ()
+ with e when catchable_exception e -> default ()
+
+let shrink_pair p f1 f2 =
+ match f1,f2 with
+ | Oatom v,Oatom _ ->
+ let r = Otimes(Oatom v,Oz 2) in
+ clever_rewrite p [[P_APP 1]] (Lazy.force coq_fast_Zred_factor1), r
+ | Oatom v, Otimes(_,c2) ->
+ let r = Otimes(Oatom v,Oplus(c2,Oz 1)) in
+ clever_rewrite p [[P_APP 1];[P_APP 2;P_APP 2]]
+ (Lazy.force coq_fast_Zred_factor2), r
+ | Otimes (v1,c1),Oatom v ->
+ let r = Otimes(Oatom v,Oplus(c1,Oz 1)) in
+ clever_rewrite p [[P_APP 2];[P_APP 1;P_APP 2]]
+ (Lazy.force coq_fast_Zred_factor3), r
+ | Otimes (Oatom v,c1),Otimes (v2,c2) ->
+ let r = Otimes(Oatom v,Oplus(c1,c2)) in
+ clever_rewrite p
+ [[P_APP 1;P_APP 1];[P_APP 1;P_APP 2];[P_APP 2;P_APP 2]]
+ (Lazy.force coq_fast_Zred_factor4),r
+ | t1,t2 ->
+ begin
+ oprint t1; print_newline (); oprint t2; print_newline ();
+ flush Pervasives.stdout; error "shrink.1"
+ end
+
+let reduce_factor p = function
+ | Oatom v ->
+ let r = Otimes(Oatom v,Oz 1) in
+ [clever_rewrite p [[]] (Lazy.force coq_fast_Zred_factor0)],r
+ | Otimes(Oatom v,Oz n) as f -> [],f
+ | Otimes(Oatom v,c) ->
+ let rec compute = function
+ | Oz n -> n
+ | Oplus(t1,t2) -> compute t1 + compute t2
+ | _ -> error "condense.1"
+ in
+ [focused_simpl (P_APP 2 :: p)], Otimes(Oatom v,Oz(compute c))
+ | t -> oprint t; error "reduce_factor.1"
+
+let rec condense p = function
+ | Oplus(f1,(Oplus(f2,r) as t)) ->
+ if weight f1 = weight f2 then begin
+ let shrink_tac,t = shrink_pair (P_APP 1 :: p) f1 f2 in
+ let assoc_tac =
+ clever_rewrite p
+ [[P_APP 1];[P_APP 2;P_APP 1];[P_APP 2;P_APP 2]]
+ (Lazy.force coq_fast_Zplus_assoc_l) in
+ let tac_list,t' = condense p (Oplus(t,r)) in
+ (assoc_tac :: shrink_tac :: tac_list), t'
+ end else begin
+ let tac,f = reduce_factor (P_APP 1 :: p) f1 in
+ let tac',t' = condense (P_APP 2 :: p) t in
+ (tac @ tac'), Oplus(f,t')
+ end
+ | Oplus(f1,Oz n) as t ->
+ let tac,f1' = reduce_factor (P_APP 1 :: p) f1 in tac,Oplus(f1',Oz n)
+ | Oplus(f1,f2) ->
+ if weight f1 = weight f2 then begin
+ let tac_shrink,t = shrink_pair p f1 f2 in
+ let tac,t' = condense p t in
+ tac_shrink :: tac,t'
+ end else begin
+ let tac,f = reduce_factor (P_APP 1 :: p) f1 in
+ let tac',t' = condense (P_APP 2 :: p) f2 in
+ (tac @ tac'),Oplus(f,t')
+ end
+ | Oz _ as t -> [],t
+ | t ->
+ let tac,t' = reduce_factor p t in
+ let final = Oplus(t',Oz 0) in
+ let tac' = clever_rewrite p [[]] (Lazy.force coq_fast_Zred_factor6) in
+ tac @ [tac'], final
+
+let rec clear_zero p = function
+ | Oplus(Otimes(Oatom v,Oz 0),r) ->
+ let tac =
+ clever_rewrite p [[P_APP 1;P_APP 1];[P_APP 2]]
+ (Lazy.force coq_fast_Zred_factor5) in
+ let tac',t = clear_zero p r in
+ tac :: tac',t
+ | Oplus(f,r) ->
+ let tac,t = clear_zero (P_APP 2 :: p) r in tac,Oplus(f,t)
+ | t -> [],t
+
+let replay_history tactic_normalisation =
+ let aux = id_of_string "auxiliary" in
+ let aux1 = id_of_string "auxiliary_1" in
+ let aux2 = id_of_string "auxiliary_2" in
+ let zero = mk_integer 0 in
+ let rec loop t =
+ match t with
+ | HYP e :: l ->
+ begin
+ try
+ tclTHEN
+ (List.assoc (hyp_of_tag e.id) tactic_normalisation)
+ (loop l)
+ with Not_found -> loop l end
+ | NEGATE_CONTRADICT (e2,e1,b) :: l ->
+ let eq1 = decompile e1
+ and eq2 = decompile e2 in
+ let id1 = hyp_of_tag e1.id
+ and id2 = hyp_of_tag e2.id in
+ let k = if b then (-1) else 1 in
+ let p_initial = [P_APP 1;P_TYPE] in
+ let tac= shuffle_mult_right p_initial e1.body k e2.body in
+ tclTHEN
+ (tclTHEN
+ (tclTHEN
+ (tclTHEN
+ (generalize_tac
+ [mkAppL [| Lazy.force coq_OMEGA17;
+ val_of eq1;
+ val_of eq2;
+ mk_integer k;
+ VAR id1; VAR id2 |]])
+ (mk_then tac))
+ (intros_using [aux]))
+ (resolve_id aux))
+ reflexivity
+ | CONTRADICTION (e1,e2) :: l ->
+ let eq1 = decompile e1
+ and eq2 = decompile e2 in
+ let p_initial = [P_APP 2;P_TYPE] in
+ let tac = shuffle_cancel p_initial e1.body in
+ let solve_le =
+ let superieur = Lazy.force coq_SUPERIEUR in
+ let not_sup_sup = mkAppL [| Lazy.force coq_eq;
+ Lazy.force coq_relation;
+ Lazy.force coq_SUPERIEUR;
+ Lazy.force coq_SUPERIEUR |]
+ in
+ tclTHENS
+ (tclTHEN
+ (tclTHEN
+ (tclTHEN
+ (unfold sp_Zle)
+ (simpl_in_concl))
+ intro)
+ (absurd not_sup_sup))
+ [ assumption ; reflexivity ]
+ in
+ let theorem =
+ mkAppL [| Lazy.force coq_OMEGA2;
+ val_of eq1; val_of eq2;
+ VAR (hyp_of_tag e1.id);
+ VAR (hyp_of_tag e2.id) |]
+ in
+ tclTHEN (tclTHEN (generalize_tac [theorem]) (mk_then tac)) (solve_le)
+ | DIVIDE_AND_APPROX (e1,e2,k,d) :: l ->
+ let id = hyp_of_tag e1.id in
+ let eq1 = val_of(decompile e1)
+ and eq2 = val_of(decompile e2) in
+ let kk = mk_integer k
+ and dd = mk_integer d in
+ let rhs = mk_plus (mk_times eq2 kk) dd in
+ let state_eg = mk_eq eq1 rhs in
+ let tac = scalar_norm_add [P_APP 3] e2.body in
+ tclTHENS
+ (cut state_eg)
+ [ tclTHENS
+ (tclTHEN
+ (tclTHEN
+ (tclTHEN
+ (tclTHEN
+ (intros_using [aux])
+ (generalize_tac
+ [mkAppL [|
+ Lazy.force coq_OMEGA1;
+ eq1; rhs; VAR aux; VAR id |]]))
+ (clear [aux;id]))
+ (intros_using [id]))
+ (cut (mk_gt kk dd)))
+ [ tclTHENS
+ (cut (mk_gt kk zero))
+ [ tclTHEN
+ (tclTHEN
+ (tclTHEN
+ (tclTHEN
+ (intros_using [aux1; aux2])
+ (generalize_tac
+ [mkAppL [|
+ Lazy.force coq_Zmult_le_approx;
+ kk;eq2;dd;VAR aux1;VAR aux2;
+ VAR id |]]))
+ (clear [aux1;aux2;id]))
+ (intros_using [id]))
+ (loop l);
+ tclTHEN
+ (tclTHEN
+ (unfold sp_Zgt)
+ (simpl_in_concl))
+ reflexivity ];
+ tclTHEN
+ (tclTHEN (unfold sp_Zgt) simpl_in_concl) reflexivity ];
+ tclTHEN (mk_then tac) reflexivity]
+
+ | NOT_EXACT_DIVIDE (e1,k) :: l ->
+ let id = hyp_of_tag e1.id in
+ let c = floor_div e1.constant k in
+ let d = e1.constant - c * k in
+ let e2 = {id=e1.id; kind=EQUA;constant = c;
+ body = map_eq_linear (fun c -> c / k) e1.body } in
+ let eq1 = val_of(decompile e1)
+ and eq2 = val_of(decompile e2) in
+ let kk = mk_integer k
+ and dd = mk_integer d in
+ let rhs = mk_plus (mk_times eq2 kk) dd in
+ let state_eq = mk_eq eq1 rhs in
