aboutsummaryrefslogtreecommitdiffhomepage
path: root/contrib/ring
diff options
context:
space:
mode:
authorGravatar filliatr <filliatr@85f007b7-540e-0410-9357-904b9bb8a0f7>2000-06-21 16:43:38 +0000
committerGravatar filliatr <filliatr@85f007b7-540e-0410-9357-904b9bb8a0f7>2000-06-21 16:43:38 +0000
commit5a4b200626300200ec34f4713940465cdc96bebb (patch)
tree3c3ea3ada33f7f17fc7d8db5deabbddafbf08d6c /contrib/ring
parent5378cd45ac34551ea4d265f41b489ff386ea1a49 (diff)
bug discharge STRUCTURE; FrozenState supprimmes dans les ClosedSection -> .vo plus petits
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@514 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'contrib/ring')
-rw-r--r--contrib/ring/Ring_theory.v13
1 files changed, 6 insertions, 7 deletions
diff --git a/contrib/ring/Ring_theory.v b/contrib/ring/Ring_theory.v
index 3ff4f51f4..4b5fff53d 100644
--- a/contrib/ring/Ring_theory.v
+++ b/contrib/ring/Ring_theory.v
@@ -228,8 +228,6 @@ Save.
Hints Resolve Th_plus_permute Th_mult_permute.
-Lemma Th_mult_zero_left :(n:A)[| 0*n == 0 |].
-
Lemma aux1 : (a:A) [| a + a == a |] -> [| a == 0 |].
Intros.
Generalize (opp_def a).
@@ -242,6 +240,7 @@ Rewrite plus_zero_left.
Trivial.
Save.
+Lemma Th_mult_zero_left :(n:A)[| 0*n == 0 |].
Intros.
Apply aux1.
Rewrite <- distr_left.
@@ -253,7 +252,6 @@ Hints Resolve Th_mult_zero_left.
Lemma Th_mult_zero_left2 : (n:A)[| 0 == 0*n |].
Symmetry; EAuto. Save.
-Lemma Th_opp_mult_left : (x,y:A)[| -(x*y) == (-x)*y |].
Lemma aux2 : (x,y,z:A) [|x+y==0|] -> [|x+z==0|] -> y==z.
Intros.
Rewrite <- (plus_zero_left y).
@@ -266,6 +264,7 @@ Rewrite plus_zero_left.
Reflexivity.
Save.
+Lemma Th_opp_mult_left : (x,y:A)[| -(x*y) == (-x)*y |].
Intros.
Apply (aux2 1![|x*y|]);
[ Apply opp_def
@@ -314,7 +313,7 @@ Lemma Th_plus_opp_opp : (x,y:A)[| (-x) + (-y) == -(x+y) |].
Intros.
Apply (aux2 1![| x + y |]);
[ Elim plus_assoc;
- Rewrite -> (Th_plus_permute y [|-x|]); Rewrite -> plus_assoc;
+ Rewrite -> (Th_plus_permute y [| -x |]); Rewrite -> plus_assoc;
Rewrite -> opp_def; Rewrite plus_zero_left; Auto
| Auto ].
Save.
@@ -322,8 +321,8 @@ Save.
Lemma Th_plus_permute_opp: (n,m,p:A)[| (-m) + (n + p) == n + ((-m)+p) |].
EAuto. Save.
-Lemma Th_opp_opp : (n:A)[|-(-n) == n |].
-Intro; Apply (aux2 1![|-n|]);
+Lemma Th_opp_opp : (n:A)[| -(-n) == n |].
+Intro; Apply (aux2 1![| -n |]);
[ Auto | Elim plus_sym; Auto ].
Save.
Hints Resolve Th_opp_opp.
@@ -345,7 +344,7 @@ Auto. Save.
Lemma Th_plus_reg_left : (n,m,p:A)[| n + m == n + p |] -> m==p.
Intros; Generalize (congr_eqT ? ? [z][| (-n)+z |] ? ? H).
Repeat Rewrite plus_assoc.
-Rewrite (plus_sym [|-n|] n).
+Rewrite (plus_sym [| -n |] n).
Rewrite opp_def.
Repeat Rewrite Th_plus_zero_left; EAuto.
Save.