aboutsummaryrefslogtreecommitdiffhomepage
path: root/contrib/jprover
diff options
context:
space:
mode:
authorGravatar herbelin <herbelin@85f007b7-540e-0410-9357-904b9bb8a0f7>2002-05-29 10:48:19 +0000
committerGravatar herbelin <herbelin@85f007b7-540e-0410-9357-904b9bb8a0f7>2002-05-29 10:48:19 +0000
commitb5011fe9c8b410074f2b1299cf83aabed834601f (patch)
treeeb433f71ae754c1f2526bb55f7eb83bb81300dd4 /contrib/jprover
parent16d5d84c20cc640be08c3f32cc9bde5cbd3f06dd (diff)
Fichiers contrib/*/*.ml4 remplacent les contrib/*/*.v
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@2720 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'contrib/jprover')
-rw-r--r--contrib/jprover/jprover.ml4565
1 files changed, 565 insertions, 0 deletions
diff --git a/contrib/jprover/jprover.ml4 b/contrib/jprover/jprover.ml4
new file mode 100644
index 000000000..5fce08d38
--- /dev/null
+++ b/contrib/jprover/jprover.ml4
@@ -0,0 +1,565 @@
+(*i camlp4deps: "parsing/grammar.cma" i*)
+
+open Jlogic
+
+module JA = Jall
+module JT = Jterm
+module T = Tactics
+module TCL = Tacticals
+module TM = Tacmach
+module N = Names
+module PT = Proof_type
+module HT = Hiddentac
+module PA = Pattern
+module HP = Hipattern
+module TR = Term
+module PR = Printer
+module RO = Reductionops
+module UT = Util
+module RA = Rawterm
+
+module J=JA.JProver(JLogic) (* the JProver *)
+
+(*i
+module NO = Nameops
+module TO = Termops
+module RE = Reduction
+module CL = Coqlib
+module ID = Inductiveops
+module CV = Clenv
+module RF = Refiner
+i*)
+
+(* Interface to JProver: *)
+(* type JLogic.inf_step = rule * (string * Jterm.term) * (string * Jterm.term) *)
+type jp_inf_step = JLogic.inf_step
+type jp_inference = JLogic.inference (* simply a list of [inf_step] *)
+
+(* Definitions for rebuilding proof tree from JProver: *)
+(* leaf, one-branch, two-branch, two-branch, true, false *)
+type jpbranch = JP0 | JP1 | JP2 | JP2' | JPT | JPF
+type jptree = | JPempty (* empty tree *)
+ | JPAx of jp_inf_step (* Axiom node *)
+ | JPA of jp_inf_step * jptree
+ | JPB of jp_inf_step * jptree * jptree
+
+(* Private debugging tools: *)
+(*i*)
+let mbreak s = Format.print_flush (); print_string ("-break at: "^s);
+ Format.print_flush (); let _ = input_char stdin in ()
+(*i*)
+let jp_error re = raise (JT.RefineError ("jprover", JT.StringError re))
+
+(* print Coq constructor *)
+let print_constr ct = Pp.ppnl (PR.prterm ct); Format.print_flush ()
+
+let rec print_constr_list = function
+ | [] -> ()
+ | ct::r -> print_constr ct; print_constr_list r
+
+let print_constr_pair op c1 c2 =
+ print_string (op^"(");
+ print_constr c1;
+ print_string ",";
+ print_constr c2;
+ print_string ")\n"
+
+
+(* Parsing modules for Coq: *)
+(* [is_coq_???] : testing functions *)
+(* [dest_coq_???] : destructors *)
+
+let is_coq_true ct = (HP.is_unit_type ct) && not (HP.is_equation ct)
+
+let is_coq_false = HP.is_empty_type
+
+(* return two subterms *)
+let dest_coq_and ct =
+ match (HP.match_with_conjunction ct) with
+ | Some (hdapp,args) ->
+(*i print_constr hdapp; print_constr_list args; i*)
+ begin
+ match args with
+ | s1::s2::[] ->
+(*i print_constr_pair "and" s1 s2; i*)
+ (s1,s2)