+ let tac = scalar_norm_add [P_APP 2] e2.body in
+ tclTHENS
+ (cut (mk_gt dd zero))
+ [ tclTHENS (cut (mk_gt kk dd))
+ [tclTHEN
+ (tclTHEN
+ (tclTHEN
+ (tclTHEN
+ (tclTHEN
+ (tclTHEN
+ (tclTHEN
+ (intros_using [aux2;aux1])
+ (generalize_tac
+ [mkAppL [| Lazy.force coq_OMEGA4;
+ dd;kk;eq2;VAR aux1;
+ VAR aux2 |]]))
+ (clear [aux1;aux2]))
+ (unfold sp_not))
+ (intros_using [aux]))
+ (resolve_id aux))
+ (mk_then tac))
+ assumption;
+ tclTHEN
+ (tclTHEN
+ (unfold sp_Zgt)
+ simpl_in_concl)
+ reflexivity ];
+ tclTHEN
+ (tclTHEN
+ (unfold sp_Zgt) simpl_in_concl)
+ reflexivity ]
+ | EXACT_DIVIDE (e1,k) :: l ->
+ let id = hyp_of_tag e1.id in
+ let e2 = map_eq_afine (fun c -> c / k) e1 in
+ let eq1 = val_of(decompile e1)
+ and eq2 = val_of(decompile e2) in
+ let kk = mk_integer k in
+ let state_eq = mk_eq eq1 (mk_times eq2 kk) in
+ if e1.kind = DISE then
+ let tac = scalar_norm [P_APP 1] e2.body in
+ tclTHENS
+ (cut state_eq)
+ [tclTHEN
+ (tclTHEN
+ (tclTHEN
+ (tclTHEN
+ (intros_using [aux1])
+ (generalize_tac
+ [mkAppL [|
+ Lazy.force coq_OMEGA18;
+ eq1;eq2;kk;VAR aux1; VAR id |]]))
+ (clear [aux1;id]))
+ (intros_using [id]))
+ (loop l);
+ tclTHEN (mk_then tac) reflexivity ]
+ else
+ let tac = scalar_norm [P_APP 3] e2.body in
+ tclTHENS (cut state_eq)
+ [
+ tclTHENS
+ (cut (mk_gt kk zero))
+ [tclTHEN
+ (tclTHEN
+ (tclTHEN
+ (tclTHEN
+ (intros_using [aux2;aux1])
+ (generalize_tac
+ [mkAppL [| Lazy.force coq_OMEGA3;
+ eq1; eq2; kk; VAR aux2;
+ VAR aux1;VAR id|]]))
+ (clear [aux1;aux2;id]))
+ (intros_using [id]))
+ (loop l);
+ tclTHEN
+ (tclTHEN (unfold sp_Zgt) simpl_in_concl)
+ reflexivity ];
+ tclTHEN (mk_then tac) reflexivity ]
+ | (MERGE_EQ(e3,e1,e2)) :: l ->
+ let id = new_identifier () in
+ tag_hypothesis id e3;
+ let id1 = hyp_of_tag e1.id
+ and id2 = hyp_of_tag e2 in
+ let eq1 = val_of(decompile e1)
+ and eq2 = val_of (decompile (negate_eq e1)) in
+ let tac =
+ clever_rewrite [P_APP 3] [[P_APP 1]]
+ (Lazy.force coq_fast_Zopp_one) ::
+ scalar_norm [P_APP 3] e1.body
+ in
+ tclTHENS
+ (cut (mk_eq eq1 (mk_inv eq2)))
+ [tclTHEN
+ (tclTHEN
+ (tclTHEN
+ (tclTHEN
+ (intros_using [aux])
+ (generalize_tac [mkAppL [|
+ Lazy.force coq_OMEGA8;
+ eq1;eq2;VAR id1;VAR id2;
+ VAR aux|]]))
+ (clear [id1;id2;aux]))
+ (intros_using [id]))
+ (loop l);
+ tclTHEN (mk_then tac) reflexivity]
+
+ | STATE(new_eq,def,orig,m,sigma) :: l ->
+ let id = new_identifier ()
+ and id2 = hyp_of_tag orig.id in
+ tag_hypothesis id new_eq.id;
+ let eq1 = val_of(decompile def)
+ and eq2 = val_of(decompile orig) in
+ let v = unintern_id sigma in
+ let vid = id_of_string v in
+ let theorem =
+ mkAppL [| Lazy.force coq_ex;
+ Lazy.force coq_Z;
+ mkLambda (Name(id_of_string v)) (Lazy.force coq_Z)
+ (mk_eq (Rel 1) eq1) |]
+ in
+ let mm = mk_integer m in
+ let p_initial = [P_APP 2;P_TYPE] in
+ let r = mk_plus eq2 (mk_times (mk_plus (mk_inv (VAR vid)) eq1) mm) in
+ let tac =
+ clever_rewrite (P_APP 1 :: P_APP 1 :: P_APP 2 :: p_initial)
+ [[P_APP 1]] (Lazy.force coq_fast_Zopp_one) ::
+ shuffle_mult_right p_initial
+ orig.body m ({c= -1;v=sigma}::def.body) in
+ tclTHENS
+ (cut theorem)
+ [tclTHEN
+ (tclTHEN
+ (tclTHEN
+ (tclTHEN
+ (tclTHEN
+ (tclTHEN
+ (tclTHEN
+ (tclTHEN
+ (intros_using [aux])
+ (elim_id aux))
+ (clear [aux]))
+ (intros_using [vid; aux]))
+ (generalize_tac
+ [mkAppL [| Lazy.force coq_OMEGA9;
+ VAR vid;eq2;eq1;mm;
+ VAR id2;VAR aux |] ]))
+ (mk_then tac))
+ (clear [aux]))
+ (intros_using [id]))
+ (loop l);
+ tclTHEN (exists_tac eq1) reflexivity ]
+ | SPLIT_INEQ(e,(e1,act1),(e2,act2)) :: l ->
+ let id1 = new_identifier ()
+ and id2 = new_identifier () in
+ tag_hypothesis id1 e1; tag_hypothesis id2 e2;
+ let id = hyp_of_tag e.id in
+ let tac1 = norm_add [P_APP 2;P_TYPE] e.body in
+ let tac2 = scalar_norm_add [P_APP 2;P_TYPE] e.body in
+ let eq = val_of(decompile e) in
+ tclTHENS
+ (simplest_elim (applist (Lazy.force coq_OMEGA19, [eq; VAR id])))
+ [tclTHEN (tclTHEN (mk_then tac1) (intros_using [id1]))
+ (loop act1);
+ tclTHEN (tclTHEN (mk_then tac2) (intros_using [id2]))
+ (loop act2)]
+ | SUM(e3,(k1,e1),(k2,e2)) :: l ->
+ let id = new_identifier () in
+ tag_hypothesis id e3;
+ let id1 = hyp_of_tag e1.id
+ and id2 = hyp_of_tag e2.id in
+ let eq1 = val_of(decompile e1)
+ and eq2 = val_of(decompile e2) in
+ if k1 = 1 & e2.kind = EQUA then
+ let tac_thm =
+ match e1.kind with
+ | EQUA -> Lazy.force coq_OMEGA5
+ | INEQ -> Lazy.force coq_OMEGA6
+ | DISE -> Lazy.force coq_OMEGA20
+ in
+ let kk = mk_integer k2 in
+ let p_initial =
+ if e1.kind=DISE then [P_APP 1; P_TYPE] else [P_APP 2; P_TYPE] in
+ let tac = shuffle_mult_right p_initial e1.body k2 e2.body in
+ tclTHEN
+ (tclTHEN
+ (tclTHEN
+ (generalize_tac [mkAppL [| tac_thm; eq1; eq2;
+ kk; VAR id1; VAR id2 |]])
+ (mk_then tac))
+ (intros_using [id]))
+ (loop l)
+ else
+ let kk1 = mk_integer k1
+ and kk2 = mk_integer k2 in
+ let p_initial = [P_APP 2;P_TYPE] in
+ let tac= shuffle_mult p_initial k1 e1.body k2 e2.body in
+ tclTHENS (cut (mk_gt kk1 zero))
+ [tclTHENS
+ (cut (mk_gt kk2 zero))
+ [tclTHEN
+ (tclTHEN
+ (tclTHEN
+ (tclTHEN
+ (tclTHEN
+ (intros_using [aux2;aux1])
+ (generalize_tac
+ [mkAppL [| Lazy.force coq_OMEGA7;
+ eq1;eq2;kk1;kk2;
+ VAR aux1;VAR aux2;
+ VAR id1;VAR id2 |] ]))
+ (clear [aux1;aux2]))
+ (mk_then tac))
+ (intros_using [id]))
+ (loop l);
+ tclTHEN
+ (tclTHEN (unfold sp_Zgt) simpl_in_concl)
+ reflexivity ];
+ tclTHEN
+ (tclTHEN (unfold sp_Zgt) simpl_in_concl)
+ reflexivity ]
+ | CONSTANT_NOT_NUL(e,k) :: l ->
+ tclTHEN (generalize_tac [VAR (hyp_of_tag e)]) Equality.discrConcl
+ | CONSTANT_NUL(e) :: l ->
+ tclTHEN (resolve_id (hyp_of_tag e)) reflexivity
+ | CONSTANT_NEG(e,k) :: l ->
+ tclTHEN
+ (tclTHEN
+ (tclTHEN
+ (tclTHEN
+ (tclTHEN
+ (tclTHEN
+ (generalize_tac [VAR (hyp_of_tag e)])
+ (unfold sp_Zle))
+ simpl_in_concl)
+ (unfold sp_not))
+ (intros_using [aux]))
+ (resolve_id aux))
+ reflexivity
+ | _ -> tclIDTAC
+ in
+ loop
+
+let normalize p_initial t =
