diff options
author | filliatr <filliatr@85f007b7-540e-0410-9357-904b9bb8a0f7> | 2000-06-21 16:43:38 +0000 |
---|---|---|
committer | filliatr <filliatr@85f007b7-540e-0410-9357-904b9bb8a0f7> | 2000-06-21 16:43:38 +0000 |
commit | 5a4b200626300200ec34f4713940465cdc96bebb (patch) | |
tree | 3c3ea3ada33f7f17fc7d8db5deabbddafbf08d6c /contrib/ring | |
parent | 5378cd45ac34551ea4d265f41b489ff386ea1a49 (diff) |
bug discharge STRUCTURE; FrozenState supprimmes dans les ClosedSection -> .vo plus petits
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@514 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'contrib/ring')
-rw-r--r-- | contrib/ring/Ring_theory.v | 13 |
1 files changed, 6 insertions, 7 deletions
diff --git a/contrib/ring/Ring_theory.v b/contrib/ring/Ring_theory.v index 3ff4f51f4..4b5fff53d 100644 --- a/contrib/ring/Ring_theory.v +++ b/contrib/ring/Ring_theory.v @@ -228,8 +228,6 @@ Save. Hints Resolve Th_plus_permute Th_mult_permute. -Lemma Th_mult_zero_left :(n:A)[| 0*n == 0 |]. - Lemma aux1 : (a:A) [| a + a == a |] -> [| a == 0 |]. Intros. Generalize (opp_def a). @@ -242,6 +240,7 @@ Rewrite plus_zero_left. Trivial. Save. +Lemma Th_mult_zero_left :(n:A)[| 0*n == 0 |]. Intros. Apply aux1. Rewrite <- distr_left. @@ -253,7 +252,6 @@ Hints Resolve Th_mult_zero_left. Lemma Th_mult_zero_left2 : (n:A)[| 0 == 0*n |]. Symmetry; EAuto. Save. -Lemma Th_opp_mult_left : (x,y:A)[| -(x*y) == (-x)*y |]. Lemma aux2 : (x,y,z:A) [|x+y==0|] -> [|x+z==0|] -> y==z. Intros. Rewrite <- (plus_zero_left y). @@ -266,6 +264,7 @@ Rewrite plus_zero_left. Reflexivity. Save. +Lemma Th_opp_mult_left : (x,y:A)[| -(x*y) == (-x)*y |]. Intros. Apply (aux2 1![|x*y|]); [ Apply opp_def @@ -314,7 +313,7 @@ Lemma Th_plus_opp_opp : (x,y:A)[| (-x) + (-y) == -(x+y) |]. Intros. Apply (aux2 1![| x + y |]); [ Elim plus_assoc; - Rewrite -> (Th_plus_permute y [|-x|]); Rewrite -> plus_assoc; + Rewrite -> (Th_plus_permute y [| -x |]); Rewrite -> plus_assoc; Rewrite -> opp_def; Rewrite plus_zero_left; Auto | Auto ]. Save. @@ -322,8 +321,8 @@ Save. Lemma Th_plus_permute_opp: (n,m,p:A)[| (-m) + (n + p) == n + ((-m)+p) |]. EAuto. Save. -Lemma Th_opp_opp : (n:A)[|-(-n) == n |]. -Intro; Apply (aux2 1![|-n|]); +Lemma Th_opp_opp : (n:A)[| -(-n) == n |]. +Intro; Apply (aux2 1![| -n |]); [ Auto | Elim plus_sym; Auto ]. Save. Hints Resolve Th_opp_opp. @@ -345,7 +344,7 @@ Auto. Save. Lemma Th_plus_reg_left : (n,m,p:A)[| n + m == n + p |] -> m==p. Intros; Generalize (congr_eqT ? ? [z][| (-n)+z |] ? ? H). Repeat Rewrite plus_assoc. -Rewrite (plus_sym [|-n|] n). +Rewrite (plus_sym [| -n |] n). Rewrite opp_def. Repeat Rewrite Th_plus_zero_left; EAuto. Save. |