+ | _ -> jp_error "dest_coq_and"
+ end
+ | None -> jp_error "dest_coq_and"
+
+let is_coq_or = HP.is_disjunction
+
+(* return two subterms *)
+let dest_coq_or ct =
+ match (HP.match_with_disjunction ct) with
+ | Some (hdapp,args) ->
+(*i print_constr hdapp; print_constr_list args; i*)
+ begin
+ match args with
+ | s1::s2::[] ->
+(*i print_constr_pair "or" s1 s2; i*)
+ (s1,s2)
+ | _ -> jp_error "dest_coq_or"
+ end
+ | None -> jp_error "dest_coq_or"
+
+let is_coq_not = HP.is_nottype
+
+let dest_coq_not ct =
+ match (HP.match_with_nottype ct) with
+ | Some (hdapp,arg) ->
+(*i print_constr hdapp; print_constr args; i*)
+(*i print_string "not ";
+ print_constr arg; i*)
+ arg
+ | None -> jp_error "dest_coq_not"
+
+
+let is_coq_impl ct =
+ match TR.kind_of_term ct with
+ | TR.Prod (_,_,b) -> (not (Termops.dependent (TR.mkRel 1) b))
+ | _ -> false
+
+
+let dest_coq_impl c =
+ match TR.kind_of_term c with
+ | TR.Prod (_,b,c) ->
+(*i print_constr_pair "impl" b c; i*)
+ (b, c)
+ | _ -> jp_error "dest_coq_impl"
+
+(* provide new variables for renaming of universal variables *)
+let new_counter =
+ let ctr = ref 0 in
+ fun () -> incr ctr;!ctr
+
+(* provide new symbol name for unknown Coq constructors *)
+let new_ecounter =
+ let ectr = ref 0 in
+ fun () -> incr ectr;!ectr
+
+(* provide new variables for address naming *)
+let new_acounter =
+ let actr = ref 0 in
+ fun () -> incr actr;!actr
+
+let is_coq_forall ct =
+ match TR.kind_of_term (RO.whd_betaiota ct) with
+ | TR.Prod (_,_,b) -> Termops.dependent (TR.mkRel 1) b
+ | _ -> false
+
+(* return the bounded variable (as a string) and the bounded term *)
+let dest_coq_forall ct =
+ match TR.kind_of_term (RO.whd_betaiota ct) with
+ | TR.Prod (_,_,b) ->
+ let x ="jp_"^(string_of_int (new_counter())) in
+ let v = TR.mkVar (N.id_of_string x) in
+ let c = TR.subst1 v b in (* substitute de Bruijn variable by [v] *)
+(*i print_constr_pair "forall" v c; i*)
+ (x, c)
+ | _ -> jp_error "dest_coq_forall"
+
+
+(* Apply [ct] to [t]: *)
+let sAPP ct t =
+ match TR.kind_of_term (RO.whd_betaiota ct) with
+ | TR.Prod (_,_,b) ->
+ let c = TR.subst1 t b in
+ c
+ | _ -> jp_error "sAPP"
+
+
+let is_coq_exists ct =
+ if not (HP.is_conjunction ct) then false
+ else let (hdapp,args) = TR.decompose_app ct in
+ match args with
+ | _::la::[] ->
+ begin
+ try
+ match TR.destLambda la with
+ | (N.Name _,_,_) -> true
+ | _ -> false
+ with _ -> false
+ end
+ | _ -> false
+
+(* return the bounded variable (as a string) and the bounded term *)
+let dest_coq_exists ct =
+ let (hdapp,args) = TR.decompose_app ct in
+ match args with
+ | _::la::[] ->
+ begin
+ try
+ match TR.destLambda la with
+ | (N.Name x,t1,t2) ->
+ let v = TR.mkVar x in
+ let t3 = TR.subst1 v t2 in
+(*i print_constr_pair "exists" v t3; i*)
+ (N.string_of_id x, t3)
+ | _ -> jp_error "dest_coq_exists"
+ with _ -> jp_error "dest_coq_exists"
+ end
+ | _ -> jp_error "dest_coq_exists"
+
+
+let is_coq_and ct =
+ if (HP.is_conjunction ct) && not (is_coq_exists ct)
+ && not (is_coq_true ct) then true
+ else false
+
+
+(* Parsing modules: *)
+
+let jtbl = Hashtbl.create 53 (* associate for unknown Coq constr. *)
+let rtbl = Hashtbl.create 53 (* reverse table of [jtbl] *)