+ let (tac,t') = transform p_initial t in
+ let (tac',t'') = condense p_initial t' in
+ let (tac'',t''') = clear_zero p_initial t'' in
+ tac @ tac' @ tac'' , t'''
+
+let normalize_equation id flag theorem pos t t1 t2 (tactic,defs) =
+ let p_initial = [P_APP pos ;P_TYPE] in
+ let (tac,t') = normalize p_initial t in
+ let shift_left =
+ tclTHEN
+ (generalize_tac [mkAppL [| theorem; t1; t2; VAR id |] ])
+ (clear [id])
+ in
+ if tac <> [] then
+ ((id,((tclTHEN ((tclTHEN (shift_left) (mk_then tac)))
+ (intros_using [id])))) :: tactic,
+ compile id flag t' :: defs)
+ else
+ (tactic,defs)
+
+let destructure_omega gl tac_def id c =
+ if atompart_of_id id = "State" then
+ tac_def
+ else
+ try match destructurate c with
+ | Kapp("eq",[typ;t1;t2])
+ when destructurate (pf_nf gl typ) = Kapp("Z",[]) ->
+ let t = mk_plus t1 (mk_inv t2) in
+ normalize_equation
+ id EQUA (Lazy.force coq_Zegal_left) 2 t t1 t2 tac_def
+ | Kapp("Zne",[t1;t2]) ->
+ let t = mk_plus t1 (mk_inv t2) in
+ normalize_equation
+ id DISE (Lazy.force coq_Zne_left) 1 t t1 t2 tac_def
+ | Kapp("Zle",[t1;t2]) ->
+ let t = mk_plus t2 (mk_inv t1) in
+ normalize_equation
+ id INEQ (Lazy.force coq_Zle_left) 2 t t1 t2 tac_def
+ | Kapp("Zlt",[t1;t2]) ->
+ let t = mk_plus (mk_plus t2 (mk_integer (-1))) (mk_inv t1) in
+ normalize_equation
+ id INEQ (Lazy.force coq_Zlt_left) 2 t t1 t2 tac_def
+ | Kapp("Zge",[t1;t2]) ->
+ let t = mk_plus t1 (mk_inv t2) in
+ normalize_equation
+ id INEQ (Lazy.force coq_Zge_left) 2 t t1 t2 tac_def
+ | Kapp("Zgt",[t1;t2]) ->
+ let t = mk_plus (mk_plus t1 (mk_integer (-1))) (mk_inv t2) in
+ normalize_equation
+ id INEQ (Lazy.force coq_Zgt_left) 2 t t1 t2 tac_def
+ | _ -> tac_def
+ with e when catchable_exception e -> tac_def
+
+let coq_omega gl =
+ clear_tables ();
+ let tactic_normalisation, system =
+ it_sign (destructure_omega gl) ([],[]) (pf_untyped_hyps gl) in
+ let prelude,sys =
+ List.fold_left
+ (fun (tac,sys) (t,(v,th,b)) ->
+ if b then
+ let id = new_identifier () in
+ let i = new_id () in
+ tag_hypothesis id i;
+ (tclTHEN
+ (tclTHEN
+ (tclTHEN
+ (tclTHEN
+ (tclTHEN
+ (simplest_elim (applist
+ (Lazy.force coq_intro_Z,
+ [t])))
+ (intros_using [v; id]))
+ (elim_id id))
+ (clear [id]))
+ (intros_using [th;id]))
+ tac),
+ {kind = INEQ;
+ body = [{v=intern_id (string_of_id v); c=1}];
+ constant = 0; id = i} :: sys
+ else
+ (tclTHEN
+ (tclTHEN
+ (simplest_elim (applist (Lazy.force coq_new_var, [t])))
+ (intros_using [v;th]))
+ tac),
+ sys)
+ (tclIDTAC,[]) (dump_tables ())
+ in
+ let system = system @ sys in
+ if !display_system_flag then display_system system;
+ if !old_style_flag then begin
+ try let _ = simplify false system in tclIDTAC gl
+ with UNSOLVABLE ->
+ let _,path = depend [] [] (history ()) in
+ if !display_action_flag then display_action path;
+ (tclTHEN prelude (replay_history tactic_normalisation path)) gl
+ end else begin
+ try
+ let path = simplify_strong system in
+ if !display_action_flag then display_action path;
+ (tclTHEN prelude (replay_history tactic_normalisation path)) gl
+ with NO_CONTRADICTION -> error "Omega can't solve this system"
+ end
+
+let coq_omega = solver_time coq_omega
+
+let nat_inject gl =
+ let aux = id_of_string "auxiliary" in
+ let table = Hashtbl.create 7 in
+ let hyps = pf_untyped_hyps gl in
+ let rec explore p t =
+ try match destructurate t with
+ | Kapp("plus",[t1;t2]) ->
+ (tclTHEN
+ ((tclTHEN
+ (clever_rewrite_gen p (mk_plus (mk_inj t1) (mk_inj t2))
+ ((Lazy.force coq_inj_plus),[t1;t2]))
+ (explore (P_APP 1 :: p) t1)))
+ (explore (P_APP 2 :: p) t2))
+ | Kapp("mult",[t1;t2]) ->
+ (tclTHEN
+ (tclTHEN
+ (clever_rewrite_gen p (mk_times (mk_inj t1) (mk_inj t2))
+ ((Lazy.force coq_inj_mult),[t1;t2]))
+ (explore (P_APP 1 :: p) t1))
+ (explore (P_APP 2 :: p) t2))
+ | Kapp("minus",[t1;t2]) ->
+ let id = new_identifier () in
+ tclTHENS
+ (tclTHEN
+ (simplest_elim (applist (Lazy.force coq_le_gt_dec, [t2;t1])))
+ (intros_using [id]))
+ [
+ (tclTHEN
+ (tclTHEN
+ (tclTHEN
+ (clever_rewrite_gen p
+ (mk_minus (mk_inj t1) (mk_inj t2))
+ ((Lazy.force coq_inj_minus1),[t1;t2;VAR id]))
+ (loop [id] [mkAppL [| Lazy.force coq_le; t2;t1 |]]))
+ (explore (P_APP 1 :: p) t1))
+ (explore (P_APP 2 :: p) t2));
+
+ (tclTHEN
+ (clever_rewrite_gen p (mk_integer 0)
+ ((Lazy.force coq_inj_minus2),[t1;t2;VAR id]))
+ (loop [id] [mkAppL [| Lazy.force coq_gt; t2;t1 |]]))
+ ]
+ | Kapp("S",[t']) ->
+ let rec is_number t =
+ try match destructurate t with
+ Kapp("S",[t]) -> is_number t
+ | Kapp("O",[]) -> true
+ | _ -> false
+ with e when catchable_exception e -> false
+ in
+ let rec loop p t =
+ try match destructurate t with
+ Kapp("S",[t]) ->
+ (tclTHEN
+ (clever_rewrite_gen p
+ (mkAppL [| Lazy.force coq_Zs; mk_inj t |])
+ ((Lazy.force coq_inj_S),[t]))
+ (loop (P_APP 1 :: p) t))
+ | _ -> explore p t
+ with e when catchable_exception e -> explore p t
+ in
+ if is_number t' then focused_simpl p else loop p t
+ | Kapp("pred",[t]) ->
+ let t_minus_one =
+ mkAppL [| Lazy.force coq_minus ; t;
+ mkAppL [| Lazy.force coq_S; Lazy.force coq_O |] |] in
+ tclTHEN
+ (clever_rewrite_gen_nat (P_APP 1 :: p) t_minus_one
+ ((Lazy.force coq_pred_of_minus),[t]))
+ (explore p t_minus_one)
+ | Kapp("O",[]) -> focused_simpl p
+ | _ -> tclIDTAC
+ with e when catchable_exception e -> tclIDTAC
+
+ and loop p0 p1 =
+ match (p0,p1) with
+ | ([], []) -> tclIDTAC
+ | ((i::li),(t::lt)) ->
+ begin try match destructurate t with
+ Kapp("le",[t1;t2]) ->
+ (tclTHEN
+ (tclTHEN
+ (tclTHEN
+ (tclTHEN
+ (tclTHEN
+ (generalize_tac
+ [mkAppL [| Lazy.force coq_inj_le;
+ t1;t2;VAR i |] ])
+ (explore [P_APP 1; P_TYPE] t1))
+ (explore [P_APP 2; P_TYPE] t2))
+ (clear [i]))
+ (intros_using [i]))
+ (loop li lt))
+ | Kapp("lt",[t1;t2]) ->
+ (tclTHEN
+ (tclTHEN
+ (tclTHEN
+ (tclTHEN
+ (tclTHEN
+ (generalize_tac
+ [mkAppL [| Lazy.force coq_inj_lt;
+ t1;t2;VAR i |] ])
+ (explore [P_APP 1; P_TYPE] t1))
+ (explore [P_APP 2; P_TYPE] t2))
+ (clear [i]))
