aboutsummaryrefslogtreecommitdiffhomepage
path: root/clib/heap.ml
diff options
context:
space:
mode:
authorGravatar Emilio Jesus Gallego Arias <e+git@x80.org>2017-12-15 18:51:45 +0100
committerGravatar Emilio Jesus Gallego Arias <e+git@x80.org>2017-12-23 19:20:30 +0100
commit5ffa147bd2fe548df3ac9053fe497d0871a5f6df (patch)
treecc62882184c34e33e2995a5a4ff4ebfcbd0defe0 /clib/heap.ml
parentdea75d74c222c25f6aa6c38506ac7a51b339e9c6 (diff)
[lib] Split auxiliary libraries into Coq-specific and general.
Up to this point the `lib` directory contained two different library archives, `clib.cma` and `lib.cma`, which a rough splitting between Coq-specific libraries and general-purpose ones. We know split the directory in two, as to make the distinction clear: - `clib`: contains libraries that are not Coq specific and implement common data structures and programming patterns. These libraries could be eventually replace with external dependencies and the rest of the code base wouldn't notice much. - `lib`: contains Coq-specific common libraries in widespread use along the codebase, but that are not considered part of other components. Examples are printing, error handling, or flags. In some cases we have coupling due to utility files depending on Coq specific flags, however this commit doesn't modify any files, but only moves them around, further cleanup is welcome, as indeed a few files in `lib` should likely be placed in `clib`. Also note that `Deque` is not used ATM.
Diffstat (limited to 'clib/heap.ml')
-rw-r--r--clib/heap.ml134
1 files changed, 134 insertions, 0 deletions
diff --git a/clib/heap.ml b/clib/heap.ml
new file mode 100644
index 000000000..a6109972d
--- /dev/null
+++ b/clib/heap.ml
@@ -0,0 +1,134 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*s Heaps *)
+
+module type Ordered = sig
+ type t
+ val compare : t -> t -> int
+end
+
+module type S =sig
+
+ (* Type of functional heaps *)
+ type t
+
+ (* Type of elements *)
+ type elt
+
+ (* The empty heap *)
+ val empty : t
+
+ (* [add x h] returns a new heap containing the elements of [h], plus [x];
+ complexity $O(log(n))$ *)
+ val add : elt -> t -> t
+
+ (* [maximum h] returns the maximum element of [h]; raises [EmptyHeap]
+ when [h] is empty; complexity $O(1)$ *)
+ val maximum : t -> elt
+
+ (* [remove h] returns a new heap containing the elements of [h], except
+ the maximum of [h]; raises [EmptyHeap] when [h] is empty;
+ complexity $O(log(n))$ *)
+ val remove : t -> t
+
+ (* usual iterators and combinators; elements are presented in
+ arbitrary order *)
+ val iter : (elt -> unit) -> t -> unit
+
+ val fold : (elt -> 'a -> 'a) -> t -> 'a -> 'a
+
+end
+
+exception EmptyHeap
+
+(*s Functional implementation *)
+
+module Functional(X : Ordered) = struct
+
+ (* Heaps are encoded as Braun trees, that are binary trees
+ where size r <= size l <= size r + 1 for each node Node (l, x, r) *)
+
+ type t =
+ | Leaf
+ | Node of t * X.t * t
+
+ type elt = X.t
+
+ let empty = Leaf
+
+ let rec add x = function
+ | Leaf ->
+ Node (Leaf, x, Leaf)
+ | Node (l, y, r) ->
+ if X.compare x y >= 0 then
+ Node (add y r, x, l)
+ else
+ Node (add x r, y, l)
+
+ let rec extract = function
+ | Leaf ->
+ assert false
+ | Node (Leaf, y, r) ->
+ assert (r = Leaf);
+ y, Leaf
+ | Node (l, y, r) ->
+ let x, l = extract l in
+ x, Node (r, y, l)
+
+ let is_above x = function
+ | Leaf -> true
+ | Node (_, y, _) -> X.compare x y >= 0
+
+ let rec replace_min x = function
+ | Node (l, _, r) when is_above x l && is_above x r ->
+ Node (l, x, r)
+ | Node ((Node (_, lx, _) as l), _, r) when is_above lx r ->
+ (* lx <= x, rx necessarily *)
+ Node (replace_min x l, lx, r)
+ | Node (l, _, (Node (_, rx, _) as r)) ->
+ (* rx <= x, lx necessarily *)
+ Node (l, rx, replace_min x r)
+ | Leaf | Node (Leaf, _, _) | Node (_, _, Leaf) ->
+ assert false
+
+ (* merges two Braun trees [l] and [r],
+ with the assumption that [size r <= size l <= size r + 1] *)
+ let rec merge l r = match l, r with
+ | _, Leaf ->
+ l
+ | Node (ll, lx, lr), Node (_, ly, _) ->
+ if X.compare lx ly >= 0 then
+ Node (r, lx, merge ll lr)
+ else
+ let x, l = extract l in
+ Node (replace_min x r, ly, l)
+ | Leaf, _ ->
+ assert false (* contradicts the assumption *)
+
+ let maximum = function
+ | Leaf -> raise EmptyHeap
+ | Node (_, x, _) -> x
+
+ let remove = function
+ | Leaf ->
+ raise EmptyHeap
+ | Node (l, _, r) ->
+ merge l r
+
+ let rec iter f = function
+ | Leaf -> ()
+ | Node (l, x, r) -> iter f l; f x; iter f r
+
+ let rec fold f h x0 = match h with
+ | Leaf ->
+ x0
+ | Node (l, x, r) ->
+ fold f l (fold f r (f x x0))
+
+end