+
+let dest_coq_symb ct =
+ N.string_of_id (TR.destVar ct)
+
+(* provide new names for unknown Coq constr. *)
+(* [ct] is the unknown constr., string [s] is appended to the name encoding *)
+let create_coq_name ct s =
+ try
+ Hashtbl.find jtbl ct
+ with Not_found ->
+ let t = ("jp_"^s^(string_of_int (new_ecounter()))) in
+ Hashtbl.add jtbl ct t;
+ Hashtbl.add rtbl t ct;
+ t
+
+let dest_coq_app ct s =
+ let (hd, args) = TR.decompose_app ct in
+(*i print_constr hd;
+ print_constr_list args; i*)
+ if TR.isVar hd then
+ (dest_coq_symb hd, args)
+ else (* unknown constr *)
+ (create_coq_name hd s, args)
+
+let rec parsing2 c = (* for function symbols, variables, constants *)
+ if (TR.isApp c) then (* function symbol? *)
+ let (f,args) = dest_coq_app c "fun_" in
+ JT.fun_ f (List.map parsing2 args)
+ else if TR.isVar c then (* identifiable variable or constant *)
+ JT.var_ (dest_coq_symb c)
+ else (* unknown constr *)
+ JT.var_ (create_coq_name c "var_")
+
+(* the main parsing function *)
+let rec parsing c =
+ let ct = Reduction.whd_betadeltaiota (Global.env ()) c in
+(* let ct = Reduction.whd_betaiotazeta (Global.env ()) c in *)
+ if is_coq_true ct then
+ JT.true_
+ else if is_coq_false ct then
+ JT.false_
+ else if is_coq_not ct then
+ JT.not_ (parsing (dest_coq_not ct))
+ else if is_coq_impl ct then
+ let (t1,t2) = dest_coq_impl ct in
+ JT.imp_ (parsing t1) (parsing t2)
+ else if is_coq_or ct then
+ let (t1,t2) = dest_coq_or ct in
+ JT.or_ (parsing t1) (parsing t2)
+ else if is_coq_and ct then
+ let (t1,t2) = dest_coq_and ct in
+ JT.and_ (parsing t1) (parsing t2)
+ else if is_coq_forall ct then
+ let (v,t) = dest_coq_forall ct in
+ JT.forall v (parsing t)
+ else if is_coq_exists ct then
+ let (v,t) = dest_coq_exists ct in
+ JT.exists v (parsing t)
+ else if TR.isApp ct then (* predicate symbol with arguments *)
+ let (p,args) = dest_coq_app ct "P_" in
+ JT.pred_ p (List.map parsing2 args)
+ else if TR.isVar ct then (* predicate symbol without arguments *)
+ let p = dest_coq_symb ct in
+ JT.pred_ p []
+ else (* unknown predicate *)
+ JT.pred_ (create_coq_name ct "Q_") []
+
+(*i
+ print_string "??";print_constr ct;
+ JT.const_ ("err_"^(string_of_int (new_ecounter())))
+i*)
+
+
+(* Translate JProver terms into Coq constructors: *)
+(* The idea is to retrieve it from [rtbl] if it exists indeed, otherwise
+ create one. *)
+let rec constr_of_jterm t =
+ if (JT.is_var_term t) then (* a variable *)
+ let v = JT.dest_var t in
+ try
+ Hashtbl.find rtbl v
+ with Not_found -> TR.mkVar (N.id_of_string v)
+ else if (JT.is_fun_term t) then (* a function symbol *)
+ let (f,ts) = JT.dest_fun t in
+ let f' = try Hashtbl.find rtbl f with Not_found -> TR.mkVar (N.id_of_string f) in
+ TR.mkApp (f', Array.of_list (List.map constr_of_jterm ts))
+ else jp_error "constr_of_jterm"
+
+
+(* Coq tactics for Sequent Calculus LJ: *)
+(* Note that for left-rule a name indicating the being applied rule
+ in Coq's Hints is required; for right-rule a name is also needed
+ if it will pass some subterm to the left-hand side.
+ However, all of these can be computed by the path [id] of the being
+ applied rule.