+ (intros_using [i]))
+ (loop li lt))
+ | Kapp("ge",[t1;t2]) ->
+ (tclTHEN
+ (tclTHEN
+ (tclTHEN
+ (tclTHEN
+ (tclTHEN
+ (generalize_tac
+ [mkAppL [| Lazy.force coq_inj_ge;
+ t1;t2;VAR i |] ])
+ (explore [P_APP 1; P_TYPE] t1))
+ (explore [P_APP 2; P_TYPE] t2))
+ (clear [i]))
+ (intros_using [i]))
+ (loop li lt))
+ | Kapp("gt",[t1;t2]) ->
+ (tclTHEN
+ (tclTHEN
+ (tclTHEN
+ (tclTHEN
+ (tclTHEN
+ (generalize_tac
+ [mkAppL [| Lazy.force coq_inj_gt;
+ t1;t2;VAR i |] ])
+ (explore [P_APP 1; P_TYPE] t1))
+ (explore [P_APP 2; P_TYPE] t2))
+ (clear [i]))
+ (intros_using [i]))
+ (loop li lt))
+ | Kapp("neq",[t1;t2]) ->
+ (tclTHEN
+ (tclTHEN
+ (tclTHEN
+ (tclTHEN
+ (tclTHEN
+ (generalize_tac
+ [mkAppL [| Lazy.force coq_inj_neq;
+ t1;t2;VAR i |] ])
+ (explore [P_APP 1; P_TYPE] t1))
+ (explore [P_APP 2; P_TYPE] t2))
+ (clear [i]))
+ (intros_using [i]))
+ (loop li lt))
+ | Kapp("eq",[typ;t1;t2]) ->
+ if pf_conv_x gl typ (Lazy.force coq_nat) then
+ (tclTHEN
+ (tclTHEN
+ (tclTHEN
+ (tclTHEN
+ (tclTHEN
+ (generalize_tac
+ [mkAppL [| Lazy.force coq_inj_eq;
+ t1;t2;VAR i |] ])
+ (explore [P_APP 2; P_TYPE] t1))
+ (explore [P_APP 3; P_TYPE] t2))
+ (clear [i]))
+ (intros_using [i]))
+ (loop li lt))
+ else loop li lt
+ | _ -> loop li lt
+ with e when catchable_exception e -> loop li lt end
+ | (_, _) -> failwith "nat_inject"
+ in
+ loop (List.rev (ids_of_sign hyps)) (List.rev (vals_of_sign hyps)) gl
+
+let rec decidability gl t =
+ match destructurate t with
+ | Kapp("or",[t1;t2]) ->
+ mkAppL [| Lazy.force coq_dec_or; t1; t2;
+ decidability gl t1; decidability gl t2 |]
+ | Kapp("and",[t1;t2]) ->
+ mkAppL [| Lazy.force coq_dec_and; t1; t2;
+ decidability gl t1; decidability gl t2 |]
+ | Kimp(t1,t2) ->
+ mkAppL [| Lazy.force coq_dec_imp; t1; t2;
+ decidability gl t1; decidability gl t2 |]
+ | Kapp("not",[t1]) -> mkAppL [| Lazy.force coq_dec_not; t1;
+ decidability gl t1 |]
+ | Kapp("eq",[typ;t1;t2]) ->
+ begin match destructurate (pf_nf gl typ) with
+ | Kapp("Z",[]) -> mkAppL [| Lazy.force coq_dec_eq; t1;t2 |]
+ | Kapp("nat",[]) -> mkAppL [| Lazy.force coq_dec_eq_nat; t1;t2 |]
+ | _ -> errorlabstrm "decidability"
+ [< 'sTR "Omega: Can't solve a goal with equality on ";
+ Printer.prterm typ >]
+ end
+ | Kapp("Zne",[t1;t2]) -> mkAppL [| Lazy.force coq_dec_Zne; t1;t2 |]
+ | Kapp("Zle",[t1;t2]) -> mkAppL [| Lazy.force coq_dec_Zle; t1;t2 |]
+ | Kapp("Zlt",[t1;t2]) -> mkAppL [| Lazy.force coq_dec_Zlt; t1;t2 |]
+ | Kapp("Zge",[t1;t2]) -> mkAppL [| Lazy.force coq_dec_Zge; t1;t2 |]
+ | Kapp("Zgt",[t1;t2]) -> mkAppL [| Lazy.force coq_dec_Zgt; t1;t2 |]
+ | Kapp("le", [t1;t2]) -> mkAppL [| Lazy.force coq_dec_le; t1;t2 |]
+ | Kapp("lt", [t1;t2]) -> mkAppL [| Lazy.force coq_dec_lt; t1;t2 |]
+ | Kapp("ge", [t1;t2]) -> mkAppL [| Lazy.force coq_dec_ge; t1;t2 |]
+ | Kapp("gt", [t1;t2]) -> mkAppL [| Lazy.force coq_dec_gt; t1;t2 |]
+ | Kapp("False",[]) -> Lazy.force coq_dec_False
+ | Kapp("True",[]) -> Lazy.force coq_dec_True
+ | Kapp(t,_::_) -> error ("Omega: Unrecognized predicate or connective: "
+ ^ t)
+ | Kapp(t,[]) -> error ("Omega: Unrecognized atomic proposition: "^ t)
+ | Kvar _ -> error "Omega: Can't solve a goal with proposition variables"
+ | _ -> error "Omega: Unrecognized proposition"
+
+let destructure_hyps gl =
+ let hyp = pf_untyped_hyps gl in
+ let rec loop evbd p0 p1 = match (p0,p1) with
+ | ([], []) -> (tclTHEN nat_inject coq_omega)
+ | ((i::li), (t::lt)) ->
+ begin try match destructurate t with
+ | Kapp(("Zle"|"Zge"|"Zgt"|"Zlt"|"Zne"),[t1;t2]) -> loop evbd li lt
+ | Kapp("or",[t1;t2]) ->
+ (tclTHENS ((tclTHEN ((tclTHEN (elim_id i) (clear [i])))
+ (intros_using [i])))
+ ([ loop evbd (i::li) (t1::lt); loop evbd (i::li) (t2::lt) ]))
+ | Kapp("and",[t1;t2]) ->
+ let i1 = id_of_string (string_of_id i ^ "_left") in
+ let i2 = id_of_string (string_of_id i ^ "_right") in
+ (tclTHEN
+ (tclTHEN
+ (tclTHEN (elim_id i) (clear [i]))
+ (intros_using [i1;i2]))
+ (loop (i1::i2::evbd) (i1::i2::li) (t1::t2::lt)))
+ | Kimp(t1,t2) ->
+ if isprop (pf_type_of gl t1) & closed0 t2 then begin
+ (tclTHEN
+ (tclTHEN
+ (tclTHEN
+ (generalize_tac [mkAppL [| Lazy.force coq_imp_simp;
+ t1; t2;
+ decidability gl t1;
+ VAR i|]])
+ (clear [i]))
+ (intros_using [i]))
+ (loop evbd (i::li) (mk_or (mk_not t1) t2 :: lt)))
+ end else loop evbd li lt
+ | Kapp("not",[t]) ->
+ begin match destructurate t with
+ Kapp("or",[t1;t2]) ->
+ (tclTHEN
+ (tclTHEN
+ (tclTHEN
+ (generalize_tac [mkAppL [| Lazy.force coq_not_or;
+ t1; t2; VAR i |]])
+ (clear [i]))
+ (intros_using [i]))
+ (loop evbd (i::li)
+ (mk_and (mk_not t1) (mk_not t2) :: lt)))
+ | Kapp("and",[t1;t2]) ->
+ (tclTHEN
+ (tclTHEN
+ (tclTHEN
+ (generalize_tac
+ [mkAppL [| Lazy.force coq_not_and; t1; t2;
+ decidability gl t1;VAR i|]])
+ (clear [i]))
+ (intros_using [i]))
+ (loop evbd (i::li)
+ (mk_or (mk_not t1) (mk_not t2) :: lt)))
+ | Kimp(t1,t2) ->
+ (tclTHEN
+ (tclTHEN
+ (tclTHEN
+ (generalize_tac
+ [mkAppL [| Lazy.force coq_not_imp; t1; t2;
+ decidability gl t1;VAR i |]])
+ (clear [i]))
+ (intros_using [i]))
+ (loop evbd (i::li) (mk_and t1 (mk_not t2) :: lt)))
+ | Kapp("not",[t]) ->
+ (tclTHEN
+ (tclTHEN
+ (tclTHEN
+ (generalize_tac
+ [mkAppL [| Lazy.force coq_not_not; t;
+ decidability gl t; VAR i |]])
+ (clear [i]))
+ (intros_using [i]))
+ (loop evbd (i::li) (t :: lt)))
+ | Kapp("Zle", [t1;t2]) ->
+ (tclTHEN
+ (tclTHEN
+ (tclTHEN
+ (generalize_tac [mkAppL [| Lazy.force coq_not_Zle;
+ t1;t2;VAR i|]])
+ (clear [i]))
+ (intros_using [i]))
+ (loop evbd li lt))
+ | Kapp("Zge", [t1;t2]) ->
+ (tclTHEN
+ (tclTHEN
+ (tclTHEN
+ (generalize_tac [mkAppL [| Lazy.force coq_not_Zge;
+ t1;t2;VAR i|]])
+ (clear [i]))
+ (intros_using [i]))
+ (loop evbd li lt))
+ | Kapp("Zlt", [t1;t2]) ->
+ (tclTHEN
+ (tclTHEN
+ (tclTHEN
+ (generalize_tac [mkAppL [| Lazy.force coq_not_Zlt;
+ t1;t2;VAR i|]])
+ (clear [i]))
+ (intros_using [i]))
+ (loop evbd li lt))
+ | Kapp("Zgt", [t1;t2]) ->
+ (tclTHEN
+ (tclTHEN