+*)
+
+let assoc_addr = Hashtbl.create 97
+
+let short_addr s =
+ let ad =
+ try
+ Hashtbl.find assoc_addr s
+ with Not_found ->
+ let t = ("jp_H"^(string_of_int (new_acounter()))) in
+ Hashtbl.add assoc_addr s t;
+ t
+ in
+ N.id_of_string ad
+
+(* and-right *)
+let dyn_andr =
+ T.split RA.NoBindings
+
+(* For example, the following implements the [and-left] rule: *)
+let dyn_andl id = (* [id1]: left child; [id2]: right child *)
+ let id1 = (short_addr (id^"_1")) and id2 = (short_addr (id^"_2")) in
+ (TCL.tclTHEN (T.simplest_elim (TR.mkVar (short_addr id))) (T.intros_using [id1;id2]))
+
+let dyn_orr1 =
+ T.left RA.NoBindings
+
+let dyn_orr2 =
+ T.right RA.NoBindings
+
+let dyn_orl id =
+ let id1 = (short_addr (id^"_1")) and id2 = (short_addr (id^"_2")) in
+ (TCL.tclTHENS (T.simplest_elim (TR.mkVar (short_addr id)))
+ [T.intro_using id1; T.intro_using id2])
+
+let dyn_negr id =
+ let id1 = id^"_1_1" in
+ HT.h_intro (short_addr id1)
+
+let dyn_negl id =
+ T.simplest_elim (TR.mkVar (short_addr id))
+
+let dyn_impr id =
+ let id1 = id^"_1_1" in
+ HT.h_intro (short_addr id1)
+
+let dyn_impl id gl =
+ let t = TM.pf_get_hyp_typ gl (short_addr id) in
+ let ct = Reduction.whd_betadeltaiota (Global.env ()) t in (* unfolding *)
+ let (_,b) = dest_coq_impl ct in
+ let id2 = (short_addr (id^"_1_2")) in
+ (TCL.tclTHENLAST
+ (TCL.tclTHENS (T.cut b) [T.intro_using id2;TCL.tclIDTAC])
+ (T.apply_term (TR.mkVar (short_addr id))
+ [TR.mkMeta (Clenv.new_meta())])) gl
+
+let dyn_allr c = (* [c] must be an eigenvariable which replaces [v] *)
+ HT.h_intro (N.id_of_string c)
+
+(* [id2] is the path of the instantiated term for [id]*)
+let dyn_alll id id2 t gl =
+ let id' = short_addr id in
+ let id2' = short_addr id2 in
+ let ct = TM.pf_get_hyp_typ gl id' in
+ let ct' = Reduction.whd_betadeltaiota (Global.env ()) ct in (* unfolding *)
+ let ta = sAPP ct' t in
+ TCL.tclTHENS (T.cut ta) [T.intro_using id2'; T.apply (TR.mkVar id')] gl
+
+let dyn_exl id id2 c = (* [c] must be an eigenvariable *)
+ (TCL.tclTHEN (T.simplest_elim (TR.mkVar (short_addr id)))
+ (T.intros_using [(N.id_of_string c);(short_addr id2)]))
+
+let dyn_exr t =
+ T.one_constructor 1 (RA.ImplicitBindings [t])
+
+let dyn_falsel = dyn_negl
+
+let dyn_truer =
+ T.one_constructor 1 RA.NoBindings
+
+(* Do the proof by the guidance of JProver. *)
+
+let do_one_step inf =
+ let (rule, (s1, t1), ((s2, t2) as k)) = inf in
+ begin
+(*i if not (Jterm.is_xnil_term t2) then
+ begin
+ print_string "1: "; JT.print_term stdout t2; print_string "\n";
+ print_string "2: "; print_constr (constr_of_jterm t2); print_string "\n";
+ end;
+i*)
+ match rule with
+ | Andl -> dyn_andl s1
+ | Andr -> dyn_andr
+ | Orl -> dyn_orl s1
+ | Orr1 -> dyn_orr1
+ | Orr2 -> dyn_orr2
+ | Impr -> dyn_impr s1
+ | Impl -> dyn_impl s1
+ | Negr -> dyn_negr s1
+ | Negl -> dyn_negl s1
+ | Allr -> dyn_allr (JT.dest_var t2)
+ | Alll -> dyn_alll s1 s2 (constr_of_jterm t2)
+ | Exr -> dyn_exr (constr_of_jterm t2)
+ | Exl -> dyn_exl s1 s2 (JT.dest_var t2)
+ | Ax -> T.assumption (*i TCL.tclIDTAC i*)
+ | Truer -> dyn_truer
+ | Falsel -> dyn_falsel s1
+ | _ -> jp_error "do_one_step"
+ (* this is impossible *)
+ end
+;;
+
+(* Parameter [tr] is the reconstucted proof tree from output of JProver. *)
+let do_coq_proof tr =
+ let rec rec_do trs =
+ match trs with
+ | JPempty -> TCL.tclIDTAC
+ | JPAx h -> do_one_step h
+ | JPA (h, t) -> TCL.tclTHEN (do_one_step h) (rec_do t)
+ | JPB (h, left, right) -> TCL.tclTHENS (do_one_step h) [rec_do left; rec_do right]
+ in
+ rec_do tr
+
+
+(* Rebuild the proof tree from the output of JProver: *)
+
+(* Since some universal variables are not necessarily first-order,
+ lazy substitution may happen. They are recorded in [rtbl]. *)
+let reg_unif_subst t1 t2 =
+ let (v,_,_) = JT.dest_all t1 in
+ Hashtbl.add rtbl v (TR.mkVar (N.id_of_string (JT.dest_var t2)))
+
+let count_jpbranch one_inf =
+ let (rule, (_, t1), (_, t2)) = one_inf in
+ begin
+ match rule with
+ | Ax -> JP0
+ | Orr1 | Orr2 | Negl | Impr | Alll | Exr | Exl -> JP1
+ | Andr | Orl -> JP2
+ | Negr -> if (JT.is_true_term t1) then JPT else JP1
+ | Andl -> if (JT.is_false_term t1) then JPF else JP1
+ | Impl -> JP2' (* reverse the sons of [Impl] since [dyn_impl] reverses them *)
+ | Allr -> reg_unif_subst t1 t2; JP1
+ | _ -> jp_error "count_jpbranch"
+ end
+
+let replace_by r = function
+ (rule, a, b) -> (r, a, b)
+
+let rec build_jptree inf =
+ match inf with
+ | [] -> ([], JPempty)
+ | h::r ->
+ begin
+ match count_jpbranch h with
+ | JP0 -> (r,JPAx h)
+ | JP1 -> let (r1,left) = build_jptree r in
+ (r1, JPA(h, left))
+ | JP2 -> let (r1,left) = build_jptree r in
+ let (r2,right) = build_jptree r1 in
+ (r2, JPB(h, left, right))
+ | JP2' -> let (r1,left) = build_jptree r in (* for [Impl] *)
+ let (r2,right) = build_jptree r1 in
+ (r2, JPB(h, right, left))
+ | JPT -> let (r1,left) = build_jptree r in (* right True *)
+ (r1, JPAx (replace_by Truer h))
+ | JPF -> let (r1,left) = build_jptree r in (* left False *)
+ (r1, JPAx (replace_by Falsel h))
+ end
+
+
+(* The main function: *)
+(* [limits] is the multiplicity limit. *)
+let jp limits gls =
+ let concl = TM.pf_concl gls in
+ let ct = concl in
+(*i print_constr ct; i*)
+ Hashtbl.clear jtbl; (* empty the hash tables *)
+ Hashtbl.clear rtbl;
+ Hashtbl.clear assoc_addr;
+ let t = parsing ct in
+(*i JT.print_term stdout t; i*)
+ try
+ let p = (J.prover limits [] t) in
+(*i print_string "\n";
+ JLogic.print_inf p; i*)
+ let (il,tr) = build_jptree p in
+ if (il = []) then
+ begin
+ print_string "Proof is built.\n";
+ do_coq_proof tr gls
+ end
+ else UT.error "Cannot reconstruct proof tree from JProver."
+ with e -> print_string "JProver fails to prove this:\n";
+ JT.print_error_msg e;
+ UT.error "JProver terminated."
+
+(* an unfailed generalization procedure *)
+let non_dep_gen b gls =
+ let concl = TM.pf_concl gls in
+ if (not (Termops.dependent b concl)) then
+ T.generalize [b] gls
+ else
+ TCL.tclIDTAC gls
+
+let rec unfail_gen = function
+ | [] -> TCL.tclIDTAC
+ | h::r ->
+ TCL.tclTHEN
+ (TCL.tclORELSE (non_dep_gen h) (TCL.tclIDTAC))
+ (unfail_gen r)
+
+(*
+(* no argument, which stands for no multiplicity limit *)
+let jp gls =
+ let ls = List.map (fst) (TM.pf_hyps_types gls) in
+(*i T.generalize (List.map TR.mkVar ls) gls i*)
+ (* generalize the context *)
+ TCL.tclTHEN (TCL.tclTRY T.red_in_concl)
+ (TCL.tclTHEN (unfail_gen (List.map TR.mkVar ls))
+ (jp None)) gls
+*)
+(*
+let dyn_jp l gls =
+ assert (l = []);
+ jp
+*)
+
+(* one optional integer argument for the multiplicity *)
+let jpn n gls =
+ let ls = List.map (fst) (TM.pf_hyps_types gls) in
+ TCL.tclTHEN (TCL.tclTRY T.red_in_concl)
+ (TCL.tclTHEN (unfail_gen (List.map TR.mkVar ls))
+ (jp n)) gls
+(*
+let dyn_jpn l gls =
+ match l with
+ | [PT.Integer n] -> jpn n
+ | _ -> jp_error "Impossible!!!"
+
+
+let h_jp = TM.hide_tactic "Jp" dyn_jp
+
+let h_jpn = TM.hide_tactic "Jpn" dyn_jpn
+*)
+
+TACTIC EXTEND Jprover
+ [ "Jp" natural_opt(n) ] -> [ jpn n ]
+END
+
+(*
+TACTIC EXTEND Andl
+ [ "Andl" ident(id)] -> [ ... (Andl id) ... ].
+END
+*)