+ (tclTHEN
+ (generalize_tac [mkAppL [| Lazy.force coq_not_Zgt;
+ t1;t2;VAR i|]])
+ (clear [i]))
+ (intros_using [i]))
+ (loop evbd li lt))
+ | Kapp("le", [t1;t2]) ->
+ (tclTHEN
+ (tclTHEN
+ (tclTHEN
+ (generalize_tac [mkAppL [| Lazy.force coq_not_le;
+ t1;t2;VAR i|]])
+ (clear [i]))
+ (intros_using [i]))
+ (loop evbd li lt))
+ | Kapp("ge", [t1;t2]) ->
+ (tclTHEN
+ (tclTHEN
+ (tclTHEN
+ (generalize_tac [mkAppL [| Lazy.force coq_not_ge;
+ t1;t2;VAR i|]])
+ (clear [i]))
+ (intros_using [i]))
+ (loop evbd li lt))
+ | Kapp("lt", [t1;t2]) ->
+ (tclTHEN
+ (tclTHEN
+ (tclTHEN
+ (generalize_tac [mkAppL [| Lazy.force coq_not_lt;
+ t1;t2;VAR i|]])
+ (clear [i]))
+ (intros_using [i]))
+ (loop evbd li lt))
+ | Kapp("gt", [t1;t2]) ->
+ (tclTHEN
+ (tclTHEN
+ (tclTHEN
+ (generalize_tac [mkAppL [| Lazy.force coq_not_gt;
+ t1;t2;VAR i|]])
+ (clear [i]))
+ (intros_using [i]))
+ (loop evbd li lt))
+ | Kapp("eq",[typ;t1;t2]) ->
+ if !old_style_flag then begin
+ match destructurate (pf_nf gl typ) with
+ | Kapp("nat",_) ->
+ (tclTHEN
+ (tclTHEN
+ (tclTHEN
+ (simplest_elim
+ (applist
+ (Lazy.force coq_not_eq,
+ [t1;t2;VAR i])))
+ (clear [i]))
+ (intros_using [i]))
+ (loop evbd li lt))
+ | Kapp("Z",_) ->
+ (tclTHEN
+ (tclTHEN
+ (tclTHEN
+ (simplest_elim
+ (applist
+ (Lazy.force coq_not_Zeq,
+ [t1;t2;VAR i])))
+ (clear [i]))
+ (intros_using [i]))
+ (loop evbd li lt))
+ | _ -> loop evbd li lt
+ end else begin
+ match destructurate (pf_nf gl typ) with
+ | Kapp("nat",_) ->
+ (tclTHEN
+ (convert_hyp i
+ (mkAppL [| Lazy.force coq_neq; t1;t2|]))
+ (loop evbd li lt))
+ | Kapp("Z",_) ->
+ (tclTHEN
+ (convert_hyp i
+ (mkAppL [| Lazy.force coq_Zne; t1;t2|]))
+ (loop evbd li lt))
+ | _ -> loop evbd li lt
+ end
+ | _ -> loop evbd li lt
+ end
+ | _ -> loop evbd li lt
+ with e when catchable_exception e -> loop evbd li lt
+ end
+ | (_, _) -> anomaly "destructurate_hyps"
+ in
+ loop (ids_of_sign hyp) (ids_of_sign hyp) (vals_of_sign hyp) gl
+
+let destructure_goal gl =
+ let concl = pf_concl gl in
+ let rec loop t =
+ match destructurate t with
+ | Kapp("not",[t1;t2]) ->
+ (tclTHEN
+ (tclTHEN (unfold sp_not) intro)
+ destructure_hyps)
+ | Kimp(a,b) -> (tclTHEN intro (loop b))
+ | Kapp("False",[]) -> destructure_hyps
+ | _ ->
+ (tclTHEN
+ (tclTHEN
+ (Tactics.refine
+ (mkAppL [| Lazy.force coq_dec_not_not; t;
+ decidability gl t; mkNewMeta () |]))
+ intro)
+ (destructure_hyps))
+ in
+ (loop concl) gl
+
+let destructure_goal = all_time (destructure_goal)
+
+let omega_solver gl =
+ let result = destructure_goal gl in
+ (* if !display_time_flag then begin text_time ();
+ flush Pervasives.stdout end; *)
+ result
+
+let omega = hide_atomic_tactic "Omega" omega_solver
+
+
diff --git a/contrib/omega/omega.ml b/contrib/omega/omega.ml
new file mode 100755
index 000000000..c06a4cb8c
--- /dev/null
+++ b/contrib/omega/omega.ml
@@ -0,0 +1,652 @@
+(**************************************************************************)
+(* *)
+(* Omega: a solver of quantifier-free problems in Presburger Arithmetic *)
+(* *)
+(* Pierre Crégut (CNET, Lannion, France) *)
+(* *)
+(**************************************************************************)
+
+(* $Id$ *)
+
+open Util
+open Hashtbl
+
+let flat_map f =
+ let rec flat_map_f = function
+ | [] -> []
+ | x :: l -> f x @ flat_map_f l
+ in
+ flat_map_f
+
+let pp i = print_int i; print_newline (); flush stdout
+
+let debug = ref false
+
+let filter = List.partition
+
+let push v l = l := v :: !l
+
+let rec pgcd x y = if y = 0 then x else pgcd y (x mod y)
+
+let pgcd_l = function
+ | [] -> failwith "pgcd_l"
+ | x :: l -> List.fold_left pgcd x l
+
+let floor_div a b =
+ match a >=0 , b > 0 with
+ | true,true -> a / b
+ | false,false -> a / b
+ | true, false -> (a-1) / b - 1
+ | false,true -> (a+1) / b - 1
+
+let new_id = let cpt = ref 0 in fun () -> incr cpt; ! cpt
+
+let new_var = let cpt = ref 0 in fun () -> incr cpt; "WW" ^ string_of_int !cpt
+
+let new_var_num = let cpt = ref 1000 in (fun () -> incr cpt; !cpt)
+
+type coeff = {c: int ; v: int}
+
+type linear = coeff list
+
+type eqn_kind = EQUA | INEQ | DISE
+
+type afine = {
+ (* a number uniquely identifying the equation *)
+ id: int ;
+ (* a boolean true for an eq, false for an ineq (Sigma a_i x_i >= 0) *)
+ kind: eqn_kind;
+ (* the variables and their coefficient *)
+ body: coeff list;
+ (* a constant *)
+ constant: int }
+
+type action =
+ | DIVIDE_AND_APPROX of afine * afine * int * int
+ | NOT_EXACT_DIVIDE of afine * int
+ | FORGET_C of int
+ | EXACT_DIVIDE of afine * int
+ | SUM of int * (int * afine) * (int * afine)
+ | STATE of afine * afine * afine * int * int
+ | HYP of afine
+ | FORGET of int * int
+ | FORGET_I of int * int
+ | CONTRADICTION of afine * afine
+ | NEGATE_CONTRADICT of afine * afine * bool
+ | MERGE_EQ of int * afine * int
+ | CONSTANT_NOT_NUL of int * int
+ | CONSTANT_NUL of int
+ | CONSTANT_NEG of int * int
+ | SPLIT_INEQ of afine * (int * action list) * (int * action list)
+ | WEAKEN of int * int
+
+exception UNSOLVABLE
+
+exception NO_CONTRADICTION
+
+let intern_id,unintern_id =
+ let cpt = ref 0 in
+ let table = create 7 and co_table = create 7 in
+ (fun (name:string) ->
+ try find table name with Not_found ->
+ let idx = !cpt in
+ add table name idx; add co_table idx name; incr cpt; idx),
+ (fun idx ->
+ try find co_table idx with Not_found ->
+ let v = new_var () in add table v idx; add co_table idx v; v)
+
+let display_eq (l,e) =
+ let _ =
+ List.fold_left
+ (fun not_first f ->
+ print_string
+ (if f.c < 0 then "- " else if not_first then "+ " else "");
+ let c = abs f.c in
+ if c = 1 then
+ Printf.printf "%s " (unintern_id f.v)
+ else
+ Printf.printf "%d %s " c (unintern_id f.v);
+ true)
+ false l
+ in
+ if e > 0 then
+ Printf.printf "+ %d " e
+ else if e < 0 then
+ Printf.printf "- %d " (abs e)
+
+let operator_of_eq = function
+ | EQUA -> "=" | DISE -> "!=" | INEQ -> ">="
+
+let kind_of = function
+ | EQUA -> "equation" | DISE -> "disequation" | INEQ -> "inequation"
+
+let display_system l =
+ List.iter
+ (fun { kind=b; body=e; constant=c; id=id} ->
+ print_int id; print_string ": ";
+ display_eq (e,c); print_string (operator_of_eq b);
+ print_string "0\n")
+ l;
+ print_string "------------------------\n\n"
+
+let display_inequations l =
+ List.iter (fun e -> display_eq e;print_string ">= 0\n") l;
+ print_string "------------------------\n\n"
+
+let rec display_action = function
+ | act :: l -> begin match act with
+ | DIVIDE_AND_APPROX (e1,e2,k,d) ->
+ Printf.printf
+ "Inequation E%d is divided by %d and the constant coefficient is \
+ rounded by substracting %d.\n" e1.id k d
+ | NOT_EXACT_DIVIDE (e,k) ->
+ Printf.printf
+ "Constant in equation E%d is not divisible by the pgcd \
+ %d of its other coefficients.\n" e.id k
+ | EXACT_DIVIDE (e,k) ->
+ Printf.printf
+ "Equation E%d is divided by the pgcd \
+ %d of its coefficients.\n" e.id k
+ | WEAKEN (e,k) ->
+ Printf.printf
+ "To ensure a solution in the dark shadow \
+ the equation E%d is weakened by %d.\n" e k
+ | SUM (e,(c1,e1),(c2,e2)) ->
+ Printf.printf
+ "We state %s E%d = %d %s E%d + %d %s E%d.\n"
+ (kind_of e1.kind) e c1 (kind_of e1.kind) e1.id c2
+ (kind_of e2.kind) e2.id
+ | STATE (e,_,_,x,_) ->
+ Printf.printf "We define a new equation %d :" e.id;
+ display_eq (e.body,e.constant);
+ print_string (operator_of_eq e.kind); print_string " 0\n"
+ | HYP e ->
+ Printf.printf "We define %d :" e.id;
+ display_eq (e.body,e.constant);
+ print_string (operator_of_eq e.kind); print_string " 0\n"
+ | FORGET_C e -> Printf.printf "E%d is trivially satisfiable.\n" e
+ | FORGET (e1,e2) -> Printf.printf "E%d subsumes E%d.\n" e1 e2
+ | FORGET_I (e1,e2) -> Printf.printf "E%d subsumes E%d.\n" e1 e2
+ | MERGE_EQ (e,e1,e2) ->
+ Printf.printf "E%d and E%d can be merged into E%d.\n" e1.id e2 e
+ | CONTRADICTION (e1,e2) ->
+ Printf.printf
+ "equations E%d and E%d implie a contradiction on their \
+ constant factors.\n" e1.id e2.id
+ | NEGATE_CONTRADICT(e1,e2,b) ->
+ Printf.printf
+ "Eqations E%d and E%d state that their body is at the same time
+ equal and different\n" e1.id e2.id
+ | CONSTANT_NOT_NUL (e,k) ->
+ Printf.printf "equation E%d states %d=0.\n" e k
+ | CONSTANT_NEG(e,k) ->
+ Printf.printf "equation E%d states %d >= 0.\n" e k
+ | CONSTANT_NUL e ->
+ Printf.printf "inequation E%d states 0 != 0.\n" e
+ | SPLIT_INEQ (e,(e1,l1),(e2,l2)) ->
+ Printf.printf "equation E%d is split in E%d and E%d\n\n" e.id e1 e2;
+ display_action l1;
+ print_newline ();
+ display_action l2;
+ print_newline ()
+ end; display_action l
+ | [] ->
+ flush stdout
+
+(*""*)
+
+let add_event, history, clear_history =
+ let accu = ref [] in
+ (fun (v:action) -> if !debug then display_action [v]; push v accu),
+ (fun () -> !accu),
+ (fun () -> accu := [])
+
+let nf_linear = Sort.list (fun x y -> x.v > y.v)
+
+let nf ((b:bool),(e,(x:int))) = (b,(nf_linear e,x))
+
+let map_eq_linear f =
+ let rec loop = function
+ | x :: l -> let c = f x.c in if c=0 then loop l else {v=x.v; c=c} :: loop l
+ | [] -> []
+ in
+ loop
+
+let map_eq_afine f e =
+ { id = e.id; kind = e.kind; body = map_eq_linear f e.body;
+ constant = f e.constant }
+
+let negate_eq = map_eq_afine (fun x -> -x)
+
+let rec sum p0 p1 = match (p0,p1) with
+ | ([], l) -> l | (l, []) -> l
+ | (((x1::l1) as l1'), ((x2::l2) as l2')) ->
+ if x1.v = x2.v then
+ let c = x1.c + x2.c in
+ if c = 0 then sum l1 l2 else {v=x1.v;c=c} :: sum l1 l2
+ else if x1.v > x2.v then
+ x1 :: sum l1 l2'
+ else
+ x2 :: sum l1' l2
+
+let sum_afine eq1 eq2 =
+ { kind = eq1.kind; id = new_id ();
+ body = sum eq1.body eq2.body; constant = eq1.constant + eq2.constant }
+
+exception FACTOR1
+
+let rec chop_factor_1 = function
+ | x :: l ->
+ if abs x.c = 1 then x,l else let (c',l') = chop_factor_1 l in (c',x::l')
+ | [] -> raise FACTOR1
+
+exception CHOPVAR
+
+let rec chop_var v = function
+ | f :: l -> if f.v = v then f,l else let (f',l') = chop_var v l in (f',f::l')
+ | [] -> raise CHOPVAR
+
+let normalize ({id=id; kind=eq_flag; body=e; constant =x} as eq) =
+ if e = [] then begin
+ match eq_flag with
+ | EQUA ->
+ if x =0 then [] else begin
+ add_event (CONSTANT_NOT_NUL(id,x)); raise UNSOLVABLE
+ end
+ | DISE ->
+ if x <> 0 then [] else begin
+ add_event (CONSTANT_NUL id); raise UNSOLVABLE
+ end
+ | INEQ ->
+ if x >= 0 then [] else begin
+ add_event (CONSTANT_NEG(id,x)); raise UNSOLVABLE
+ end
+ end else
+ let gcd = pgcd_l (List.map (fun f -> abs f.c) e) in
+ if eq_flag=EQUA & x mod gcd <> 0 then begin
+ add_event (NOT_EXACT_DIVIDE (eq,gcd)); raise UNSOLVABLE
+ end else if eq_flag=DISE & x mod gcd <> 0 then begin
+ add_event (FORGET_C eq.id); []
+ end else if gcd <> 1 then begin
+ let c = floor_div x gcd in
+ let d = x - c * gcd in
+ let new_eq = {id=id; kind=eq_flag; constant=c;
+ body=map_eq_linear (fun c -> c / gcd) e} in
+ add_event (if eq_flag=EQUA then EXACT_DIVIDE(eq,gcd)
+ else DIVIDE_AND_APPROX(eq,new_eq,gcd,d));
+ [new_eq]
+ end else [eq]
+
+let eliminate_with_in {v=v;c=c_unite} eq2
+ ({body=e1; constant=c1} as eq1) =
+ try
+ let (f,_) = chop_var v e1 in
+ let coeff = if c_unite=1 then -f.c else if c_unite= -1 then f.c
+ else failwith "eliminate_with_in" in
+ let res = sum_afine eq1 (map_eq_afine (fun c -> c * coeff) eq2) in
+ add_event (SUM (res.id,(1,eq1),(coeff,eq2))); res
+ with CHOPVAR -> eq1
+
+let omega_mod a b = a - b * floor_div (2 * a + b) (2 * b)
+let banerjee_step original l1 l2 =
+ let e = original.body in
+ let sigma = new_var_num () in
+ let smallest,var =
+ try
+ List.fold_left (fun (v,p) c -> if v > (abs c.c) then abs c.c,c.v else (v,p))
+ (abs (List.hd e).c, (List.hd e).v) (List.tl e)
+ with Failure "tl" -> display_system [original] ; failwith "TL" in
+ let m = smallest + 1 in
+ let new_eq =
+ { constant = omega_mod original.constant m;
+ body = {c= -m;v=sigma} ::
+ map_eq_linear (fun a -> omega_mod a m) original.body;
+ id = new_id (); kind = EQUA } in
+ let definition =
+ { constant = - floor_div (2 * original.constant + m) (2 * m);
+ body = map_eq_linear (fun a -> - floor_div (2 * a + m) (2 * m))
+ original.body;
+ id = new_id (); kind = EQUA } in
+ add_event (STATE (new_eq,definition,original,m,sigma));
+ let new_eq = List.hd (normalize new_eq) in
+ let eliminated_var, def = chop_var var new_eq.body in
+ let other_equations =
+ flat_map (fun e -> normalize (eliminate_with_in eliminated_var new_eq e))
+ l1 in
+ let inequations =
+ flat_map (fun e -> normalize (eliminate_with_in eliminated_var new_eq e))
+ l2 in
+ let original' = eliminate_with_in eliminated_var new_eq original in
+ let mod_original = map_eq_afine (fun c -> c / m) original' in
+ add_event (EXACT_DIVIDE (original',m));
+ List.hd (normalize mod_original),other_equations,inequations
+
+let rec eliminate_one_equation (e,other,ineqs) =
+ if !debug then display_system (e::other);
+ try
+ let v,def = chop_factor_1 e.body in
+ (flat_map (fun e' -> normalize (eliminate_with_in v e e')) other,
+ flat_map (fun e' -> normalize (eliminate_with_in v e e')) ineqs)
+ with FACTOR1 -> eliminate_one_equation (banerjee_step e other ineqs)
+
+let rec banerjee (sys_eq,sys_ineq) =
+ let rec fst_eq_1 = function
+ (eq::l) ->
+ if List.exists (fun x -> abs x.c = 1) eq.body then eq,l
+ else let (eq',l') = fst_eq_1 l in (eq',eq::l')
+ | [] -> raise Not_found in
+ match sys_eq with
+ [] -> if !debug then display_system sys_ineq; sys_ineq
+ | (e1::rest) ->
+ let eq,other = try fst_eq_1 sys_eq with Not_found -> (e1,rest) in
+ if eq.body = [] then
+ if eq.constant = 0 then begin
+ add_event (FORGET_C eq.id); banerjee (other,sys_ineq)
+ end else begin
+ add_event (CONSTANT_NOT_NUL(eq.id,eq.constant)); raise UNSOLVABLE
+ end
+ else banerjee (eliminate_one_equation (eq,other,sys_ineq))
+type kind = INVERTED | NORMAL
+let redundancy_elimination system =
+ let normal = function
+ ({body=f::_} as e) when f.c < 0 -> negate_eq e, INVERTED
+ | e -> e,NORMAL in
+ let table = create 7 in
+ List.iter
+ (fun e ->
+ let ({body=ne} as nx) ,kind = normal e in
+ if ne = [] then
+ if nx.constant < 0 then begin
+ add_event (CONSTANT_NEG(nx.id,nx.constant)); raise UNSOLVABLE
+ end else add_event (FORGET_C nx.id)
+ else
+ try
+ let (optnormal,optinvert) = find table ne in
+ let final =
+ if kind = NORMAL then begin
+ match optnormal with
+ Some v ->
+ let kept =
+ if v.constant < nx.constant
+ then begin add_event (FORGET (v.id,nx.id));v end
+ else begin add_event (FORGET (nx.id,v.id));nx end in
+ (Some(kept),optinvert)
+ | None -> Some nx,optinvert
+ end else begin
+ match optinvert with
+ Some v ->
+ let kept =
+ if v.constant > nx.constant
+ then begin add_event (FORGET_I (v.id,nx.id));v end
+ else begin add_event (FORGET_I (nx.id,v.id));nx end in
+ (optnormal,Some(if v.constant > nx.constant then v else nx))
+ | None -> optnormal,Some nx
+ end in
+ begin match final with
+ (Some high, Some low) ->
+ if high.constant < low.constant then begin
+ add_event(CONTRADICTION (high,negate_eq low));
+ raise UNSOLVABLE
+ end
+ | _ -> () end;
+ remove table ne;
+ add table ne final
+ with Not_found ->
+ add table ne
+ (if kind = NORMAL then (Some nx,None) else (None,Some nx)))
+ system;
+ let accu_eq = ref [] in
+ let accu_ineq = ref [] in
+ iter
+ (fun p0 p1 -> match (p0,p1) with
+ | (e, (Some x, Some y)) when x.constant = -y.constant ->
+ let id=new_id () in
+ add_event (MERGE_EQ(id,x,y.id));
+ push {id=id; kind=EQUA; body=x.body; constant=x.constant} accu_eq
+ | (e, (optnorm,optinvert)) ->
+ begin match optnorm with
+ Some x -> push x accu_ineq | _ -> () end;
+ begin match optinvert with
+ Some x -> push (negate_eq x) accu_ineq | _ -> () end)
+ table;
+ !accu_eq,!accu_ineq
+
+exception SOLVED_SYSTEM
+
+let select_variable system =
+ let table = create 7 in
+ let push v c=
+ try let r = find table v in r := max !r (abs c)
+ with Not_found -> add table v (ref (abs c)) in
+ List.iter (fun {body=l} -> List.iter (fun f -> push f.v f.c) l) system;
+ let vmin,cmin = ref (-1), ref 0 in
+ let var_cpt = ref 0 in
+ iter
+ (fun v ({contents = c}) ->
+ incr var_cpt;
+ if c < !cmin or !vmin = (-1) then begin vmin := v; cmin := c end)
+ table;
+ if !var_cpt < 1 then raise SOLVED_SYSTEM;
+ !vmin
+
+let classify v system =
+ List.fold_left
+ (fun (not_occ,below,over) eq ->
+ try let f,eq' = chop_var v eq.body in
+ if f.c >= 0 then (not_occ,((f.c,eq) :: below),over)
+ else (not_occ,below,((-f.c,eq) :: over))
+ with CHOPVAR -> (eq::not_occ,below,over))
+ ([],[],[]) system
+
+let product dark_shadow low high =
+ List.fold_left
+ (fun accu (a,eq1) ->
+ List.fold_left
+ (fun accu (b,eq2) ->
+ let eq =
+ sum_afine (map_eq_afine (fun c -> c * b) eq1)
+ (map_eq_afine (fun c -> c * a) eq2) in
+ add_event(SUM(eq.id,(b,eq1),(a,eq2)));
+ match normalize eq with
+ | [eq] ->
+ let final_eq =
+ if dark_shadow then
+ let delta = (a - 1) * (b - 1) in
+ add_event(WEAKEN(eq.id,delta));
+ {id = eq.id; kind=INEQ; body = eq.body;
+ constant = eq.constant - delta}
+ else eq
+ in final_eq :: accu
+ | (e::_) -> failwith "Product dardk"
+ | [] -> accu)
+ accu high)
+ [] low
+
+let fourier_motzkin dark_shadow system =
+ let v = select_variable system in
+ let (ineq_out, ineq_low,ineq_high) = classify v system in
+ let expanded = ineq_out @ product dark_shadow ineq_low ineq_high in
+ if !debug then display_system expanded; expanded
+
+let simplify dark_shadow system =
+ if List.exists (fun e -> e.kind = DISE) system then
+ failwith "disequation in simplify";
+ clear_history ();
+ List.iter (fun e -> add_event (HYP e)) system;
+ let system = flat_map normalize system in
+ let eqs,ineqs = filter (fun e -> e.kind=EQUA) system in
+ let simp_eq,simp_ineq = redundancy_elimination ineqs in
+ let system = (eqs @ simp_eq,simp_ineq) in
+ let rec loop1a system =
+ let sys_ineq = banerjee system in
+ loop1b sys_ineq
+ and loop1b sys_ineq =
+ let simp_eq,simp_ineq = redundancy_elimination sys_ineq in
+ if simp_eq = [] then simp_ineq else loop1a (simp_eq,simp_ineq)
+ in
+ let rec loop2 system =
+ try
+ let expanded = fourier_motzkin dark_shadow system in
+ loop2 (loop1b expanded)
+ with SOLVED_SYSTEM -> if !debug then display_system system; system
+ in
+ loop2 (loop1a system)
+
+let rec depend relie_on accu = function
+ | act :: l ->
+ begin match act with
+ | DIVIDE_AND_APPROX (e,_,_,_) ->
+ if List.mem e.id relie_on then depend relie_on (act::accu) l
+ else depend relie_on accu l
+ | EXACT_DIVIDE (e,_) ->
+ if List.mem e.id relie_on then depend relie_on (act::accu) l
+ else depend relie_on accu l
+ | WEAKEN (e,_) ->
+ if List.mem e relie_on then depend relie_on (act::accu) l
+ else depend relie_on accu l
+ | SUM (e,(_,e1),(_,e2)) ->
+ if List.mem e relie_on then
+ depend (e1.id::e2.id::relie_on) (act::accu) l
+ else
+ depend relie_on accu l
+ | STATE (e,_,_,_,_) ->
+ if List.mem e.id relie_on then depend relie_on (act::accu) l
+ else depend relie_on accu l
+ | HYP e ->
+ if List.mem e.id relie_on then depend relie_on (act::accu) l
+ else depend relie_on accu l
+ | FORGET_C _ -> depend relie_on accu l
+ | FORGET _ -> depend relie_on accu l
+ | FORGET_I _ -> depend relie_on accu l
+ | MERGE_EQ (e,e1,e2) ->
+ if List.mem e relie_on then
+ depend (e1.id::e2::relie_on) (act::accu) l
+ else
+ depend relie_on accu l
+ | NOT_EXACT_DIVIDE (e,_) -> depend (e.id::relie_on) (act::accu) l
+ | CONTRADICTION (e1,e2) ->
+ depend (e1.id::e2.id::relie_on) (act::accu) l
+ | CONSTANT_NOT_NUL (e,_) -> depend (e::relie_on) (act::accu) l
+ | CONSTANT_NEG (e,_) -> depend (e::relie_on) (act::accu) l
+ | CONSTANT_NUL e -> depend (e::relie_on) (act::accu) l
+ | NEGATE_CONTRADICT (e1,e2,_) ->
+ depend (e1.id::e2.id::relie_on) (act::accu) l
+ | SPLIT_INEQ _ -> failwith "depend"
+ end
+ | [] -> relie_on, accu
+
+let solve system =
+ try let _ = simplify false system in failwith "no contradiction"
+ with UNSOLVABLE -> display_action (snd (depend [] [] (history ())))
+
+let negation (eqs,ineqs) =
+ let diseq,_ = filter (fun e -> e.kind = DISE) ineqs in
+ let normal = function
+ | ({body=f::_} as e) when f.c < 0 -> negate_eq e, INVERTED
+ | e -> e,NORMAL in
+ let table = create 7 in
+ List.iter (fun e ->
+ let {body=ne;constant=c} ,kind = normal e in
+ add table (ne,c) (kind,e)) diseq;
+ List.iter (fun e ->
+ if e.kind <> EQUA then pp 9999;
+ let {body=ne;constant=c},kind = normal e in
+ try
+ let (kind',e') = find table (ne,c) in
+ add_event (NEGATE_CONTRADICT (e,e',kind=kind'));
+ raise UNSOLVABLE
+ with Not_found -> ()) eqs
+
+exception FULL_SOLUTION of action list * int list
+
+let simplify_strong system =
+ clear_history ();
+ List.iter (fun e -> add_event (HYP e)) system;
+ (* Initial simplification phase *)
+ let rec loop1a system =
+ negation system;
+ let sys_ineq = banerjee system in
+ loop1b sys_ineq
+ and loop1b sys_ineq =
+ let dise,ine = filter (fun e -> e.kind = DISE) sys_ineq in
+ let simp_eq,simp_ineq = redundancy_elimination ine in
+ if simp_eq = [] then dise @ simp_ineq
+ else loop1a (simp_eq,dise @ simp_ineq)
+ in
+ let rec loop2 system =
+ try
+ let expanded = fourier_motzkin false system in
+ loop2 (loop1b expanded)
+ with SOLVED_SYSTEM -> if !debug then display_system system; system
+ in
+ let rec explode_diseq = function
+ | (de::diseq,ineqs,expl_map) ->
+ let id1 = new_id ()
+ and id2 = new_id () in
+ let e1 =
+ {id = id1; kind=INEQ; body = de.body; constant = de.constant - 1} in
+ let e2 =
+ {id = id2; kind=INEQ; body = map_eq_linear (fun x -> -x) de.body;
+ constant = - de.constant - 1} in
+ let new_sys =
+ List.map (fun (what,sys) -> ((de.id,id1,true)::what, e1::sys))
+ ineqs @
+ List.map (fun (what,sys) -> ((de.id,id2,false)::what,e2::sys))
+ ineqs
+ in
+ explode_diseq (diseq,new_sys,(de.id,(de,id1,id2))::expl_map)
+ | ([],ineqs,expl_map) -> ineqs,expl_map
+ in
+ try
+ let system = flat_map normalize system in
+ let eqs,ineqs = filter (fun e -> e.kind=EQUA) system in
+ let dise,ine = filter (fun e -> e.kind = DISE) ineqs in
+ let simp_eq,simp_ineq = redundancy_elimination ine in
+ let system = (eqs @ simp_eq,simp_ineq @ dise) in
+ let system' = loop1a system in
+ let diseq,ineq = filter (fun e -> e.kind = DISE) system' in
+ let first_segment = history () in
+ let sys_exploded,explode_map = explode_diseq (diseq,[[],ineq],[]) in
+ let all_solutions =
+ List.map
+ (fun (decomp,sys) ->
+ clear_history ();
+ try let _ = loop2 sys in raise NO_CONTRADICTION
+ with UNSOLVABLE ->
+ let relie_on,path = depend [] [] (history ()) in
+ let dc,_ = filter (fun (_,id,_) -> List.mem id relie_on) decomp in
+ let red = List.map (fun (x,_,_) -> x) dc in
+ (red,relie_on,decomp,path))
+ sys_exploded
+ in
+ let max_count sys =
+ let tbl = create 7 in
+ let augment x =
+ try incr (find tbl x) with Not_found -> add tbl x (ref 1) in
+ let eq = ref (-1) and c = ref 0 in
+ List.iter (function
+ | ([],r_on,_,path) -> raise (FULL_SOLUTION (path,r_on))
+ | (l,_,_,_) -> List.iter augment l) sys;
+ iter (fun x v -> if !v > !c then begin eq := x; c := !v end) tbl;
+ !eq
+ in
+ let rec solve systems =
+ try
+ let id = max_count systems in
+ let rec sign = function
+ | ((id',_,b)::l) -> if id=id' then b else sign l
+ | [] -> failwith "solve" in
+ let s1,s2 = filter (fun (_,_,decomp,_) -> sign decomp) systems in
+ let s1' =
+ List.map (fun (dep,ro,dc,pa) -> (list_except id dep,ro,dc,pa)) s1 in
+ let s2' =
+ List.map (fun (dep,ro,dc,pa) -> (list_except id dep,ro,dc,pa)) s2 in
+ let (r1,relie1) = solve s1'
+ and (r2,relie2) = solve s2' in
+ let (eq,id1,id2) = List.assoc id explode_map in
+ [SPLIT_INEQ(eq,(id1,r1),(id2, r2))], eq.id :: list_union relie1 relie2
+ with FULL_SOLUTION (x0,x1) -> (x0,x1)
+ in
+ let act,relie_on = solve all_solutions in
+ snd(depend relie_on act first_segment)
+ with UNSOLVABLE -> snd (depend [] [] (history ()))